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Abstract

The bottom line in many statistical analysis in finance is the basic issue of modeling a set_
of multiveriate data. Financial data are characterized by their fat tails containing some
proportion of extreme cbservations. We propose a simple model able to capture these
main characteristics, and to provide a good fit for the bulk of the data as well as for the
atypical observations. Basically, we use a robust covariance estimator to define the center
and orientations of the dats, and the classical sample covariance to estimate how inflated
could this distribution be by the effect of extreme observations. Estimation of the model
is done either empirically or by maximum likelihood based on elliptical distributions.
Simuiation experiments verified the adequacy of the model to real data. We provide
illustrations of the usefulness of the proposed procedure, in particular when constructing
efficient frontiers. We show that robust portfolios may yield higher cumulative returns
and have more stable weights compositions.
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1 Introduction

'The bottom line in many statistical analysis in finance is the basic issue of modeling
a set of multivariate data. Examples include the replication of the efficient frontier
to construct confidence intervals for the corresponding portfolios weights (Michaud,
1998); or the generation of multivariate data to investigate the accuracy of risk
measures estimates; or the simulation of multivariate data to assess the chances of
occurring specific adverse scenarios; and so on. The lack of a good fit for the multi-
variate data often drives practitioners to replicate the data using simple bootstrap
techniques. However, this approach also possesses its limitations, the greater con-
cern being how to deal with time dependency in the data. Bootstrap techniques for
time series data do exist, but require large data sets, which may have the drawback
of covering periods of different economies or regulatory regimes.

Several models in finance rely on simplified assumptions. The Mean-Variance
(MV) model of Markowitz (1959) assumes the multivariate normal distribution for
a collection of assets. In this and other contexts (such as least squares estimation
of linear regression models), the assumption of the multivariate normal distribu-
tion is primarily due to its mathematical tractability and statistical interpretations.
However, it is now well known (Bekaert and Harvey (1997), among others) that fi-
nancial returns distributions are heavy tailed containing some proportion of extreme
observations.

Extreme observations are even more common in emerging markets. They may or
may not be considered outliers (this is a frequent discussion topic), but certainly they
seem to be related to a data generating process different from the ‘one generating
the vast majority of the observations. Clearly, the multivariate normal is not a
reasonable assumption for neither emerging nor developed markets data. It also
seems obvious that classical estimation methods, characterized by assigning equal
weights to each data point, will not succeed in such environment. We will provide
'illustrations on how classical estimates fail.

The problem of fitting multivariate distributions to financial data has been inves-
tigated by other authors, including Jobson and Korkie (1981), Embrechts, McNeil




and Strauman (1999). The challenge we face in this paper is that of obtaining a
good representation and a good fit for the bulk of the data as well as for the extreme
observations. Using our proposal, one does not have to worry about which and how
many observations are outliers. The proposed procedure does it automatically. Once
one has a good model, he can simulate the data, perform scenario analysis, obtain
replications for the efficient frontier, construct robust confidence intervals for the
portfolios weights, and so on. We will provide examples of such applications.

Before getting into more technical details, we give more motivation exploring the
classical estimation of multivariate data, in particular its effects on the estimation of
the covariance structure. We recall that the multivariate location and the covariance
structure are sufficient to characterize an elliptical distribution. In addition, they
are the only inputs in several statistical tools used in finance, for example, in the MV
optimization procedure, where the widely used estimators are the classical sample
covariance matrix and sample mean. As maximum likelihood estimators under
normality, these estimators possess desirable statistical properties under the true
model. However, their asymptotic breakdown point (definition given in the next
section) is equal to zero (Maronna, 1976), which means that they are badly affected
by extreme observations.

The effects of atypical points on the ellipsoid (Johnson and Wichern, 1990)
associated to an estimate of the covariance structure are at least two (Rousseeuw
and van Zomeren, 1990): (1) they may inflate its volume; {2) they may tilt its
orientation. The first effect is related to inflated scale estimates. The second is the
worst one, and may show up as switching the correlations signs.

To illustrate both effects we show in Figure 1 a dramatic exa;.nple using the
MSCI-EAFE and the American T-Bill returns expressed in Brazilian reais because
this country has experienced a major currency devaluation recently. The 72 data
points are monthly returns from January, 1995 to December, 2000. This figure shows
the set of points with same statistical distance to the center, the ellipsoids (see (1))
associated to the classical sample covariance matrix computed with (dotted line)
and without (solid line) the atypical points. We observe that the classical estimates
provide inflated ellipsoids. More important, the outliers (the two most extreme




correspond to December, 1998 and February, 1999 — the Brazilian devaluation)
rotate the axes of the ellipsoid computed from the classical estimates, and mask the
(correct) orientation given by the robust one.

<<Insert Figure 1 here>>

At such data configuration, robust and classical estimates will yield completely
different pairwise covariances or correlations estimates. For the two variables in
Figure 1, the classical and the robust estimates of the correlation coefficient are
respectively 0.88 and 0.17. Note that for dimensions higher than 2 the multivariate
outliers are harder to spot and we cannot rely on the graphical inspection anymore.

