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CODIAGNOSTICABILIDADE DE SISTEMAS A EVENTOS DISCRETOS EM

REDE COM ESTRUTURA TEMPORIZADA

Gustavo da Silva Viana
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Orientador: João Carlos dos Santos Basilio

Programa: Engenharia Elétrica

Considera-se, neste trabalho, o problema da codiagnosticabilidade de sistemas

discretos de eventos em rede com estrutura de temporização (NDESWTS) sujeitos

a atrasos e perdas de observações de eventos entre os locais de medição e diagnosti-

cadores locais e, para esse propósito, apresenta-se um novo modelo com temporização

que representa o comportamento dinâmico da planta com base no conhecimento

prévio do tempo mı́nimo de disparo para cada transição e dos atrasos máximos nos

canais de comunicação que conectam LM e DL. Em seguida, converte-se o modelo

temporizado em um não temporizado e adiciona-se posśıveis perdas intermitentes de

pacotes na rede de comunicação. Com base nesse modelo não temporizado, condições

necessárias e suficientes para a codiagnosabilidade de NDESWTS são apresentadas

e dois testes para sua verificação são propostos: um utilizando diagnosticadores e

outro que utiliza verificadores. Um outro tópico de pesquisa abordado neste tra-

balho é o cálculo da τ -codiagnosticabilidade (tempo máximo para diagnosticar uma

ocorrência de falha) e K-codiagnosticabilidade (número máximo de eventos para di-

agnosticar uma ocorrência de falha) também usando diagnosticadores e verificadores.
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We address, in this work, the problem of codiagnosability of networked discrete

event systems with timing structure (NDESWTS) subject to delays and loss of ob-

servations of events between the measurement sites (MS) and local diagnosers (LD).

To this end, we first introduce a new timed model that represents the dynamic be-

havior of the plant based on the, a priori, knowledge of the minimal firing time for

each transition of the plant and on the maximal delays in the communication chan-

nels that connect MS and LD. We then convert this timed model into an equivalent

untimed one, and add possible intermittent packet loss in the communication net-

work. Based on this untimed model, we present necessary and sufficient conditions

for NDESWTS codiagnosability and propose two tests for its verification: one that

deploys diagnosers and another one that uses verifiers. Another topic addressed

in this work is the computation of τ -codiagnosability (maximal time to diagnose a

failure occurrence) and K-codiagnosability (maximal number of event occurrences

necessary to diagnose a failure). To this end, we propose two tests: (i) one test

based on a diagnoser-like that does not require usual assumptions on language live-

ness and nonexistence of unobservable cycles and (ii) another one based on the

extended verifier that shows not only the ambiguous paths but also those paths that

lead to language diagnosis.
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Chapter 1

Introduction

In recent years, new challenges to make production processes more efficient, au-

tonomous and customizable have led to a new industrial revolution. A new concept

of industry, called Industry 4.0 [1, 2], has emerged and is currently adopted to de-

nominate the current trend of automation and data exchange in manufacturing tech-

nologies by creating a “smart factory” [3]. One of the fundamentals of Industry 4.0

is the Cyber-Physical systems (CPS) [4–7]. CPS can be regarded as a mechanism

that is controlled or monitored by computer-based algorithms, tightly integrated

with the Internet and its users. Examples of CPS include smart grid, autonomous

automobile systems, process control systems, robotics systems and manufacturing

systems.

An important class of Cyber-Physical systems is called Discrete Event Systems

(DES) [8–12], which are event-driven dynamic systems, with discrete state spaces.

Such systems arise in a variety of contexts ranging from computer operation systems

to the control and monitoring of large scale complex processes. Several problems

in the literature have been solved by using DES modeling tools; among them, we

mention: supervisory control [8,11,13], opacity [14,15], detectability [16], prognosis

[17], failure diagnosis [18–22], and many other topics.

In order to supply the demand for interconnected devices, communication net-

works are more widely used in engineering systems [23, 24], since devices are usu-

ally positioned far away from each other in a distributed system. Although there

are benefits, the use of communication networks have introduced problems such as

communication delays and loss of information [25,26]. Time delays come from com-

1



putation time required for coding physical signals, communication processing and

network traffic time, while losses of information come mainly from the limited mem-

ory in the devices, network traffic congestion in the network and drop out packets.

In order to deal with these problems, some relevant theoretical approaches have

been considered in the literature, regarding supervisory control [27–39] and failure

diagnosis [40–43] of networked discrete event systems.

We address, in this thesis, the problem of failure diagnosis of DES subject to

delays and losses in the transmission of observed events from measurement sites

(MS) to local diagnosers (LD). Such a failure diagnosis problem is referred, in the

literature to as codiagnosability of networked discrete event systems [42,43]. In ad-

dition, we revisit the codiagnosability of discrete event system problem in order to

provide some contributions as follows. The verification of diagnosability of discrete

event systems by using diagnoser proposed by SAMPATH et al. [19] and the veri-

fication of decentralized diagnosability (codiagnosability) of discrete event systems

by using diagnoser DEBOUK et al. [21] have some drawbacks, since the authors as-

sume language liveness and nonexistence of unobservable cycles of states connected

with unobservable events only. To overcome these limitations, we propose a new

algorithm to check codiagnosability by changing the diagnoser structure so as to

consider both observable and unobservable events, therefore, removing the assump-

tions imposed in [19, 21]. Regarding codiagnosability verification of discrete event

systems by using verifiers [44–47], MOREIRA et al. [47] proposed a verifier whose

language stops just before the language becomes diagnosable. As a consequence, the

event that removes the ambiguity is not shown in the verifier. We propose here an

algorithm to extend the verifier automaton proposed in [47] to show the complete

paths that lead to the failure diagnosis. As an application of these algorithms, we

compute by means of weighted automaton formalism [48, 49] the maximum time

that the diagnosis system takes to detect the failure occurrence (τ -codiagnosability)

and the maximum number of events that occur after the failure occurrence until the

diagnosis system becomes sure of the failure occurrence (K-codiagnosability).

2



1.1 Failure Diagnosis and Computation of τ- and

K-Codiagnosability

Failure detection and isolation has received a lot of attention in recent years and has

become a well-established area of research [18–22,44–47,50–56]. A failure is defined

to be any deviation of a system from its normal or intended behavior. Diagnosis

is the process of detecting an abnormality in the system behavior and isolating

the cause or the source of this abnormality. Failures in industrial systems could

arise from several sources such as design errors, equipment malfunctions, operator

mistakes, and so on. In the design of a failure diagnosis system for DES, the first

step is to check whether the language generated by an automaton is diagnosable,

i.e., whether the system is able to diagnose the failure occurrence in a finite number

of events occurrences.

Several approaches have been proposed in the DES literature to check this prop-

erty using diagnoser or verifier. A diagnoser is an automaton whose states are sets

formed with the states of the automaton that models the plant together with la-

bels that indicate if the trace occurred so far possesses or not the fault event. An

advantage of diagnosers is that they can be used for both on-line and off-line pur-

poses. Verifiers have been proposed in [44–47], and are, widely speaking, obtained

by performing a parallel composition between the failure system behavior and the

system behavior without failure. The disadvantage of verifiers is that they are suit-

able only off-line verification purposes. It is well known that diagnosers have, in

the worst case, exponential complexity in the plant state-space as opposed to veri-

fiers that have polynomial computational complexity in the number of the states of

the automaton that generates the language [44–47]. However, it has been recently

conjectured in [57], based on experimental evidences, that the diagnosers built in ac-

cordance with [19] have state size Θ(n0.77 log k+0.63), on the average, where k (resp. n)

is the number of events (resp. states) of the plant automaton. This result is encour-

aging in the sense that it makes diagnosers a viable tool for diagnosability analysis as

well. However, diagnosability analysis using diagnosers still requires the search for

cycles which has computation complexity worse than exponential [58], as opposed to

diagnosability analysis using verifiers that requires the search for strongly connected
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components, which is linear in the number of automaton transitions [59, 60].

