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Financial data are heavy tailed containing some proportion of extreme 
observations. We propose to use a robust covariance estimator to define 
the center and orientation of the data. We provide an illustration of the 
usefulness of the proposed procedure to efficiently allocate among 
emerging stock markets. We show that the resulting robust portfolios may 
yield higher cumulative returns and have more stable weights. We strongly 
recommend that a robust covariance matrix is used to solve emerging 
stock markets allocation problems. We believe that our technique has a 
key advantage. Because all we change is the covariance matrix, we can 
use any commercially available optimizer to obtain robust portfolio 
weights.  
 
Key Words: Robust Estimation; Multivariate Financial Data; Outliers;  
Mean-Variance Optimal Portfolios.  

 

  

1. 1. 1. 1.     INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION    

 

Several models in finance rely on simplified assumptions.  For example, the Mean-

Variance (MV) model of Markowitz (1959) assumes the multivariate normal distribution for a 

collection of independent and identically distributed (iid) assets. Based on this assumption, the 

resulting procedure simply requires estimates of the center and covariance matrix of the data 

as inputs to obtain the efficient frontier weights. 

 

In this context, the classical sample mean and sample covariance estimators are the 

maximum likelihood estimators and possess desirable statistical properties.  However, their 

                                                 
1 Acknowledgements: Ricardo Leal thanks Datastream, the financial support of CNPq, the 
Brazilian Scientific and Technological Development Council, and research support by Daniel 
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asymptotic breakdown point is equal to zero (Maronna, 1976), which means that they are 

badly affected by extreme observations and may become meaningless.  

 Extreme observations are even more common in emerging markets. They may or may 

not be considered outliers (this is a polemic discussion topic), but they certainly seem to be 

related to a data generating process different from the one generating the vast majority of the 

observations.  Even though these atypical observations constitute a small proportion of the 

data set, they are often associated with some type of crisis and are of great interest in finance.  

However, statistical analysis of low probability tail events should be made through specific 

models, such as extreme value models (Hartman, Straetmans and De Vries (2001) and   

Embrechts,  Klüppelberg, and Mikosch (1997)),  or regime-switching models (Ang and 

Bekaert, 2002).   

 

 The effects of atypical points on the ellipsoid associated to an estimate of the 

covariance structure (Johnson and Wichern, 1990) are at least two: (1) they may inflate its 

volume; (2) they may tilt its orientation. The first effect is related to inflated scale estimates. 

The second is the worst one, and may show up as switching the correlations’ signs.  The 

concept of breakdown point is related to the amount of extreme values which can “break 

down” the estimator. It is a measure which tells us what is the maximum fraction of atypical 

values in the sample with which the estimator still gives reliable information. For example, the 

breakdown point of the sample mean is zero, the smallest possible value, reflecting its high 

sensitivity to extreme values.   

 

 In this paper we use a variation of the well known high breakdown point Minimum 

Covariance Determinant (MCD) estimator to obtain robust efficient frontiers and construct 

robust portfolios in emerging markets. The remaining of this paper is organized as follows. In 

Section 2 we propose a robust estimation procedure for the inputs of the MV model. To 

illustrate, we use emerging markets data in Section 3.  We compare the performances of the 

robust and classical MV optimal portfolios, and show that the robust portfolios may yield 

higher cumulative returns and seem to possess more stable weight structures. In Section 4 we 

summarize the results. 

 

2. 2. 2. 2.     INPUTS FOR THE MVINPUTS FOR THE MVINPUTS FOR THE MVINPUTS FOR THE MV----MOMOMOMODELDELDELDEL    

 

 To obtain a good representation for the p-dimensional data we propose to estimate 

the covariance matrix using  
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2ΣΣ εε +− 1)1(   (1) 

where ε is some contaminating proportion. 
 The p x p covariance matrix Σ1 represents the (predominant) dependence structure 

of the usual business days, or, in other words, the covariance structure of the data cloud 
without the outliers. Σ2 is the covariance matrix of an extended data cloud containing also 
most of the atypical points.  