The remaining of this paper is organized as follows, In Section 2 we propose
a statistical model and a robust estimation procedure for multivariate data, and
illustrate using real data from emerging markets. In Section 3 we carry out three
simulation experiments to verify the goodness of fit of the new method. The new
estimates are compared to the classical ones in terms of bias and relative efficiency.
In Section 4 we investigate the effect of the data modeling on asset allocation.
Using real data we compare the performances of the robust and classical MV optimal
portfolios. It is shown that the robust portfolios may yield higher cumulative returns
and seem to possess more stable weight structures. In Section 5 we summarize the
results and offer our conclusions.

2 Model and Estimation

We first fix the notation that will be used and give the definitions of some concepts
~ that will be needed. Let 7 denote the p-dimensional Euclidean space and X =
{X1+-+ X,) arandom vector on RP with some distribution F. A random sample of
size 1 of F is X1, %3, .., Xn, Where X; = (i - +Typ) , for ¢ = 1,...,n, If F is absolutely
continuous, the collection x;,X3, ..., X, 7 = p + 1, is in general position {all points
must be different) with probability one. _

The determinant of a p X p matrix A is denoted by |A|. The eigenvalues of A
are A (A) > --- > A (A), and for i = 1,...,p, the e;’s are the eigenvectors, e;e} =1,
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ee; = 0. Let PDS(p) be the class of all p X p positive definite and symmetric
matrices. Every element A in PDS(p) bas a root R, a matrix such that A = RR’,
A matrix A is positive definite if and only if A1(A),..., Ap(A) > 0.

TheMahalanobisdistanoebetweentwovectofsvandu in R? with respect toa
matrix C in PDS(p) is defined as

d(v,u,C) = Vv —wCi{v—u). ()

When C =TI, where I is the diagonal matrix diag(l---1), (1) is just the Euclidean
distance between v and u, and it is denoted by )| - ||.
An ellipsoid E{u, C,r) in R?, with center u and covariance structure C, is

E(uw,C,r)={xe® : (x—u)C}(x—u) < r?}, (2)

where r is a positive real number. The magnitude of the ellipsoid is determined by
r and C, and when C = I it reduces to a ball witk center u and radius r. The
volume of any ellipsoid E(u, C,r) is equal to 4/[C| (F'(:;, _::)) and the lengths of
thepaxesareequalto%m i=1,..,p '

A location estimator of the multivariate center p of F, based on a collection
of n points, is a vector valued function of x;,x,...,x, and will be denoted by
A(x1,X2,...,X,) or simply fi. A covariance estimator of the covariance matrix ¥ of
F, based on a collection of n points, is a function of x;,x3, ..., x, taking on values
in PDS(p), and will be denoted f.‘.(xl,xz, <y Xy ) OT simply >}

The robustness of an estimator may be investigated with respect to its local
behavior under small pertubations on the data, and also with respect to its global
behavior under large pertubations of a given situation. Here we are more inter-
ested in the breakdown point of an estimator, which is a global robustness property
proposed first by Hampel (1968,1971).

This concept is related to the amount of extreme values which can “break down”
the estimator. It is a measure which tells us up to what fraction of extreme values in
the sample {or up to what distance from the assumed distribution F') the estimator
still gives reliable information about F.




A location estimator breaks down if contamination drives the estimator to the
boundaries of the parameter space. The finite sample replacement breakdown
point {Donoho and Huber, 1983) of a location estimator 7 at a collection X =
(%1,X2,...,Xn) is defined as the smallest fraction m/n of outliers that can take the
estimator over all bounds:

@) = gig {75 sup | HX) - B(Yw) 1= o0} ®

1<m<n

where the supremum in (3) is taken over all possible corrupted collections Y,, =
(Y1) -3 ¥ms Ximm+1, -y Xi) that can be obtained from X by replacing any m points
Xi, 5 -y X4, Of X by arbitrary values yi, ..., ¥m-

For example, the breakdown point of the sample mean is 1/n, the smallest pos-
sible value, measuring its sensitivity to extreme values. The best possible break-
down point among all translation equivariant estimators of multivariate location is
|%£|/n, where |z| means the largest integer smaller or equal to z. Two factors
related to location estimators are relevant to this work: (1) most estimators have
a breakdown point that does not depend on the data; (2) location estimators with
a high breakdown point necessarily must sacrifice tail performance (Lopuhai and
Rousseeuw, 1991).

A scale estimator breaks down if contamination drives the estimator to either
zero or 400, situations named by Huber (1981) as “implosion” or “explosion”. In the
multivariate case this idea can be expressed using the eigenvalues of ﬁ(x;, X2, erey X3 )-
The finite sample replacement breakdown point of a covariance estimator Tata
collection X is defined as the smallest fraction m/n of outliers that ‘can take either
the largest eigenvalue A, () over all bounds, or take the smallest eigenvalue A (E)
arbitrarily close to zero: '

e*(é,X)= min {ﬂ:s‘a{l}‘)M(ﬁ(X),fl(Ym)):oo} (4)

1€m<n | N
where the supremum is taken over all possible corrupted collections Yy, as in
(3), where M(E(X), £(Y,)) = max{|[}(E(X)) — M(E(Yn)I], IAEX) -
2p(B(Ym)) 1|}, and where ||z|| means the absolute value of z.
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For example, the breakdown point of the univariate sample variance is the small-
est possible value 1/n, illustrating its sensitivity to outliers. The best possible break-
down point among all affine equivariant covariance estimators at collections X in
general position is |“2+|/n (again, |z| means the largest integer smaller or equal
to z). It is important to note that it depends on p.