Although the diagnosis of a failure is an important issue regarding safety of in-

dustrial automation systems, it is also important to know how long the diagnosis

system takes to detect the failure occurrence (τ -codiagnosability), or, in the context

of discrete event system models, how many events must occur after the occurrence

of the failure event in order for the diagnosis system to be sure of its occurrence

(K-codiagnosability). In order to address these concerns, we need to analyze the

diagnoser characteristics. Notice that the diagnoser proposed by [19] provides infor-

mation on the failure occurrence based solely on observable events, i.e., those events

whose occurrence can be recorded by sensors. Therefore, when diagnosers are used

offline to predict the time spent to diagnose the failure, it is not possible to take

into account the time interval between occurrences of observable events that have

unobservable events in-between. Another aspect regarding diagnosis is that liveness

and nonexistence of unobservable cycles in the plant automaton are actually as-

sumed for both diagnosability and codiagnosability verification using SAMPATH et

al.’s and DEBOUK et al.’s diagnosers. For this reason, K-diagnosability was defined

by [19] and [22] as the number of observable events that must occur after the failure

occurrence in order for the diagnoser to be sure about the failure occurrence. We

remove here all of these assumptions and propose a diagnoser-based test that also

takes into account unobservable events and does not require the search for cycles,

but for strongly connected components.

In this thesis, we change the diagnoser structure so as to consider both ob-

servable and unobservable events. The main advantages of the approach proposed

here are as follows: (i) diagnosability verification becomes a particular case of co-

diagnosability verification as opposed to [19] and [21], which requires two different

tests for diagnosability and codiagnosability; (ii) it does not require the usual as-

sumptions on language liveness and non-existence of cycles of states connected with

unobservable events [19,21,54]; (iii) it is based on the search for strongly connected

components, as opposed to cycles in the usual tests using diagnosers [19,21,54] ; (iv)

we can address τ -codiagnosability by adding weights associated with transitions of

the automaton, forming, therefore, the so-called weighted automaton. It is worth re-

marking that weighted automata have only been employed for performance measure
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in the context of supervisory control of discrete event system. Thus, the approach

proposed here reduces to the step counting by replacing all transition weights with

unity weight, and therefore, K-codiagnosability analysis becomes a particular case

of τ -codiagnosability.

We now present a brief comparison between the methods proposed here to com-

pute τ - and K-codiagnosability and those found in the literature.

QIU and KUMAR proposed in [45] an algorithm to compute the maximum delay

of codiagnosability using a verifier, also proposed in [45]. However, the proposed

approach cannot be extended to τ -codiagnosability since the value of K is computed

by adding 1 to the longest trace of the verifier deployed in [45] because the next event,

i.e., the event that removes the ambiguity is not shown in the verifier; therefore it is

not possible to take into account its time in the computation of τ -codiagnosability.

TOMOLA et al. [61] proposed an algorithm for the computation of the delay

bound for robust disjunctive decentralized diagnosis based on the algorithm for

the computation of the delay bound in the non-robust case using the verifier au-

tomaton proposed in [47]. Like the strategy developed in [45], the extension to

τ -diagnosability is not straightforward.

YOO and GARCIA [62] proposed an algorithm to compute K-diagnosability

(referred there to as fault detection delay) using a verifier similar to Fi-verifier

proposed in [46], which can have cycles, but those cycles have zero weight. As in

the previous papers, it is not clear how to extend the approach proposed in [62] to

K- and τ -codiagnosability.

VIANA et al. [63] proposed an algorithm to compute τ -diagnosability, which is

a particular case using of the diagnoser developed in this work for codiagnosability,

and compute the maximum time for failure diagnosis by using a max-plus matrix

representation for the time-weighted automata [49]. The computational complexity

of the approach proposed in [63] is, however, worse than both methods presented

here.

More recently K- and τ -diagnosability were addressed by BASILE et al. [64] for

labeled Timed Petri nets, using the centralized diagnoser proposed in [19]. As a

consequence: (i) it is, in the worst case, exponential in the cardinality of the state

space of the system model; (ii) it requires the usual assumptions on language liveness
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and nonexistence of unobservable cycles of states connected with unobservable events

only; (iii) it is based on the search for cycles, and; (iv) K-diagnosability is defined

taking into account observable events only [22].

An important work on τ - and K-codiagnosability was presented by CASSEZ [65],

in which the author approaches the decentralized failure diagnosis problem for dis-

crete event systems modeled by finite automata (FA) and, timed systems modeled

by timed automata (TA) [66]. For FA (resp. TA), he computes the maximum num-

ber of steps (resp. the maximum delay), both denoted as ∆, that are necessary for

the detection of the failure occurrence. As far as τ -codiagnosability is concerned,

the approach presented here is also different from [65, 67, 68]. In [67], Wonham’s

timed discrete event model [69] is deployed, and a sixth order polynomial algorithm

in the size of the state space of the automaton that models the plant was proposed

to verify and compute the maximum delay for failure diagnosis, whereas in [65,68],

diagnosability is defined using Alur & Dill timed automaton model [66,70]. Here, we

approach τ -codiagnosability by using weighted automata, which cannot be included

in the class of timed automata, although they carry information on the maximum

time between event occurrences, which makes them suitable to be used as a per-

formance index. Therefore, in this regard, the work developed here and CASSEZ’s

work are incomparable. Regarding K-codiagnosability analysis, the computational

complexity of the algorithm proposed by CASSEZ in [65] depends on the complexity

of the verifier automaton used, and on the complexity of performing the search for

the longest failure trace, which is quadratic in the number of transitions of the veri-

fier, since binary search is used. Here, we propose a polynomial time algorithm based

on an extension of the verifier automaton presented in [47], which has the smallest

computational complexity among all verifiers presented in the literature [71], and

whose search algorithm is linear in the number of transitions of the verifier; there-

fore, the algorithm proposed here to compute K-codiagnosability is more efficient

than that proposed in [65]. A comparison between the computational complexity of

the algorithm proposed in [65] and the algorithm proposed in this thesis is presented

in Chapter 3.
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1.2 Discrete Event Systems Subject to Commu-

nication Delays and Losses

Most of the works in the area of failure diagnosis of DES assume that all informa-

tion is sent to the diagnoser in a seamless and immediate manner [19,21]. However,

due to the complexity of the plants, diagnosers are often implemented in a dis-

tributed way and, consequently, with the development of network technology, it has

become more and more common in industry, communication system implementa-

tions by using shared communication networks [34]. In diagnosis systems based on

communication networks, the intense data traffic in communication channels, or the

long distance between measurement sites and diagnosers, may delay the information

communicated through the channel. Thus, the diagnoser can observe events with

some delay after its occurrence, and also, when multiple communication channels

are deployed, in order different from their occurrence in the plant; thus, being led

to make wrong decisions regarding failure occurrence. In addition, in the sending of

information, losses may occur.

The problem of failure diagnosis of DES with delays in communication networks

was first addressed by DEBOUK et al. [40] and QIU and KUMAR [41]. However,

the problem addressed in this work is different from [40, 41]. First, the problem of

decentralized failure diagnosis proposed in [40] is subject to communication delays

between local diagnosers and the coordinator, under Protocols 1 and 2 of [21]. A

key feature of Protocol 1 studied in [21] is the following: under the assumption that

all communicated messages are received in the correct order by the coordinator, the

coordinator is capable of tracking the state of the system as well as a centralized

diagnoser, even though it does not have any knowledge of dynamics of the system.