 

 In equation 1, the ellipsoids associated to Σ1 and Σ2, for fixed x have the same 

orientation but different volumes.  These characteristics are derived from the choice of the 
same eigenvectors for Σ1 and Σ2. In practice, because ε is small, the contaminating 

distribution in equation 1 typically produces spurious extreme observations seeming to follow 
an orientation structure different of that observed during usual days, or Σ1.   These are the 

observations occurring during stress periods when we may observe different (greater) 

correlations. When using the classical sample covariance matrix S, these few points can tilt 

the orientation of the axes of its associated ellipsoid.   

 

 To avoid this problem, we propose to estimate the correct orientation of the data using 

the high breakdown point Minimum Covariance Determinant (MCD) estimate (Rousseeuw, 
1985).  The volumes of Σ1 and Σ2 will be estimated based, respectively, on the volumes of 

the robust MCD and classical S covariance estimates. We estimate the proportion ε 

empirically. 

 

 The MCD is a covariance affine equivariant estimator which attains the maximum 

possible breakdown point (approximately 0.5).  For a given integer h, the MCD location 
estimator )(Xhµ)  is defined as the mean of the h points of ),...,,( 21 nxxx=X  for which the 

determinant of the sample covariance is minimal.  
 

 Let us denote by h+ the number of points used to obtain the MCD. Thus, n – h+ 

extreme points were not used to compute the covariance estimate and this information is used 

to empirically compute the proportion ε. We can interpret the MCD estimator as able to 

measure the “outlyingness” of any data point relatively to the center of the collection.  

 
 In summary, we assume that a set of assets returns pX ℜ∈ possess a distribution that is 

a mixture of two elliptical distributions with same center, and covariance matrices intended to 
represent the usual days and most atypical days. This fraction ε of observations results from 
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days when larger volatility is observed with no change on the strength and sign of correlations.  

Contamination here does not mean errors and it is just a mechanism to model the data. We 
denote the robust estimators of the location and covariance matrix of the data by ( )empΣ

)) ,hµ , 

where ε is estimated empirically and, unlike the MV-model inputs, no assumption is made 

about the data’s underlying distribution.  

 

 In the next section we provide a practical illustration of the financial applications of the 

proposed model in emerging stock markets country allocations. In all MV optimizations 

carried on we use positive weights and ex post µ.   

 

 

3. 3. 3. 3.     PERFORMANCE OF RPERFORMANCE OF RPERFORMANCE OF RPERFORMANCE OF ROBUST PORTFOLIOS: HIOBUST PORTFOLIOS: HIOBUST PORTFOLIOS: HIOBUST PORTFOLIOS: HIGHER ACCUMULATED YIEGHER ACCUMULATED YIEGHER ACCUMULATED YIEGHER ACCUMULATED YIELDS?LDS?LDS?LDS?    

 

 The MV Model is probably the most used in practical asset allocation applications. 
Estimation of the efficient frontier is almost always done via the sample mean x and sample 

covariance matrix S.  However, different statistical estimates define different efficient 

frontiers. One of the most important limitations of MV optimization in practice is the lack of 

optimality presented by these classical estimates. 

 
 We now use the estimates ( )empΣ

)) ,hµ  as inputs for an asset allocation exercise with the 

MV model to construct robust portfolios that should reflect the behavior of both the usual and 

the higher volatility days. We stress that they do not reflect extreme crises.  We note that 

portfolios constructed based on high breakdown point estimates are meant to be used for 

long term objectives, since they capture the dynamics of the majority of the business days. 

 

  The seven markets in our emerging market portfolio exercise are: Argentina, Brazil, 

Korea, China, Taiwan, South Africa, and Mexico. We have 2151 daily returns from July 3, 

1995 through September 29, 2003. The indices have been obtained from Datastream and 

are all computed by S&P from the former IFC (International Financial Corporation) Global 

indices. The indexes are market capitalization weighed. The market capitalization of the 

constituents of the S&P/IFCG indices exceeds 75% of all domestic shares listed on the local 

exchange. Index computation details may be obtained at Standard and Poor’s website. We 

used both local currency and dollar returns.  
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3.1 3.1 3.1 3.1     First Empirical ExerciseFirst Empirical ExerciseFirst Empirical ExerciseFirst Empirical Exercise    

 

 We perform out-of-the-sample analysis of several aspects of the optimal robust and 

classical portfolios and investigate, in particular, which one could yield higher cumulative 

returns. To this end, we split the data in two parts.  The first part of the data, the estimating 

period (1870 daily observations), is used to compute the robust and classical inputs for the 

MV optimization procedure.  The second part, the testing period (281 daily observations), is 

used in the comparisons. We are interested in the cumulative returns at the end of the testing 

period. 