A covariance afline equivariant estimator which attains the maximum possi-
ble breakdown point is the Minimum Covariance Determinant (MCD) estimator of
Roussecuw (1985). The MCD location estimator 1y (X) is defined as the mean of
the h points of X= X;, Xz, ...,Xn for which the determinant of the sample covariance
is mintmal We will denote the classical sample covariance by S.

The (raw)} MCD covariance estimator f,aw is the sample covariance of those h
points. By taking h = J22+1|  the MCD attains the breakdown point of |2£+|/n
at any X in general position. In the univariate case the MCD estimator reduces
to the sample mean and sample variance of the h points with the smallest sample
variance. This estimator is asymptotically normal and converges at rate /n.

A concern in robustness is consistency of an estimator at the normal model. To
obtain consistency, the “raw” covariance estimate based on the A points is multiplied
by a factor, yielding the ¥,. This factor is median of the n squared Mahalanobis
distances (1), @2(%;, fin, Eraw), divided by X205- The notation x2 , means the (upper)
100 . ¢ % quantile of a chisquare distribution with p degrees of freedom. The final
MCD estimator (see Rouseeuw and Van Driessen, 1999) is a one-step weighted

sample mean and sample covariance computed with weigths:

wi =1 if d(x,fin, Th) < \/Xf;,o.ovs (5)

w; =0 otherurise .

Let us denote by A the number of points used to obtain the reweighted estimator
with weights given in (5). The final MCD estimator, denoted by flh+, possesses
the same high breakdown point of the iuitial estimate and reasonable asymptotic
properties. Note that n — ht extreme points were not used to compute the >0
and we will use this information later.




We can interpret the MCD estimator as an estimator able to measure the “out-
lyingness” of any point x;, relative to the center of the collection x;,x3,...,X,. The
weights given in (5) were assigned according to the degree of outlyingness. This is
also the default procedure of SPLUs (SPLUS, 2000), to be used in this paper.

Finally, we give the definition of a family of elliptically contoured distributions.
A family of distributions {€, 5, : p € R, € PDS(p); g 2 known function}, is
a family of elliptical distributions (Kelker (1970), Cambanis, Huang, and Simons
(1981)), if each member has density given by '

R g(l R (x—m) 1)

where RR' = X. A special member of the family is the spherically symmetric
distribution, S,;, which has density given by

gl x 1) -

Every spherical distribution S, generates the whole family £, 5, by means of a
affine transformation x — Rx + u. Examples of elliptical families are the multi-
variate normal, @, z, obtained with g(y) = (2r)~% exp{—1y?}, and the multivariate
t-student distribution with v degrees of freedom, ¢}, 5.

For the cases p 2> 2, Davies (1987) showed that at an elliptical distribution £, 5.,
the MCD estimators i, and $,.+ are consistent, respectively for p and 3. This fact
will guarantee, ahead in this paper, that we are estimating the correct quantity.

2.1 Statistical Model

To obtain a good representation for the p-dimensional data we propose, as in Huber
(1981), the contaminated model

F* = (1-QF(u,%) + eF* (4, 5°) 6)
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where ¢ is the contaminating proportion, and where the underlying distribution F
and the contaminating distribution /* are members of families of elliptical distri-
butions {€,5;,}, with same u. The (p X p) covariance matrix X represents the
(predommant) dependence structure of the usual business days, or, in other words,
the covariance structure of the data cloud without the outliers. X* is the covariance
matrix of an extended data cloud containing also most of the atypical points. In
model (6), the ellipsoids (see (2)) associated to X and X*, for fixed x, have the same
orientation but different volumes. We explain in the following paragraphs how these
characteristics are derived from the choice of the eigenvectors and eigenvalues of X
and ¥*. '

In practice, because ¢ is small, the contaminating distribution in (6) typically
produces spurious extreme observations seeming to follow an orientation structure
different of that of the usual days, or X. As illustrated in Figure 1, when using the
classical sample covariance matrix S, these few points can tilt the orientation of the
axes of its associated ellipsoid. To avoid this problem we propose to estimate the
correct orientation using ¥,+, the high breakdown point MCD estimate of covariance
matrices. The volumes of ¥ and ®* will be estimated respectively based on the
volumes of the robust X;+ and classical S covariance estimates. We estimate the
proportion € empirically or by maximum likelihood.

More formally, our proposal is based on the spectral decomposition of positive
definite matrices, which is a property held by legitimate estimates of covariance
matrices.