Protocol 2 studied in [21] is the following: if the system has no failure ambiguous

traces (Definition 18 in [21]), and if the communicated messages are received in

the correct order by the coordinator, the coordinator can identify exactly the same

failure types as the centralized diagnoser even when the communication between

local sites and the coordination is not continuous. In [40], it is assumed that the

events received by the coordinator can be observed in a different order from the

original order of occurrence; however, no delay between the measurement sites and
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the diagnoser. Here we consider Protocol 3 of [21], since we deal with communication

delays between the measurement sites and the local diagnosers. Finite delays in the

communication between local diagnosers and coordinator are not assumed here since

they do not affect the diagnosis decision. The problem proposed in this work is also

different from the so-called distributed diagnosis scheme proposed in [41], where

each local diagnoser can exchange information with the other local diagnosers to

infer the failure event occurrence. In addition, in [41] the communication delay

between two local diagnosers is considered equal, and it is assumed that there is no

delay between the measurement sites and diagnosers. The problem of DES subject

to unreliable observations of events was addressed in [54] and [61] (in the context

of failure diagnosis) without considering communication networks. In this work, we

model the loss of observation based on the technique proposed by CARVALHO et

al. in [54]

In [42, 43], the definition of network codiagnosability of DES subject to event

communication delays was introduced, where the concept of step [33, 35] was used

to measure communication delays, i.e., k ∈ N steps accounts for the occurrence of,

at most, k events until the information of the event executed by the plant arrives

at the local diagnoser. In this thesis, we propose a new approach called networked

discrete event systems with timing structure (NDESWTS) by adding two parameters

to the automaton that models the system behavior as follows: (i) the maximal

time communication delays between the distributed measurement sites in the plant

and the local diagnosers; (ii) a minimal time function that is associated with each

plant automaton transition, which corresponds to the minimal time the system must

remain in the state before the transition can fire. Regarding the modeling of the

observation of the events by a local diagnoser subject to delay and losses, NUNES et

al. [42, 43] carried out it in two steps as follows: in first step, an automaton that

model the effects of the delays is proposed; in the second step, the automaton that

models the observation of the events by a local diagnoser is computed by performing

the parallel composition between the automaton obtained in the previous step and

the automaton that models the plant. In this thesis, we propose an algorithm

to consider the models the observation of the events by a local diagnoser subject

to delay and losses without this intermediate step. To this end, we convert the
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new timed model that represents the dynamic system behavior of the plant into

an untimed one, and add possible intermittent packet loss in the communication

network. We check codiagnosability of NDESWTS proposed here by developing two

algorithms: one based on diagnosers and another based on verifiers.

We remark that the Timed Discrete Event System (TDES) model proposed by

BRANDIN and WONHAM in [69], that introduces one additional event called tick

to represent “tick of global clock”, could also be used. The authors in [72–74]

have addressed untimed model to deal with communication delays by introducing

tick events in the plant to represent a clock cycle. The main limitation of that

approach is when the system has far apart temporal characteristics since due to

the fast system behavior, the tick will be associated with a small time interval,

and, as consequence, the corresponding untimed model may have a large number

of states to represent slow dynamics in the model. Regarding models to represent

time information, timed automata [65, 66, 68, 70] could also be an option to model

the time information. Timed automata provide a way to model the behavior of

real-time systems over time by using state-transition graphs with timing constraints

using finitely many real-valued clocks. However, the cost to obtain the behavior of

real-time systems over time makes this formalism more complicated to model and

analyze. Indeed, the construction of region graph to recognize untimed language of

timed automata is O(|L| fact(|X|) 2|X| K |X|), where L is the number of locations

(states), X is the number of clocks, K is the large constant used in timed automata,

and fact(|X|) denotes the factorial of the cardinality of X [65]. Thus, the adoption

of this formalism implies unnecessary computational effort to the goal of this work.

It is important to remark that the problem of communication delays has also

been addressed in the context of supervisory control of DES by [27, 30, 32, 33, 35],

for the monolithic case, and by PARK and CHO [31], and [34] for the decentralized

and distributed case. In the aforementioned works, it is assumed that there is only

one communication channel between the plant and supervisor, and, thus, no change

in the order of event observations by the supervisor occurs. Since codiagnosability

is not time critical, i.e., the diagnoser can detect the fault after an arbitrarily large

number of event occurrences, bounded communication delays that cannot change the

order of event observation are not important in the context of failure diagnosis. We
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here consider decentralized diagnosis of NDESWTS assuming that communication

delays can be large enough that it can modify the order of observation of the events

received by the local diagnosers. Still in the context of supervisory control, TRI-

PAKIS [28] and SADID et al. [29] assume that communication delays may change

the order of event observation. One important restriction of these approaches is that

the same delay upper bound is assumed for all communication channels. In addi-

tion, SADID et al. restricts the problem to those systems whose automaton models

have no loops of communication events (events that are subject to communication

delays) in the original system. None of these assumptions are made here.

1.3 Contributions of the Thesis

In this thesis, we address the problem of codiagnosability of networked discrete event

systems with timing structure (NDESWTS) subject to delays and losses of observa-

tions of events between the measurement sites (MS) and local diagnosers (LD). We

introduce a new timed model that represents the dynamic system behavior of the

plant based on the, a priori, knowledge of the minimal firing time for each transition

of the plant and on the maximal delays in the event observation after it is recorded

in the MS. In order to avoid using the concept of step [33,42,43] or the TDES [69],

we model the consequences of communication delays of the observations received

by the local diagnoser by directly applying the time information. To this end, we

convert this timed model in an untimed one, and add possible intermittent packet

loss in the communication network. Based on this untimed model, we present nec-

essary and sufficient conditions for NDESWTS codiagnosability and propose two

tests for its verification: one that deploys diagnosers and another one that uses

verifiers. NDESWTS model proposed here is sufficiently general to address prob-

lems of other research areas such as supervisory control of networked discrete event

systems [38,39].

In order to establish a comparison between the approach presented here and

others previously presented in the literature, we shown in Figure 1.1 the main dif-

ferences between the approach presented here and previous works regarding the

location of the communication channels subject to delays, the number of commu-
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Location of communication channels subject to delays

Number of communication channels and communication delay bounds

Formalism used to measure communication delays

Plant and Diagnosers/Agents
Communication between

Agents
Communication between

Coordinator and Diagnosers
Communication between

This work

with different delay bounds
Several communication channels Single communication channel

This work

This work

with the same delay bound
Several communication channels

[27,30-32,33-37,38,39,42,43,72,74]
[28,29,41,73] [40]

Events may be observed in a
different order of their occurrences

[38,39,42,43]

Events are observed in the
same order of their occurrences

Events may be observed in a
different order of their occurrences

[28,29,40,41,73] [27,30-32,33-37,72,74]

Step approachTiming Structure TDES approach Unbounded delay

[27,28][72-74][29-39,42,43]

Figure 1.1: Comparison among different networked DES in the literature regarding

the location of the communication channels subject to delays, the number of com-

munication channels of communication delays (and delay effects), and the formalism

used to measure communication delays.

nication channels and communication delays bounds, and the formalism used to

measure communication delays.

Another research topic addressed in this work is the computation of τ -

codiagnosability (maximal time to diagnose a failure occurrence) and K-

codiagnosability (maximal number of events to diagnose a failure occurrence). To

this end, we propose two tests: (i) one test based on a diagnoser-like automaton

that does not require usual assumptions on language liveness and nonexistence of

unobservable cycles and (ii) another one based on the extended verifier that shows

not only the ambiguous paths but also those paths that lead to language diagnosis.
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1.4 Thesis Organization

The organization of this doctoral thesis is summarized as follows. In Chapter 2, we

present a review of DES theory and a brief introduction on failure diagnosis of DES.