 

 Thus, we analyze the trajectory of the portfolios' cumulative returns in the testing 

period. Three portfolios in the efficient frontier were used in the comparisons: (a) the portfolio 

possessing a fixed target daily percentage return v, say, v=0.041%; (b) the minimum risk 

and (c) the maximum return portfolios. Note that even though the robust and the classical 

portfolios have the same target expected daily return value of 0.041%, they belong to 

completely different regions in their respective efficient frontiers. The robust one lies in a low 

risk region while the classical lies in a high risk region. The reason is that the two efficient 
frontiers lie on different regions of 2ℜ .  

 

 The portfolios' performances are assessed by computing their allocations at baseline t 

= 1870 (given in Table 1), which is the end of the estimating period, through t = 2151, the 

end of the testing period.  The weights were kept fixed during the testing period. The three 

robust portfolios have lower risk than their classical counterparts. The asset allocation for the 

robust portfolios is also better distributed among markets and is quite different from the 

classical portfolio’s weights. Our first empirical exercise indicates that our robust 

contamination technique yields portfolio weights that dominate the classical portfolio weights 

in emerging markets country allocations, at least for the period examined.  

 

Table 1Table 1Table 1Table 1 

 

Portfolios compositions at the baseline t=1870, based on the robust and classical inputs. 

Daily US dollar returns from S&P/IFCG indexes reported. 
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WEIGHTS 
 

% Daily 

Return 

% Risk 

(St. Dev.) ARG BRAZ KOR CHI TAI AFR MEX 

(a) Fixed Target (0.00041) Return Portfolios 

Robust 0.041 0.775 0.085 0.051 0.016 0.280 0.134 0.305 0.129 

Classical 0.041 1.539 0.000 0.000 0.000 0.897 0.000 0.000 0.103 

(b) Minimum Risk Portfolios 

Robust 0.033 0.770 0.130 0.029 0.030 0.252 0.147 0.299 0.112 

Classical 0.000 1.003 0.088 0.012 0.015 0.296 0.201 0.238 0.151 

(c) Maximum Return Portfolios 

Robust 0.090 1.419 0.000 0.000 0.000 1.000 0.000 0.000 0.000 

Classical 0.043 1.699 0.000 0.000 0.000 1.000 0.000 0.000 0.000 

 

  

Figure 1 shows the cumulative returns of the fixed 0.041% return portfolios. It displays 

returns accumulated over the one year testing period. The portfolio constructed using 
( )empΣ

)) ,hµ  (the black line) dominates the classical one (the gray line). We note that even 

though the mean returns of the robust and the classical portfolios are the same, it seems that 

the robust method, being more truthful to the data, is more successful when composing the 

portfolios. We repeated the analysis using local currency returns. The results are qualitatively 

the same and we do not report them, but make them available upon request, as usual.  
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Figure 1Figure 1Figure 1Figure 1: Cumulative (%) daily returns of portfolios with target daily return equal to 0.041%. 

The black line corresponds to the robust portfolio. The gray line to the classical portfolio.  

 

3.2 3.2 3.2 3.2     Second Empirical ExerciseSecond Empirical ExerciseSecond Empirical ExerciseSecond Empirical Exercise    
 

 In our first exercise we obtained the portfolio weights at the base day t=1870 and 

studied the portfolio behavior in the following 281 days. However, it is possible that the 

portfolio should be rebalanced more often or that this time horizon is too long. In our second 

exercise we rebalance the portfolio by computing its covariance matrix and weights every 10 

days. The baseline times now are t = 1870, 1880, 1890, ..., 2050. We have 19 baseline 

or estimation times. Thus we have 19 baseline portfolios and for each one we compute 19 

trajectories and 19 accumulated returns over the following baseline plus 100 days period. 