Given a p X p symmetric positive definite matrix A, its spectral decomposition
gives A = Aj{(A)ee] + ... + A(A)ese,. A compact representation‘is A =TAI',
where A is a diagonal matrix with diagonal equal to (A;(A),...,A,(A)), and T’ =
{(e; - - - ep). The axes of the ellipsoid associated to A have orientations given by the
eigenvectors of A, and lenghts proportional to the square root of the eigenvalues of
A

Let

> =TAI'




be the spectral decomposition of the covariance matrix of the bulk of the p-variate
data with no contamination. We propose the extended covariance matrix to be

¥ =TA'T,

where A® is the diagonal matrix A* = A/ where 4 is a correction factor. For
any (p X p) symmetric matrix X it is true that tr(Z) = 37, A(X), where tr(X),
the sum of the diagonal elements of E, is the trace of the matrix ¥ {Johnson and
Wichern, 1990). Since the elements in the diagonal of ¥ are the variances, it is
easy to see the relation between the magnitudes of the variances and the sizes of the
eigenvalues. Thus the correction factor ¢ will be based on the robust and classical
variance estimates. We clarify all these details in the next subsection.

2.2 Estimation Procedure

Consider the n X p data set X = (x;, Xz, ..., Xn). Our estimation procedure for model
(6) is:
STEP 1. Compute the robust multivariate location and covariance matrix estimates

(Bin, ﬁm). We emphasize that the MCD was chosen also because it points out the

n — h* extreme observations, and does not assume any particular distribution for
the data.

STEP 2. Compute the spectral decomposition of fl;.+, flm = fh+ 3,-,+f,,+.
STEP 3. Compute 3, the (classical) sample covariance matrix based on the n points.

Step 4. Compute the correction vector 3 as the ratio between the robust scale
estimates {square root of the diagonal of £,+) and the classical standard deviations
(square root of the diagonal of 5). The elements of 8 are typically less than 1. Define
A’ = A+ / 3. Thisis equivalent to mu.li:iply the robust eigenvalues by a correction
-factor which is greater than 1.

STEP 5. Compute an estimate for the extended covariance matrix X* as 5=
f;.+ A fm.. In this way, the eigenvalues of the inflated covariance estimate are the

10
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eigenvalues of the robust one corrected by appropriate factors depending on the data.
It is easy to see that X* is positive definite, since its eigenvalues are all positive.

STEP 6. Estimate the proportion ¢ of contamination. Here we have two options.
As antecipated, one possibility is to estimate ¢ empirically, using the fraction of
observed extreme points

n—ht
ot
thus letting the data speak for themselves. Another possibility is to estimate € by
maximum likelihood. In this case, to maximize the log-likelihood of (6) both F and
F* must be specified, and we suggest to choose members of elliptical distributions.
In fact, this is a very reasonable assumption for the central part of the multivariate

€=

data. As a strong support for this suggestion we recall the famous Winsor’s principle,
quoted by John Tukey {1960, p.457): “all distributions are normal in the middie”.

The final robust estimator is (1 — 8+ + €&, This follows since if x has
distribution F* as in model (6) then

x = X1 p1-¢) + Xal(wz1-¢)

where 1 is the indicator function, U is a standard uniform random variable, x; ~ F,
and x2 ~ F*. From E[x] = E[E[x|U]], the expected value of x is E[x;}(1 — €) +
E[x3](€) = p, and the covariance of x is (1 — €)% + (¢)E".

We denote the multivariate location robust estimator by fi,, and the two robust
proposed estimators by f)em,, when ¢ is estimated empirically and no assumption is
made about F and F*, or by EML, when ¢ is estimated by maximum likelihood.

To illustrate, Figure 2 shows the new estimator for other two components of the
data set used previously. The solid line corresponds to the empirical estimation, the
dotted line to the maximum likelihood estimation, and the dash-dotted line to the
classical estimation. Again we can see that the robust estimates seem to capture
the right orientation and volume of the collection of points.

11




EX T

A B T R T TS T 2 TN R L T T M

<<Insert Figure 2 bere>>

In the next sections we continue in the investigation of practical financial appli-
cations of the proposed model and estimation procedure.

3 Modeling Financial Data

How good are the proposed estimators when estimating the center and the covari-
ance structure of a multivariate data set? How do they compare to widely used
sample estimates? Do they perform well when data are contaminated, or come from
mixtures of ellipticall distributions, and when they actually come from an ellipti-

- cal distribution? To answer these questions we now carry on a small simulation

experiment,

To verify if our model is a good representation of financial data, we performed
the following experiment. First, we assumed a (true) model which could represent
some of the characteristics of multivariate financial returns. Then, we generated
500 data sets according to this (true) model. For each simulated data we computed
the robust and classical covariance estimators. Summarijes of the simulations are
compared to the {true) parameters values. A weakness of this verification is that
the only choice for generation of multivariate data available in most of the statistical
soﬁwéres, including SPLUS, is the normal model. Therefore, at this moment, we are
not able to simulate data from other elliptical distributions. The best we can do is to
contaminate the data assuming mixtures of normals, or point mass contamination.

We chose the true model to be a 5-dimensional normal distribution, with some
center pp and covariance Cp, contaminated with a given proportion of extreme
observations. The outliers are obtained by adding to the randomly generated values
a contaminating arbitrary value, in order to produce what is known by additive
outliers (Huber, 1981). The additive outliers are a reasonable representation of the
effect of major news and interventions, which do not change the data generating
Pprocess, but cause large short-time effects.