In Chapter 3, we revisit the codiagnosability of discrete event systems problem

and propose two new verification algorithms: (i) the first algorithm based on a

diagnoser-like automaton that does not require the usual assumptions on language

liveness and nonexistence of cycles of states connected with unobservable events; (ii)

and an extended verifier developed to show not only the ambiguous paths but also

those paths that lead to language diagnosis. As an application, we address τ - and K-

codiagnosability problems. In Chapter 4, we address the failure diagnosis problem

of networked discrete event systems with timing structure (NDESWTS), and, to

this end, we formally define NDESWTS and propose an equivalent untimed model.

Subsequently, we present necessary and sufficient conditions for codiagnosability

of NDESWTS and propose two tests to its verification: the first one based on

diagnosers, and a second one, based on verifiers. Finally, in Chapter 5, we conclude

the thesis and point out potential future directions.
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Chapter 2

Fundamentals of Discrete Event

Systems and Failure Diagnosis

In this chapter, we present the necessary background on Discrete Event Systems

(DES), and on failure diagnosis of DES. The theoretical foundations of DES pre-

sented in Section 2.1 are based on [11].

The structure of the chapter is as follows. In Section 2.1, the main formalisms

for DES are presented. In Section 2.2, we present a model for DES subject to in-

termittent loss of observations. The main concepts associated with failure diagnosis

are presented in Section 2.3. Finally, we draw some conclusions in Section 2.4.

2.1 Discrete Event Systems

In recent years, the growth of computer technology has led to the propagation of

a class of highly complex dynamical systems, with the distinct attribute that their

behavior is determined by the asynchronous occurrence of certain events. Such

systems are called Discrete Event Systems (DES).

DES are dynamical systems with discrete state-spaces and event-triggered dy-

namics. An event may be identified with a specific taken action, or may be viewed as

a spontaneous occurrence dictated by nature or, still, the result of several conditions

which are all suddenly met. Examples of events are the beginning and ending of a

task, the arrival of a client to a queue or the reception of a message in a communi-

cation system. The occurrence of an event causes, in general, an internal change in
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the system, which may or may not manifest itself to an external observer. In addi-

tion, a change can be caused by the occurrence of an event internal to the system

itself, such as the termination of an activity or timing. In any case, these changes

are characterized by being abrupt and instantaneous, i.e., by perceiving an event

occurrence, the system reacts immediately, accommodating itself to a new situation

where it remains until a new event occurs. In this way, the simple passing of time

is not enough to ensure that the system evolves; for this, it is necessary that events

occur. The system behavior in the DES framework is, therefore, by sequences of

events. All sequences of the events that can be generated by a given DES describe

the language of this system, which is defined over a set of events (alphabet) of the

system. Thus, we start the review of DES theory with the concept of language.

2.1.1 Languages

One formal way to study the logical behavior of a DES is based on the theories

of language and automata. The starting point is the fact that any DES has an

associated event set Σ. We will assume that Σ is finite. The event set Σ is the

“alphabet” and the sequences are the “words” of a language. In the literature, the

sequences of a language are also called traces or strings; however, the term trace will

be used throughout this thesis. The length of a trace s is the number of events it

contains and will be denoted by |s|. The word that does not contain events is called

the empty trace, and is denoted by ε, i.e., |ε| = 0.

Definition 2.1 (Language) A language defined over an event set Σ is a set of

traces with finite length formed by events of Σ.

Example 2.1 Let Σ = {a, b, c} be a set of events. As an example, we may then

define, over Σ, the language L1 = {ε, a} consists of only two traces; or the language

L2 = {a, bb, ac} that contains three traces.

Let us denote by Σ∗ the set of all finite traces formed with events Σ, including

the empty trace ε. Σ∗ is also referred to as the Kleene-closure of Σ. Notice that the

set Σ∗ is countable, but infinite, since it contain traces of arbitrarily long length.

For example, if Σ = {a, b, c} then:

Σ∗ = {ε, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, . . .}.
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The basic process of forming a language is concatenation. The concatenation of

two traces of events results in a trace formed with the events of first one immediately

followed by the events of the second one. For instance, trace abc formed from events

in Σ = {a, b, c}, can be formed by the concatenation of trace ab with event c, and

trace ab is obtained from the concatenation of events a and b. The empty trace is

the identity element of concatenation, i.e., sε = εs = s, for every trace s.

Before presenting the operations on languages, we need to define some termi-

nology about traces. Let us consider a trace s arbitrarily partitioned as s = tuv,

where t, u, v ∈ Σ. We say that t, u and v are subtrace of s, in particular, subtrace

t is a prefix of s, whereas subtrace v is a suffix of s. Notice that, ε and s are both

subtrace, prefixes and suffixes of s.

2.1.2 Operations on Languages

The usual set operations, such as union, intersection, difference, and complement

with respect to Σ∗, are applicable to languages since languages are sets. In addition,

the following operations can be defined for languages: concatenation, Kleene-closure,

prefix-closure, post-language and natural projection.

Concatenation

Let La, Lb ⊆ Σ∗, then the concatenation between two languages is the set of the

concatenations of all traces in La with all traces in Lb. Formal definition is provided

as follows.

LaLb := {s = sasb ∈ Σ∗ : (sa ∈ La) ∧ (sb ∈ Lb)}. (2.1)

Kleene-closure

The Kleene-closure of a language is the set of all possible traces formed by the

concatenation of all traces of this language. Formally, if L ⊆ Σ∗ then Kleene-closure

is defined as:

L∗ := {ε} ∪ L ∪ LL ∪ LLL... (2.2)
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Prefix-closure

Another important operation is the prefix closure of a language L, which consists of

all prefixes of all traces in L. A trace t ∈ Σ∗ is prefix of a trace s ∈ Σ∗ if there exists

a trace v ∈ Σ∗ such that tv = s, and thus, both s and ε are prefixes of s. Formally,

we can define prefix-closure as follows.

L̄ := {s ∈ Σ∗ : (∃t ∈ Σ∗)[st ∈ L]}. (2.3)

L is said to be prefix-closed if L = L̄. Thus language L is prefix-closed if all prefixes

of every trace in L are also an element of L.

Post-language

Let L ⊆ Σ∗ and s ∈ L. Then the post-language of L after s, denoted by L/s, is the

language

L/s := {t ∈ Σ∗ : st ∈ L}. (2.4)

By definition, L/s = ∅ if s /∈ L.

Projection

Another type of operation performed on traces and languages is the so-called natural

projection, or simply projection, denoted by P . This operation takes a trace formed

from the larger event set Σ and erases the events in it that do not belong to the

smaller event set Σs. Formally, the projection P : Σ∗ → Σ∗s can be defined as follows.

P (ε) := ε, (2.5)

P (e) =

 e, if e ∈ Σs,

ε, otherwise,
(2.6)

P (se) := P (s)P (e), s ∈ Σ∗, e ∈ Σ. (2.7)

We will also be working with the corresponding inverse map, P−1 : Σ∗s → 2Σ∗ ,

defined as the following.

P−1(t) := {s ∈ Σ∗ : P (s) = t}. (2.8)
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The projection P and its inverse P−1 are extended to languages by simply ap-

plying them to all the traces in the language. For L ⊆ Σ∗,

P (L) = {t ∈ Σ∗s : (∃s ∈ L)[P (s) = t]}. (2.9)

For Ls ⊆ Σ∗s,

P−1(Ls) : {s ∈ Σ∗ : (∃t ∈ Ls)[P (s) = t]}. (2.10)

In order to illustrate the concepts of this subsection, consider the following ex-

ample.