There are two objectives to this second exercise: (1) to assess the stability of the covariance 

estimates, as this stability carries over to the weights; (2) to assess and compare accumulated 

gains over a shorter time horizon of about 4 months (the first exercise assumed approximately 

a 1 year horizon). We update the portfolio weights more frequently because economic 
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changes would be captured by the estimates. At each baseline point we are enlarging the 

data set, and adding more information. Then we examine the distributions of the returns and 

risks of the robust and classical portfolios at two points of the time: at the baselines (t=1870, 

1880, ..., 2050), and also at the end of each of the 100-day periods (t=1971, ..., 2151).   

 

 The out-of-the-sample performance of the portfolios depends upon their intrinsic 

characteristics, as well as on whether or not the testing and the estimating periods are 

compatible. In other words, for the comparisons to be meaningful, the inputs computed with 

and without the observations in the testing period should be close.  

 

 We compute six portfolios at each baseline:  the minimum risk (Mi), the maximum 

return (Ma), and a “central” portfolio (Me), using the classical and the robust covariance 

matrix. The central portfolio return is the average between the returns of the portfolios of 

minimum risk and maximum return over its respective efficient frontier. By choosing the 

“central” portfolio, we aim to characterize a portfolio designed for investors with about the 

same degree of risk aversion, half way between the minimum and maximum risks for any 

given efficient frontier. The cumulative return over a 100-day period is computed for each 

portfolio.  Then, the following 10 observations (t = 1871 to t = 1880) are added to the 

estimating sample. All computations are repeated, robust and classical portfolios of the three 

types (Mi, Ma, Me) are obtained at the baseline t=1880, and estimates for the final value of 

the 100-day accumulated returns of all portfolios are saved. We repeat this process until we 

have 2051 observations in the sample, thus obtaining 19 representations of the returns of the 

(6) portfolios at the baselines and at the end of each 100-day period.   

 

 Figure 2 shows the distribution of the portfolio returns and risk at the baselines. These 

are their past returns at the baselines. The notations RMi, RMe, and RMa (CMi, CMe, CMa) 

stand for the robust (classical) portfolios of the three types.  The plot at left shows the returns.  

We observe that the robust portfolios are more promising, with a distribution located at higher 

values and possessing smaller variability. For example, for the minimum variance portfolios, 

the smaller observed robust value was greater than the highest observed for the classical 

portfolios. We also carried out a formal paired t-test to verify the equality of the means of 

returns. For the three portfolio types the p-value was zero against the alternative hypothesis of 

the robust mean return being greater than the classical. The risks associated to the 19 

portfolios are box-plotted at the right hand side of Figure 2. We also note a smaller variability 

of the (also smaller) robust quantities.  
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Figure 2:Figure 2:Figure 2:Figure 2: Distribution of the returns (left) and risks (right) of the 19 baseline portfolios (t = 

1870, 1880,...) for each portfolio type (minimum risk, central, and maximum return) under 

the robust (R) and classical (C) approaches.  

 

 All of this was the past. Do the robust portfolios deliver in the testing period? We 

investigate the distribution of the US dollar returns by examining their 100-day accumulated 

values associated to the 19 baseline portfolios. Table 2 summarizes our results. We observe 

that the accumulated returns distributions of the robust portfolios are located to the right of 

the classical ones for all portfolio types. For example, the central robust portfolio median is 

6.37%, whereas the classical central portfolio median is 4.77%. There is a 160 basis point 

return difference in 100 days, which is highly significant from a financial stand point.  The 

maximum return portfolios are not given but their results are qualitatively similar, albeit less 

relevant.  
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Table 2Table 2Table 2Table 2 

 

Quantiles of the daily US dollar return distribution of the 100-days cumulative returns of the 

minimum variance and central portfolios according to the robust and classical estimation 

procedures. 