To be more realistic, we chose the (true) covariance matrix Co as the covariance

12




computed from a real data set (to be used in Section 4). The choice of the true
parameters is irrelevant, since we are interested in meassuring the closeness {or lack
of) of estimates to the true values, in average. They were thus chosen, without loss
of generality, to be gy = (0,0,0,0,0) and Cgy given by

[ 3.905 0.032 0.818 0.411 0.600
0.032 0.010 0.006 0.008 0.004
0.818 0.006 0.876 0.196 0.221 | . (7
0.411 0.008 0.196 0.588 0.125
0.600 0.004 0.221 0.125 0.363

Co

Also, the contaminating values were different for each marginal, and based on the
atypical points observed in each column of the real data®.

We performed three experiments. Experiment 1 puts contamination only in two
marginals {mimicking a local turmoil). Experiment 2 contaminates all 5 variables,
to represent periods of global crisis. Experiment 3 adds no contamination, to verify
how efficient under the Gaussian model is the robust estimator.

For each (1300 5) simulated data set we computed the classical and the proposed
robust estimates of the true 20 parameters uo = (0,0, 0, 0,0}, and, for 7,7 = 1,..., 5,
the variances and covariances o;; given in (7). To be fair, in these experiments
we compared the sample estimates to the fl.m,. The output summarizing the 500
results are the mean, the standard deviation, the square root of the mean squared
error (RMSE)}, and the median of the absolute value of errors (MAE) of the estimates
of the 20 parameters. ’

In the first experiment the robust procedure showed smaller bias, RMSE and
MAE, in 4 out of 5 estimated means; in 3 out of the 5 estimated variances; and
in 6 out 10 estima.t:ed covariances. We report in Table 1, for each estimator, the
worst cases in each class of parameters (mean, variance, and covariance). The worst
classical cases are in rows 1, 3, and 5. We observe the inflated classical RMSE values

im.glhed_b;uth.e._lm:g&.hias.af_t.he_pmnt estimates.
A less subjective procedure for defining the outlying values could have been used by applying

the concept of robust distances of Rousseeuw and van Zomeren (1990).
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Table 1: Results for 6 parameters (out of 20) from Ezperiment 1. Contamination propor-
tion is 3% on two variables.

— s
T

#ﬁ
Par. | TRUE ROBUST ]l CLASSICAL

yi and o3; || MEAN | STDEV | RMSE | MAE Il MEAN. | STDEV | RMSE | MAE
i ﬁ_0.000 -0.003 | 0.061 0. 0.198 (| -0.009 { 0.082 0.007 | 0.232

H5 0000 } 0000 { 0.017 | 0.000 | 0.107 || 0.000 | 0.016 | 0.000 | 0.103

on 3905 | 3.600 | 0.162 | 0.073 | 0.468 3 8.135 | 0.250 | 17.954 | 2.058

056 0.363 | 0.356 | 0.015 | 0.001 | 0.126 )} 0.363 | 0.013 | 0.000 | 0.092

o012 0.032 | 0.027 | 0.006 [ 0.000 | 0.078 | 1.915 | 0.081 | 3.550 [ 1.369

o3¢ | 0.196 L 0.185 | 0.022 0.001 | 0.129 |1 0.197 | 0.020 { 0.000 | 0.118

—

In the second experiment the robust procedure showed better RMSE and MAE
performances for all 20 parameters. Some classical estimates showed very large
biases, which is exactly the effect of the zero breakdown point. Table 2 shows the
results for the same parameters in previous table. For example, note the classical
point estimates of &4,, o5, and o3,

Table 2: Results for 6 parameters (out of 20) from Ezperiment 2. Contamination propor-
tion is 3% on all five variables.

PAR. | TRUE RoBusT CLASSICAL

p: and oy; | MEAN | STDEV | RMSE | MAE || MEAN | STDEV | RMSE | MAE

#1 0.000 | 0001 | 0.055 | 0.003 | 0.199 j§ -0.041 { 0.076 { 0.007 | 0.248

Mg 0.000 3 -0.003 | 0.016 | 0.000 | 0.104 | -0016 | 0.026 | 0.001 | 0.144

o 3.905 |) 3.649 | 0.155 0.090 | 0.507 || 8.419 | 0.290 | 20.460 | 2.125

o35 0.363 ! 0.340 | 0.015 | 0.901 | 0.152 } 1.005 | 0.042 0.414 | 0.799

o12 0.032 {j 0.026 | 0.006 0.000 | 0.082 *2'022 0.104 3.967 | 1.406

osa | 0196 [ 0180 { 0.022 | 0.001 | 0.43 | 0.487 | 0.027 [ 0.085 | 0540

In the third experiment the two methods provided surprisingly close values. In
many cases the difference between the average values of the two estimators was in

14




the fourth decimal place. The worst case was when estimating &ry1, when the robust
average estimate was 3.660 and the classical was 3.893. In this case the RMSE
were, respectively, 0.084 and 0.021. The relative efficiency, computed as the ratio
* ‘between the squares of the STDEV (standard deviation} of both estimates and for
all 20 parameters ranged between 1.041 and 1.253, a very satisfactory result.