Example 2.2 Let us consider again the set of events Σ = {a, b, c} and lan-

guages L1 = {ε, a} and language L2 = {a, bb, ac}. Since L1 = {ε, a} and

L2 = {ε, a, b, bb, ac}, L1 = L1 and L2 6= L2. Consequently, L1 is prefix-closed

and L2 is not prefix-closed. In addition, we can see that:

L∗1 = {ε, a, aa, aaa, . . .}

L1L2 = {a, bb, ac, aa, abb, aac}

L2L1 = {a, bb, ac, aa, bba, aca}

L2/a = {ε, c}

If we define projection P : Σ∗ → Σ∗s such that Σs = {a, b}, then:

P (abc) = {ab}

P−1(ε) = {c}∗

P−1(ab) = {c}∗{a}{c}∗{b}{c}∗

P (L2) = {a, bb}

P−1(L1) = {{c}∗, {c}∗{a}{c}∗}

2.1.3 Automata

Automata are devices that are capable of representing a language by using a state

transition structure, i.e., by specifying which events can occur at each state of the

system. They are an intuitive and natural description of a discrete event system.

The modeling formalism of automata is a framework for representing and manipu-

lating languages and solving problems that pertain to the logical behavior of DES.

Automata are a useful model for many kinds of hardware and software: (i) software

17



for designing and checking behavior of digital circuits; (ii) the lexical analyzer of a

typical compiler; (iii) software for scanning large bodies of text; (iv) software for

verifying systems such as communication protocols or protocols for secure exchange

of information. In addition, in the literature, automaton model is a classical tool to

deal with the problem we will address in this thesis, the so-called failure diagnosis

problem. Mathematically, we can define Deterministic automaton as follows.

Definition 2.2 A deterministic finite-state automaton G is a six-tuple

G = (X,Σ, f,Γ, x0, Xm), (2.11)

where X is the set of states, Σ is the set of events, f : X × Σ → X is the partial

transition function such that f(x, σ) = z, means that there is a transition labeled by

event σ that takes G from state x to state z. Γ : X → 2Σ is the set of active events,

that is, ∀x ∈ X, Γ(x) = {σ ∈ Σ : f(x, σ)!}, with ! meaning that f(x, σ) is defined,

x0 is the initial state and Xm is the set of marked states.

Regarding the set of marked states, proper selection of which states to mark is

a modeling issue that depends on the problem of interest. By designating certain

states as marked, we may, for instance, be recording that the system, upon entering

these states, has completed some operation or task. Notice that Definition 2.11 does

not impose that the set of states X must be finite. However, in this thesis, we deal

with finite set of states X only; thus, the term finite-state deterministic automaton

will be replaced with automaton for short.

To understand exactly dynamic evolution of an automaton, assume that an au-

tomaton is in state xn when an event σ occurs. Then, automaton G moves to the

state xn+1 instantaneously. This dynamic is characterized by the state transition

function as follows: xn+1 = f(xn, σ) such that σ ∈ Γ(xn). It is convenient to rep-

resent graphically an automaton whose state set X is finite by means of its state

transition diagram. The state transition diagram of an automaton is a directed

graph whose nodes represent states and the arcs (labeled) between nodes are used

to represent the transition function f : If f(xn, σ) = xn+1, then an arc labeled

by σ is drawn from xn to xn+1. A special notation is used to identify the initial

and marked states. The initial state is identified by an arrow pointing into it and

marked states are differentiated by means of a double circle or box. From the state
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transition diagram of an automaton, it is possible to infer some information about

its elements, as shown in following example.

Example 2.3 Consider the state transition diagram of automaton G1 depicted in

Figure 2.1. From this picture, it can be concluded that the set of states of G1 is

X = {x0, x1, x2}, the initial state is x0 and the set of marked states is Xm = {x0, x2}.
Notice that the sets of active events for each state of G1 are Γ(x0) = {a, c},
Γ(x1) = {a, b} and Γ(x2) = {a, b, c}. The transition function is given as follows:

f(x0, a) = x0, f(x0, c) = x2, f(x2, b) = x2, f(x2, a) = f(x2, c) = x1, f(x1, b) = x1

and f(x1, a) = x0.

x0 x1

c a, c

x2 b
a

a
b

Figure 2.1: Automaton G1 of Example 2.3.

For the sake of convenience, the transition function f of an automaton is extended

from domain X × Σ to domain X × Σ∗ as follows: f(x, ε) = x and f(x, sσ) =

f(f(x, s), σ), ∀x ∈ X, s ∈ Σ∗ and σ ∈ Σ such that f(x, s) = z and f(z, σ) are both

defined. Thus, we can define the languages generated and marked by an automaton

as follows.

Definition 2.3 (Generated and marked languages) The language generated by au-

tomaton G is defined as L(G) := {s ∈ Σ∗ : f(x0, s)!} and the language marked by

automaton G is defined as Lm(G) := {s ∈ L(G) : f(x0, s) ∈ Xm}.

The language L(G) contains the traces that can be followed along the state

transition diagram of G, starting at the initial state; the trace corresponding to a

path is the concatenation of the event labels of the transitions composing the path.

The second language represented by G, Lm(G), is the subset of L(G) consisting only

of the traces s for which f(x0, s) ∈ Xm, that is, these traces correspond to paths
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that end at a marked state in the state transition diagram. Languages L(G) and

Lm(G) satisfy the following inclusion relation.

Lm(G) ⊆ Lm(G) ⊆ L(G), (2.12)

2.1.4 Operations on Automata

In order to examine DES modeled by automata, we need to define a set of opera-

tions that appropriately modify their state transition diagram based on well-defined

criteria. The operations that modify a single automaton are called unary operations

and are defined as follows.

Unary operations

• Accessible Part

A state x ∈ X of an automaton G is accessible if ∃s ∈ Σ∗ such that f(x0, s) = x.

Otherwise, x is a non-accessible state. The accessible part operation removes all

non-accessible states of an automaton G, and is defined as follows.

Ac(G) := (Xac,Σ, fac,Γac, x0, Xac,m), (2.13)

where Xac = {x ∈ X : (∃s ∈ Σ)[f(x0, s) = x]}, Xac,m = Xm ∩ Xac, fac =

f |Xac×Σ→Xac , and Γac = Γ|Xac→Xac , where fac = f |Xac×Σ→Xac and Γac = Γ|Xac→Xac
means that f and Γ are restricted to Xac, respectively. Notice that, the Ac operation

does not change the languages generated and marked by the automaton.

• Coaccessible Part

A state x ∈ X of an automaton G is coaccessible if ∃s ∈ Σ∗ such that f(x, s) ∈
Xm. Otherwise, x is a non-coaccessible state. The coaccessible part operation

excludes all non-coaccessible states of an automaton G, and is defined as follows:

CoAc(G) := (Xcoac,Σ, fcoac,Γac, x0,coac, Xm), (2.14)

where Xcoac = {x ∈ X : (∃s ∈ Σ)[f(x, s) ∈ Xm]}, fcoac = f |Xcoac×Σ→Xcoac , and

Γcoac = Γ|Xcoac→Xcoac . Notice that, the CoAc operation can affect the language

generated by the original automaton, but it does not change the marked language.
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• Trim operation

An automaton that is both accessible and coaccessible is said to be Trim. We

define the Trim operation as follows.

Trim(G) := Ac[CoAc(G)] = CoAc[Ac(G)] (2.15)

Example 2.4 Consider automaton G depicted in Figure 2.2(a). To obtain Ac(G),

it suffices to delete state 3 and the transition attached to it; the resulting automaton

is depicted in Figure 2.2(b). In order to obtain CoAc(G), we need to identify the

states of G that are not coaccessible to the marked state 2, which is state 4. We,

then, delete this state and the transition attached to it, to obtain CoAc(G) depicted

in Figure 2.2(c). Finally, Trim(G) is shown in Figure 2.2(d). Notice that the order

which the operations Ac and CoAc are taken does not change the final result.