 

 Probabilities 

 0.05 0.25 0.50 0.75 0.95 

Minimum Risk Portfolios (Mi) 

Robust 3.5458 6.0519 10.025 15.3432 20.7501 

Classical 0.7757 5.2593 8.5151 14.3825 20.7104 

Central Portfolios (Me) 

Robust -0.3210 4.3651 6.3793 11.9707 18.304 

Classical -3.7725 1.0911 4.7786 11.8908 17.3109 

 

  

We could look to the results by observing the trajectory after the 100 days for each 

baseline portfolio. We observe the 19 differences between the robust and the classical (100 

days) accumulated returns for the minimum variance portfolio with the weights obtained at 

baselines 1870, 1880, ..., 2050.  Thus, for each of the 19 time periods, are the 

performances of the minimum variance robust portfolios greater? The answer is yes. The 

boxplots in figure 3 show the differences at the end of each of the 19 trajectories for the 

minimum variance and the central portfolios. The maximum return portfolios behave the same 

compositions with weight 100% on China and are omitted. The formal t-tests reject that the 

mean difference is equal to zero with zero p-values for both portfolio types.  
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Figure 3Figure 3Figure 3Figure 3: Differences (robust minus classical) between the accumulated returns at the end of 

each of the 19 100-day trajectories of the minimum variance (risk) and the central portfolios. 

 

3.3 3.3 3.3 3.3     Weights StabilityWeights StabilityWeights StabilityWeights Stability    
 

 Now we investigate the stability of the robust and classical portfolio weights. This is 

important because the portfolio holdings remained fixed during some time. We estimate the 

weights and rebalance the portfolios daily for 200 days. We form a data set of 200 weights 

attached to each emerging market index in our study and examine its concentration, or 

stability. Successive days were incorporated into the analysis one at a time. The sample started 

with 1951 observations and increased until it reached 2151 observations. At each of the 200 

baselines we computed the robust and classical MV inputs. The idea is to observe, for a given 

portfolio, how do the weights change as long as new data points are incorporated in the 

analysis. The minimum risk, the maximum return, and the “central” portfolios are used.   

 

 Figure 4 shows the boxplot of the weights associated to the 7 components of the 

minimum risk portfolio under the robust (left) and classical (right) approaches for the central 
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portfolio. The robust weights presented less variability for all 7 components. However, 

variables 2 (Brazil), 3 (Korea), and 6 (South Africa) were never used by the classical procedure 

and should not be used in comparisons.  The robust portfolios seem to have more stable 

weights, thus reducing portfolio rebalancing costs. The weights are very stable for the 

minimum risk portfolios, under both robust and classical procedures.   

Figure 4Figure 4Figure 4Figure 4: Boxplots of robust (left) and classical (right) weigths associated to the seven 

emerging market indexes for the central  portfolio. Each box plot in each panel represents an 

index, from left to right: Argentina, Brazil, Korea, China, Taiwan, South Africa, and Mexico. 

 

 

4. 4. 4. 4.     CONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONS    

 

 In this paper we proposed the use of robust inputs for the MV-model. The main 

motivations for this work were the fact that for long horizon investments with no frequent 

updating of portfolio weights, a robust estimate should capture the correlations observed in 

the vast majority of the business days; and the  fact that extreme observations may show up 
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locally or globally, and whenever they occur this may result in spurious correlations if zero 

breakdown point classical estimates are used.  

 

 Several aspects of the out-of-sample performance of the robust and classical portfolios 

were investigated. We found that robust portfolios typically yield higher accumulated returns. 

Also, for any given type of portfolio in the efficient frontier, the robust portfolios showed a 

more concentrated distribution with higher expected returns. We also concluded that the 

baseline choice has a stronger effect on classical portfolios than on the robust ones. In other 

words, due to their definition and statistical properties, the robust estimates were able to 

reduce the instability of the optimization process. Finally, we found that this stability property 

carried over to the weights associated to the robust portfolios. We strongly recommend that a 

robust covariance matrix is used to solve emerging stock markets allocation problems. We 

believe that our technique has a key advantage. Because all we change is the covariance 

matrix, we can use any commercially available optimizer to obtain robust portfolio weights.  
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