We emphasize that finding the best fit for multivariate data is not an end, but
a means of providing statistical inferences. For example, computations of risk mea-
sures, simulations of data to study and measure the chances of adverse scenarios,
etc. We did some verifications on the accuracy of such applications, which we do
not report since this would make the paper too long.

4 Assessing Robust Portfolios Performances

As already commented, financial analysts are typically interested in the applications
that follow a (good) fit of 2 multivariate data set. For instance, the estimates
(#en, $emp) may be used as inputs for asset allocation. The MV model is probably the
most used model for efficiently allocate capital among risky asset classes. Estimation
of the efficient frontier is almost always done via the classical sample mean X and
sample covariance §. However, different statistical estimates define different efficient
frontiers. One of the most important causes of limitation of MV optimization in
practice is the lack of optimality presented by classical estimates. For the problem of
assessing the effect of classical estimates on the estimation of MV efficient frontiers,
see Klein and Bawa (1976), Jobson and Korkie (1981), Best and Grauer (1991), and
Britte and Jones (1999).

The literature suggests alternatives for the estimation of the inputs in the MV
model. Examples include shrinkage estimators or Bayesian procedures (see West and
Harrison, 1998). These suggestions can be found in Michaud (1998), but Fletcher
and Hillier (2001) find little difference between the performance of portfolios with
weights estimated according to Markowitz (1959) and Michaud’s (1998) alterna-
tives. Also, Handa and Tiwari (2000) find that incorporating parameter uncertainty
through a Bayesian approach does not improve portfolio performance.
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Portfolios constructed based on high breakdown point estimates are meant to
be used for long term objectives, since they capture the dynamics of the majority
of the business days, the “normal” days. On the other hand, the efficient frontier
resulting from the use of classical estimates may reflect neither the usual nor the
atypical days, as illustrated in the Introduction. In what follows we apply the fl,,,,,
and the 3y, together with Ji, to a real data set, and construct robust portfolios
that should reflect the behavior of both the usual and the extreme days.

We chose emerging markets data due to their high frequency of atypical ob-
servations. The benefits of international diversification have been examined in the
litterature and, from a US investor point of view, Li et al. (2001) found them to
be small using emergent markets data. We take a different approach in one empir-
ical exercise and address the asset allocation problem from the point of view of an
investor in an emerging market considering more volatile asset classes than those
that would be considered by an US investor. Thus, while there may be little gain
from international diversification and alternative approaches to estirnate the inputs
of MV optimization for an US investor, this may not be true for other investors.

The five assets composing the portfolio are: 1. The Brazilian index IBOVESPA;
2. A Brazilian fixed income (CDI), benchmark for money market yields; 3. The
American index S&P500; 4. The MSCI EAFE index to represent the rest of the
world; 5. The J. P. Morgan Latin American EMBI to represent US dollar emerging
market bonds (Brady Bonds); all denominated in dollars. We use 1413 daily per-
centual returns from January, 2, 1996 to May, 31, 2001. The data possess several
extreme points observed during local and global crisis periods.

We will perform out-of-sample analysis of several aspects of the robust and clas-
sical optimal portfolios and investigate, in particular which one could yield cumu-
lative returns. To this end, we split the data in two parts. The first part of the
data, the estimating period, is used to compute the robust and classical inputs for
the MV optimization procedure. The second part, the testing period, is used in the
comparisons.
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4.1 Cumulative Returns

The first aspect analyzed was the trajectory of the portfolios’ cumulative returns
over the testing period. Three portfolios in the efficient frontier were used in the
comparisons: (@) the portfolio possessing some fixed target daily percentual return
v, say, v = 0.08%; (b} the minimum risk and (¢) the maximum return portfolios.
There is no particular reason for the choice of the daily target return of v = 0.08%.
This was just a portfolio return value existing in both frontiers. The portfolios’
performances were assessed by implementing the portfolios’ allocations (given in
Table 3) computed at the baseline ¢ = 1013, the end of the estimating period, at
which the estimates were obtained, up to £ = 1413, the end of the testing period.
The weights were kept fixed during the testing period.

Table 3: Portfolios compositions at the baseline t = 1013, based on the robust and classical
inputs.

% Daily | % Risk WEIGHTS
Return | (St.Dev.) | IBOVESPA | CDI | S&P500 | EAFE | EMBI
(a) Fixed Target Return Portfolios
Robust £y | 0.080 | 0.253 0.045 0.677 | 0.000 | 0.000 | 0.278
Robust £, | 0080 | 0.302 0.063 0.693 | 0.000 | 0.000 | 0.243
Classical 0080 | 0.944 0.000 0.067 | 0.824 | 0.034 | 0.075
(b) Minimum Risk Portfolios
Robust $emp | 0.060 | 0.063 0.000 0.920 | 0.000 | .0.000 { 0.001
Robust £, | 0060 | 0.075 0.000 1.000 | 0.000 | 0.000 { 0.000
Classical 0.043 | 0573 0.000 | 0.4552 | 0.1495 | 0.2708 | 0.125
(c} Maximum Return Portfolios

Robust emp | 0.165 | 1.986 1.000 | 0.000 | 0.000 | 0.000 | 0.000
Robust Spr | 0165 | 2354 1.000 0.000 { 0.000 | 0.000 | 0.000
Classical - 0088 | 1.082 0.000 0.000 | 1.000 | 0.000 | 0.000

Figure 3 shows the cumulative returns of the portfolios (@), and Figure 4 shows
the results for portfolios (b) and (¢). As a benchmark and just for the sake of
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comparisons, we also plot the trajectory of the equally weighted (EW) portfolio. The
figures display returns cumulated over the 400-days period. In all three scenarios
analysed the portfolios constructed using £qpnp (the black line) dominate the classical
ones (gray line). The middle (dotted) line in Figure 2 corresponds to the EW. The
two robust portfolios performances were so close that we plotted only the empirical.
Also the corresponding weights were very close.