0 1

b

a

b

2

3 4

a

b b

0 1

b

a

b

2

4

a

b

(a) (b)

0 1

b

a

b

2

3

a

b

0 1

b

a

b

2
a

(c) (d)

Figure 2.2: Automaton G (a); Ac(G) (b); CoAc(G) (c), and; Trim(G) (d).

Composition operations

Discrete event models of complex dynamic systems are rarely built in a monolithic

manner. Instead, a modular approach is used where models of individual compo-

nents are built first, followed by the composition of these models in order to obtain

the model of the overall system. The synchronization, or coupling, between compo-

nents can be captured by the use of common events between system components.
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Namely, if components A and B share event c, then event c should only occur if

both A and B execute it. The process of composing individual automata (that

model interacting system components) in a manner that captures the synchroniza-

tion constraints imposed by their common events is formalized by the product and

parallel composition operations as follows.

• Product

The product operation can be viewed as the composition that computes the

intersection between languages generated (and marked) by two or more automata.

Namely, an event occurs in the product composition if and only if it occurs in both

automata. When there is no event in common between the active event sets of the

initial states of two automata, the resulting product between these automata will

be an automaton where the generated language is ε. The product of G1 and G2 is

given by.

G1 ×G2 := Ac(X1 ×X2,Σ1 ∪ Σ2, f1×2,Γ1×2, (x01, x02), Xm1 ×Xm2), (2.16)

where f1×2 is defined as:

f1×2((x1, x2), σ) =

 (f1(x1, σ), f2(x2, σ)), if σ ∈ Γ1(x1) ∩ Γ2(x2),

undefined, otherwise.

According to Equation (2.16), it can be easily verified that L(G1×G2) = L(G1)∩
L(G2) and Lm(G1 ×G2) = Lm(G1) ∩ Lm(G2) [11].

• Parallel composition

Parallel composition is often called synchronous composition and product is

sometimes called completely synchronous composition. Composition by product

is restrictive as it only allows transitions on common events. In general, when mod-

eling systems composed of interacting components, the event set of each component

includes private events that pertain to its own internal behavior and common events

that are shared with other automata and capture the coupling among the respective

system components. The standard way of building models of entire systems from
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models of individual system components is by parallel composition, which is defined

as follows:

G1||G2 := Ac(X1 ×X2,Σ1 ∪ Σ2, f1||2,Γ1||2, (x01, x02), Xm1 ×Xm2), (2.17)

where f1||2 is defined as:

f((x1, x2), σ) :=



(f1(x1, σ), f2(x2, σ)), if σ ∈ Γ1(x1) ∩ Γ2(x2)

(f1(x1, σ), x2), if σ ∈ Γ1(x1) \ Σ2

(x1, f2(x2, σ)), if σ ∈ Γ2(x2) \ Σ1

undefined, otherwise.

According to Equation (2.17), we can verify that L(G1||G2) = P−1
1 [L(G1)] ∩

P−1
2 [L(G2)] and Lm(G1||G2) = P−1

1 [Lm(G1)]∩P−1
2 [Lm(G2)], where Pi : (Σ1∪Σ2)∗ →

Σ∗i , for i = 1, 2, [11].

Example 2.5 Consider automata G1 and G2 depicted in Figures 2.1 and 2.3, re-

spectively. The automata obtained by the product and parallel composition of G1

and G2 are shown in Figures 2.4 and 2.5, respectively. In this example, we can see

that the parallel composition is an operation more generic than product composition:

notice that L(G1 ×G2) = a∗ ⊂ L(G1||G2), which is due to the fact that the compo-

sition by product only allows transitions on common events while private events can

be executed whenever possible in the parallel composition.

y0 y1

b

a

a

b

Figure 2.3: Automaton G2 of Example 2.5.

2.1.5 Nondeterministic Automata

A nondeterministic automaton, denoted by Gnd, is a six-tuple Gnd =

(X,Σnd, fnd,Γnd, X0, Xm), where Σnd = Σ ∪ {ε}, fnd : X × Σnd → 2X , that is,

fnd(x, σ) ⊆ X, Γnd is defined in a similar way as Γ, and the initial state may, itself,

be a set of states, that is, X0 ⊆ X.
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(x0, y0)

a

a
(x0, y1)

Figure 2.4: Automaton G1 ×G2 of Example 2.5.

(x0, y0) (x0, y1)
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(x2, y1) (x1, y1) (x1, y0)ca

a

a, c

c b

b

b

b

a c

a

a

Figure 2.5: Automaton G1||G2 of Example 2.5.

In order to illustrate a nondeterministic automaton, consider the following ex-

ample.

Example 2.6 Consider the nondeterministic automaton, Gnd = (X,Σnd, fnd,Γnd,

X0, Xm), shown in Figure 2.6. Notice that, Gnd has two initial states x01 and x02,

and the transition function assumes values in 2X , for x ∈ X, for instance, fnd(x02 ,

a) = {x01 , x1}. Notice, in addition, that fnd(x01 , ε) = x1. These types of configu-

ration suggest uncertainty in the dynamic evolution of the system, as follows: (i)

when event a occurs, it is not possible to be sure if the system has moved either to

state x01 or x1, and; (ii) transition ε is silent in the sense that the system evolution

from state x01 to x1 cannot take place.

Remark 2.1 The nondeterministic automata to be considered in this thesis do not

have transitions labeled by the empty trace ε, thus Σnd = Σ. Under this condi-

tion, the transition function, is extended to Σ∗ as follows: for B ∈ 2X , we first

set fnd(B, σ) = ∪x∈B:σ∈Γnd(x)fnd(x, σ), and, then, for u ∈ Σ∗ and σ ∈ Σ, we set
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ε b

a x02
a

x1

Figure 2.6: Automaton Gnd of Example 2.6.

fnd(B, uσ) = fnd[fnd(B, u), σ]. The languages generated and marked by a nondeter-

ministic automaton are defined as follows: L(Gnd) = {s ∈ Σ∗ : (∃x ∈ x0)[fnd(x, s)!]}
and Lm(Gnd) = {s ∈ Σ∗ : (∃x ∈ x0)[fnd(x, s) ∩ Xm 6= ∅]}. Throughout the paper

we will denote both, deterministic and nondeterministic automata, by G; the context

will make clear which one is being considered.

2.1.6 Deterministic Automata With Unobservable Events

In this subsection, we will consider the case of partially-observed DES, i.e., when

some events cannot have their occurrences seen by an outside observer. This lack

of observability can be due to the absence of a sensor to record the occurrence

of the event or to the fact that the event occurs at a remote location but is not

communicated to the site being modeled. In this case, some form of state estimation

becomes necessary when analyzing the behavior of the system. To this end, the set

of events Σ is partitioned into the set of observable events Σo and set of unobservable

events Σuo. The corresponding automaton will be deterministic, and is referred to

as deterministic automaton with unobservable events.

The dynamic behavior of a deterministic automaton with unobservable events G

can be described by another deterministic automaton called observer, here denoted

as Obs(G,Σo). The procedure for the construction of Obs(G,Σo) requires the notion

of unobservable reach of a state x ∈ X with respect to a set Σuo, which is defined

as:

UR(x,Σuo) = {y ∈ X : (∃t ∈ Σ∗uo)[(f(x, t) = y)]}. (2.18)

From Equation (2.18), it is clear that x ∈ UR(x,Σuo). The definition of unob-

servable reach can be extended to a set of states B ⊆ X as follows.
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UR(B,Σuo) = ∪x∈BUR(x,Σuo). (2.19)

Finally, we can then define observer automata as follows.