<<Insert Figure 3 here>>

The out-of-sample performance of the portfolios depend upon their intrinsic char-
acteristics, but also whether or not the testing and the estimating periods are com-
patible. In other words, for the comparisons to be meaningful, the inputs computed
with and without the observations in the testing period should be close. The poor
performance of the maximum return portiolios of Figure 4 at the end of the test-
ing period of 400 days may be due to the fact that the estimating sample and the
end of the testing sample represent quite different market behaviors. To verify this
concern, and to assess the variability of the returns accumulated over the testing
period, we carry out the following analysis.

<<Insert Figure 4 here>>

We again split the data in a estimating sample of size 1013 and a testing period
of size 400. Using the baseline estimates we compute three portfolios: the minimum
risk (Mi), the maximum return (Ma), and a “central” portfolio (Me), whose return
is, given an efficient frontier, the average between the returns of its portfolios of
minimum risk and maximum return®. The cumulative return over a 100-days period
is computed for each one. Then, the following 10 observations (¢ = 1014 to ¢ = 1023)
are added to the estimating sample. All computations are repeated, robust and
classical portfolios of the three types (Mi, Ma, Me) are obtained at the baseline

1Typically, the robust and the classical efficient frontiers occupy different regions in the Risk x
Return space. Therefore, it is quite difficult to compare robust and classical portfolios. By choosing
the “central” portfolio, we aim to characterize a portfolio designed for investors possessing the same
degree of risk aversion, half way between the minimum and maximum risks for any given efficient
frontier. :
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t = 1023, and estimates for the final value of the 100-days accumulated returns of
all portfolios are saved. We repeat this process until we have 1313 observations in
the sample, thus obtaining 31 representations of the returns of the (6) portfolios at
the baselines and at the end of the 100-days periods. Only the the X, was applied.

The objective was to characterize the distributions of the returns and risks
of the robust and classical portfolios at two points of the time: At the base-
lines (¢t = 1013,1023,...,1313), and also at the end of the 100-days periods (t =
1113,1123,...,1413). '

We first characterize the distribution of the portfolios constructed at the base-
lines. Figure 5 shows the distribution of the three robust and classical baseline
portfolios. In this figzure, the notations RMi, RMe, and RMa (CMi, CMe, CMa)
stand for the robust (classical) portfolios of the three types. The plot at left shows
the returns. We observe that the robust portfolios are more stable, with a distrib-
ution located at higher values and possessing smaller variability. For example, for
the minimum risk portfolios, the smaller observed robust value was greater than the
highest observed classical one. 'We also carried out a formal paired t-test to test
equality of the means of the returns. For all three types of portfolios the p-value
was zero against the alternative hypothesis of the robust mean return being greater
than the classical one.

< <Insert Figure 5 here>>

The risks associated to the 31 portfolios are box-plotted at the right hand side of
Figure 5. We also note a smaller variability of the (also smalier} robust quantities.
The baseline effect on the portfolios may be noticed from the high variability of the
returns computed for each type of portfolio. However, the robust ones showed more
stability through time.

Next, we investigated the distribution of the cumulative returns by examining
the 100-days accumulated values associated to the 31 baseline portfolios. Table 4
gives summaries of the results. We observe that, for all three types, the distributions
of the accumulated returns of the robust portfolios are located at the right of the
classical ones. For example, the median of the central robust portfolio is 0.407,
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whereas the classical central portfolio distribution is located at -1.495.

Table 4: Quantiles of the distribution of the 100-days cumulative returns for the three
types of portfolios.

Probabilities
0.05 0.25 050 | 075 | 095
Minimum Risk Portfolios {Mi)

Robust | -3.7247 | 0.2054 | 1.4816 | 4.0401 | 10.8487
Classical | -8.3662 | -5.75692 | -1.7407 | 1.6105 | 6.9451
Central Portfolios (Me)
Robust -8.7699 | -3.3460 | 0.4071 | 4.3120 | 11.1023
Classical | -8.0000 | -3.8494 | -1.4955 | 2.1490 | 6.2649
Maximum Return Portfolios (Ma)
Robust | -21.7927 | -15.3349 | -10.0274 | -1.8232 | 13.5189
Classical | -26.9746 | -18.6547 | -12.0028 | -3.2452 | 11.8448

4.2 Weights Stability

We also investigated the stability of the weights associated to the robust and classical
~ portfolios. This is an important issue since the portfolios’ compositions are usually
kept fixed during some period, here during 100-days. To check this assumption, we
again split the data in two parts. The first part contains 1313 observations and it is
used to estimate the robust and classical MV inputs. The idea is to observe, for a
given portfolio, how the weights change as long as new data points are incorporated
in the analysis. Thus, successive days were incorporated into the analyzes (and the
sample sizes increased to 1313 + 4, i = 1,...,100). In this way we could assess how
stable the portfolios weights are during a 100-days period. The minimum risk, the
maximum return, and the “central” portfolio are used. The compositions of the
portfolios at the baseline day ¢ = 1313 are given in Table 5.
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Table 5: Portfolios’ compositions at baseline t = 1313 under robust and classical estima-
tion.