Obs(G,Σo) = (Xobs,Σo, fobs,Γobs, x0obs , Xmobs), (2.20)

where Xobs ∈ 2X , x0obs = UR(x0,Σuo); for all xobs ∈ Xobs, Γobs(xobs) =
⋃
x∈xobs Γ(x);

fobs(xobs, σ) = UR({y ∈ X : (∃x ∈ xobs)[f(x, σ) = y]},Σuo); Xmobs = {xobs ∈ Xobs :

xobs∩Xm 6= ∅}. Obs(G,Σo) can be constructed by using the following algorithm [75].

Algorithm 2.1 Construction of automaton Obs(G,Σo)

Input Automaton G = (X,Σ, f,Γ, x0 , Xm), and set Σo.

Output Automaton Obs(G,Σo) = (Xobs,Σo, fobs,Γobs, x0obs , Xmobs).

Step 1. • Set Σuo = Σ \ Σo, and define x0obs = UR(x0,Σuo);

• Set Xobs = {x0obs} and X̃obs = Xobs;

Step 2. Set X̂obs ← X̃obs e X̃obs ← ∅;

Step 3. For B ∈ X̂obs:

Step 3.1. Γobs(B) = (
⋃
x∈B Γ(x)) ∩ Σo;

Step 3.2 For σ ∈ Γobs(B):

• Set fobs(B, σ) = UR({x ∈ X : (∀y ∈ B)[x = f(y, σ)]});

• Set X̃obs ← X̃obs ∪ fobs(B, σ);

Step 4 Xobs ← Xobs ∪ X̃obs;

Step 5 Repeat Step 2 to 4 until the entire accessible part of Obs(G,Σo) has been

constructed;

Step 6 : Xmobs = {B ∈ Xobs : B ∩Xm 6= ∅}.

From construction of automaton, we can conclude that the language generated

by Obs(G,Σo) is the natural projection over Σo, i.e., L(Obs(G,Σo)) = Po[L(G)],

such that Po : Σ→ Σo [11].
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Example 2.7 To illustrate the construction of observers, let us consider now au-

tomaton G depicted in Figure 2.7 and suppose that event a is unobservable, i.e.,

Σ = {a, b, c}, Σo = {b, c} e Σuo = {a}.
When automaton G starts its operation, since event a is unobservable, we do

not know if the system is in initial state x0 = 0 or in state x = 1 and, thus, the

initial state of Obs(G,Σo) must be {0, 1}. If event b occurs, the systems moves to

state x = 3, but it can reach state x = 1 through unobservable transition a, leading

Obs(G,Σo) to reach state {1, 3}. If event c occurs in {1, 3}, the system can be in

any state of G, i.e., Obs(G,Σo) reaches state {1, 2, 3}. Finally, when the occurrence

of event c is recorded again, then, since the observer is in state {1, 2, 3}, it remains

there. However, if event b occurs, Obs(G,Σo) returns to its the initial state.

0
a

b

1 2

3

a
a

c

b

Figure 2.7: Automaton G of Example 2.7.

{0, 1} {1, 3} {1, 2, 3}b c

b

c

c

Figure 2.8: Automaton Obs(G,Σo) of Example 2.7.

2.1.7 Strongly Connected Components

We now briefly touch on the concept of strongly connected components, whose

definition is presented as follows.

Definition 2.4 (Strongly connected component) [60] A strongly connected compo-

nent of an automaton G = (X,Σ, f,Γ, x0 , Xm) is a maximal set of states Xscc ⊆ X

such that for every pair of states u, v ∈ Xscc, there is a path formed by events in Σ
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from u to v and from v to u; that is, every states u and v in Xscc are reachable from

each other, and Xscc is maximal.

Example 2.8 To illustrate the concept of strongly connected components, let us

consider again the automaton depicted in Figure 2.5. Notice that automaton

has two strongly connected components: the first one is formed by four states

{(x0, y1), (x2, y1), (x1, y1), (x1, y0)}, i.e., these states are reachable from each other;

the second one is formed by unique state (x2, y0) which reaches itself by self-loop

due to event b. The initial state (x0, y0) does not form a strongly connected

component since it is not reached by none of the states of G. It is worth not-

ing that the number of strongly connected components and number of cycles are

not equal: states that form a strongly connected component may form several cy-

cles, for instance, the cyclic paths ((x0, y1), a, (x0, y1)), ((x1, y0), b, (x1, y0)) and

((x0, y1), c, (x2, y1), a, (x1, y1), a, (x0, y1)) are formed by states that are in the strongly

connected component {(x0, y1), (x2, y1), (x1, y1), (x1, y0)}.

Remark 2.2 It is worth remarking that the computational complexity of the search

for cycles is, in the worst case, worse than exponential,
∑n−1

i=1 (
(
n−i+1
n

)
)(n − 1)!

[58, 60], where n is the number of states, whereas the search for strongly connected

components, proposed by Tarjan in [59], is linear in the number of states and tran-

sitions of an automaton, i.e., O(|n|+ |E|), where E is the number of transitions.

2.2 Discrete Event Systems Subject to Loss of

Observations

In this section, we present a model for the observed behavior of an automaton in the

presence of intermittent loss of observations proposed by [54], which can be used to

deal with loss of observations caused by either sensor malfunction or communication

problems. In [54], a partition in the set of events was defined by the authors as:

Σ = Σuo∪̇Σilo∪̇Σnilo, (2.21)

where Σilo is the set of observable events associated with intermittent loss of ob-

servations and Σnilo denotes the set of observable events that are not subject to
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intermittent loss of observations. In order to represent loss of observations, let

Σ′ilo = {σ′ : σ ∈ Σilo} and Σ′ = Σ ∪ Σ′ilo. Therefore, the following mapping can be

defined.

Definition 2.5 (Dilation) Dilation is the mapping D : Σ∗ → Σ∗dil , recursively

defined as:

D(ε) := {ε}

D(σ) :=

 {σ}, if σ ∈ Σ \ Σilo,

{σ, σ′}, if σ ∈ Σilo,.

D(sσ) := D(s)D(σ), if ∀s ∈ Σ′, σ ∈ Σ.

The extension of D to domain 2Σ∗ , i.e., to languages, is defined as D(L) =⋃
s∈LD(s). The idea behind the definition of dilation is to represent the loss of ob-

servation of an observable event σs by replacing it with σ′s. For instance, by assuming

Σ = {σ, σs} and Σilo = {σs}, the dilation of trace s = σσs is D(s) = {σσs, σσ′s}
where: (i) trace σσs represents the case where no loss of observation has occurred,

and; (ii) trace σσ′s represents the case when the information of the occurrence of

event σs has been lost.

With the help of Definition 2.5, we can now formally define automaton G′ that

models the behavior of G subject to intermittent loss of observations, as follows.

G = (X,Σ′, f ′,Γ′, x0, Xm), (2.22)

where Γ′(x) = D[Γ(x)], and f ′ is defined as follows: ∀σ′ ∈ Γ′(x), σ′ ∈ D(σ),

f ′(x, σ′) = f(x, σ), where σ ∈ Γ(x).

Notice that automaton G′ is formed by adding to G transitions in parallel with

the transitions associated with the events that are subject to intermittent loss of

observations. The added transitions will be labeled with unobservable events and

therefore the observable event set of G′ remains Σo as in G.

Example 2.9 In order to illustrate the dilation operation, let us assume that Σ =

{σ, σs} and Σilo = {σs} and consider language L(G) = σσs. Automaton G that

generates L is depicted in Figure 2.9(a). Let us, initially, illustrate the application

of dilation to the traces of L(G). Notice that Σ′ilo = {σ′s} and thus Σ′ = {σ, σs, σ′s}.
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Therefore, D(ε) = ε, D(σ) = σ, D(σσs) = D(σ)D(σs) = σ{σs, σ′s} =

{σσs, σs, σ′s}. Figure 2.9(b) shows automaton G′, that generates D(L(G)), from

which it is not difficult to check that D(L(G)) = L(G′).