Return | Risk | IBOVESPA | CDI | S&P500 | EAFE | EMBI
Minimum Risk Portfolios o
Robust £enp | 0.058 | 0099 | 0000 |0.988| 0.000 | 0.000 | 0.012
Classical 0039 (0560 0000 {0486( 0.099 ( 0.228 | 0.187
Maximum Return Portfolios
Robust 8.y | 0.120 [2.093| 1.000 | 0000 0.000 | 0.000 { 0.000
Classical 0088 {2722 1000 [0000| 0.000 | 0.000 | 0.000
Central Return Porifolio
Robust £erp | 0.089 {0409 0000 |0.389] 0.000 { 0.000 { 0.611
Classical 0063 |0.992 | 0071  |0.000| 0.567 | 0.000 | 0.362

The results are that the weights are very stable for the two extreme portfolios,
under both robust and classical procedures, which usually puts weight 1 to some
variable. However, the weights associated with the robust and classical central
portfolios are different. This can be seen in Figure 6 where we boxplot the weights
associated to the 5 components of the central portfolic under the robust (left) and
classical {right) approaches. The robust weights presented less variability for all
5 components. Thus the robust portfolios seem to have more stable weights, thus
reducing portiolio rebalancing costs.

<<Insert Figure 6 here>>

5 Conclusions

In this paper we proposed a statistical /model and estimation procedure for heavy
tailed multivariate elliptical data containing some proportion of atypical observa-
tions. These are characteristics typically found in financial data, in particular in
emerging markets data.
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The rationale behind the proposal is that the true correlations among the vari-
ables are those observed in the vast majority of the business days. Extreme obser-
vations may show up locally or globally, and whenever they occur this may result in
spurious correlations if classical estimates are used. This is mainly due to the fact
that these atypical observations may tilt the orientation of the axes of the ellipsoid
associated to the covariance matrix estimate.

Our robust model and estimation procedure is expected to reflect the pattern of
usual days, via the high breakdown point correlation structure, and also the effect
of atypical days, via classical estimates of variances. _

We performed three simulation experiments to check the performance of the
proposal when compared to the widely used sample estimates. We generated data
from a model representing some of the characteristics of financial returns, and con-
taminated it with some proportion of a_dditive outliers. We found that the robust
estimates presented smaller biases and smaller root mean squared error. Under no
contamination they presented very reasonable relative efficiency with respect to the
maximum likelihood estimates.

Then we looked to one of the most important statistical applications in finance
that is particularly sepsitive to input estimates errors: the MV efficient frontiers.
Several aspects of the out-of-sample performance of the robust and classical port-
folios were investigated. We found that robust portfolios typically yield higher ac-
cumulated returns. Also, for any given type of portfolio (minimum risk, maximum
return, central portfolio), the robust portfolios showed a more concentrated distrib-
ution with higher expected returns. We also concluded that the baseline choice has

- a stronger effect on classical portfolios than on the robust ones. In other words, due

to their definition and statistical properties, the robust estimates were able to re-
duce the instability of the optimization process. Finally, we found that this stability
property carried over to the weights associated to the robust portfolios.

Endnotes
The authors thank to Datastream, Economatica, and gratefully acknowledge Brazilian
financial support from CNPg-PRONEX, FAPERJ and COPPEAD research grants.
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Figure 1. Ellpsoids of constant probability equal to 0.999 for the monthly returns of the
EAFE ond T.BILL. Points on the curves are al the same statistioal distance from the
corresponding centers, thus possessing the same likelihood of occurrence.
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Figure 2: Ellipsoids of constant probability equal to 0.999 for the monthly returns of the
IBA and EAFE. The solid line corresponds to the empirical estimation, the dotled tine to
the marimum likelthood estimation, and the dash-dotted line to the classical estimators.

26




Fixec Meature

Figure 3: Cumulative (%) daily returns of portfolios with target daily return equal to
0.08%. The black line corresponds to the robust portfolio. The gray line to the classical
portfolio. The dotied line corresponds to the equally weighied porifolio.
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Figure 4: Cumulative (%) daily returns for the robust (black line) and the classical (gray
line) portfokios. At left: portfolios with minimum risk. At right: portfolios yielding mazi-
mum relurms.
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Figure 5: Distribution of the retwrns and risks of the baseline portfolios (t = 1013, :m....)
under the robust and classical approaches. -
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Figure 6: Boaplots of robust and classical weigths associaled to the five components of the
central portfolio.
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