σs
210

σ σs
21

σ′
s

0
σ

(a) (b)

Figure 2.9: Automaton G of Example 2.9 (a); automaton G′ of Example 2.9 (b).

2.3 Failure Diagnosis of Discrete Event Systems

A failure causes a non-desired deviation of a system or of one of its components from

its normal or intended behavior. The deviation of system performance can either

be tolerated or be considered as critical in the case of a failure or a breakdown.

Failure diagnosis is therefore closely related to the problem of state observability,

which consists in building a deterministic automaton, called the observer, whose

transitions are due to the observable events of the system and whose states are

estimates of the true system state, as seen in Section 2.1.

2.3.1 Centralized Diagnosis

In order to formally address the failure diagnosis problem, let Σf = {σf} ⊆ Σuo

denote the set of failure events of G, and assume that the occurrence of σf must

be diagnosed. The idea behind failure diagnosis using discrete event models is that

we must somehow be sure, within a bounded number of steps after the occurrence

of σf , that the failure has actually occurred. Let Ψ(Σf ) denote the set of all traces

of L that end with the failure event σf . With a slight abuse of notation, we use

Σf ∈ s to denote that s ∩ Ψ(Σf ) 6= ∅, where s = {u ∈ Σ∗ : (∃v ∈ Σ∗)[uv = s]}.
Therefore, s ∈ L is a trace that has the failure event σf if Σf ∈ s. Formally, failure

diagnosability is defined as follows [19].

Definition 2.6 (Diagnosability) A live and prefix-closed language L is diagnosable
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with respect to Po and Σf if

(∃n ∈ N)(∀s ∈ Ψ(Σf ))(∀t ∈ L/s, |t| ≥ n)⇒ (∀ω ∈ P−1
o [Po(st)] ∩ L)[Σf ∈ ω],

where |t| denotes the length of trace t.

Remark 2.3 Let Σf = Σf1∪̇Σf2∪̇ . . . ∪̇Σfr be a partition of the set of fault events,

where r denotes the number of fault types, and let Πf denote this partition. The

diagnosability of L with respect to Πf is equivalent to the diagnosability of L with

respect to each fault type separately, as ensured by the following result [46]. The

language L of the system is diagnosable with respect to projection Po : Σ∗ → Σ∗o and

partition Πf if, and only if, L is diagnosable with respect to Po and Σfi, for each

i ∈ {1, 2, . . . , r} [76].

One way to verify diagnosability is by means of an automaton called diag-

noser [19], which is given by

Gd = Obs(G‖A`,Σo) = Obs(G`,Σo) = (Xd,Σo, fd,Γd, x0d), (2.23)

where A` = (X`,Σ`, f`,Γ`, x0`) is the so-called label automaton, depicted in Figure

2.10, with X` = {N, Y }, Σ` = {σf}, f`(N, σf ) = f`(Y, σf ) = Y and x0` = N . From

Equation (2.23), it can be seen that L(Gd) = Po(L(G‖A`)) = Po(L(G)).

Y
σf

N

σf

Figure 2.10: Label automaton A`.

A state xd ∈ Xd is called Y -certain (or faulty), if ` = Y for all (x, `) ∈ xd, and

normal (or non-faulty) if ` = N for all (x, `) ∈ xd. If there exist (x, `), (y, ˜̀) ∈
xd, x not necessarily distinct from y such that ` = Y and ˜̀ = N , then xd is an

uncertain state of Gd. When the diagnoser is in a Y -certain (resp. normal) state,

it is certain that a failure has (resp. has not) occurred. However, if the diagnoser

is in an uncertain state, it is not sure if the failure event has occurred or not.

As a consequence, if there exists a cycle formed with uncertain states only, where

the diagnoser can remain forever, then it will never be able to diagnose the failure
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occurrence; on the other hand if somehow it always leaves this cycle of uncertain

states, then this cycle is not indeterminate. Therefore, it is important to distinguish

between cycles of uncertain states that are indeterminate (in the sense that the

diagnoser is not able to determine if the failure has occurred) and those cycles of

uncertain states that are not indeterminate.

Definition 2.7 [19] (Indeterminate observed cycles of Gd) A set of uncertain states

{xd1 , xd2 , . . . , xdp} ⊂ Xd forms an indeterminate observed cycle if the following con-

ditions hold true:

IOC.1) xd1 , xd2 , . . . , xdp form a cycle in Gd;

IOC.2) ∃(xkll , Y ), (x̃rll , N) ∈ xdl, xkll not necessarily distinct from x̃rll , l =

1, 2, . . . , p, kl = 1, 2, . . . ,ml, and rl = 1, 2, . . . , m̃l in such a way that

the sequence of states {xkll }, l = 1, 2, . . . , p, kl = 1, 2, . . . ,ml and {x̃rll },
l = 1, 2, . . . , p, rl = 1, 2, . . . , m̃l form cycles in G;

IOC.3) there exist s = s1s2 . . . sp ∈ Σ∗ and s̃ = s̃1s̃2 . . . s̃p ∈ Σ∗ such that Po(s) =

Po(s̃) 6= ε, where sl = σl,1σl,2 . . . σl,ml−1, f(xjl , σl,j) = xj+1
l , j = 1, 2, . . . ,ml−1,

f(xmll , σl+1,0) = x1
l+1, and f(x

mp
p , σ1,0) = x1

1, and similarly for s̃l. �

In [19], the authors make the following assumptions on the system under inves-

tigation:

H1. The language L generated by G is live. This means that there is a transition

defined at each state x ∈ X, i.e., the system cannot reach a point at which no

event is possible.

H2. There does not exist in G any cycle of unobservable events.

A necessary and sufficient condition for language diagnosability is provided by

the following result.

Theorem 2.1 [19] The language L generated by automaton G is diagnosable with

respect to projection Po and Σf = {σf} if, and only if, its diagnoser Gd has no

indeterminate observed cycles.
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Example 2.10 Consider a system modeled by the automaton G shown in Figure

2.11(a), where Σo = {a, b, c} is the set of observable events, and Σo = {uo, σf}. In

order to check the language diagnosability, we first compute the parallel composition

between automaton G of Figure 2.11(a) and label automaton A` depicted in Figure

2.10, and thus, we obtain automaton G` depicted in Figure 2.11(b). Using automa-

ton G`, we can now compute diagnoser automaton Gd = Obs(G`,Σo), depicted in

Figure 2.11(c). If we examine Gd, we can check that its state set is formed with a

normal state ({1N}); two uncertain states ({2N, 4Y } and {3N, 5Y, 6Y }); and two

Y-certain states (such as {5Y, 6Y }, {4Y } and ). Notice that Figure 2.11(c) shows

an indeterminate cycle between the diagnoser states {2N, 4Y } and {3N, 5Y, 6Y }.
This cycle corresponds to the presence of two cycling traces in the automaton G: (i)

a normal trace sN = c(ab)p, p ∈ N, i.e., a trace without failure event; (ii) a failure

trace sY = cσf (ab)
q, q ∈ N, i.e., a trace that has a failure event. Since they have the

same observable projection Po(sY ) = Po(sN) = (ab)r, r ∈ N, according to Theorem

2.1, language L(G) is not diagnosable with respect to projection Po and Σf = {σf}.

σf

1 3
c

2

4 6
uo

a

5

a a
b

a

b

σf

1N 3N
c

2N

4Y 6Y
uo

a

5Y

a a
b

a

b

(a) (b)

Indeterminate cycle

b

a

{4Y } {5Y, 6Y }

a

{3N, 5Y , 6Y }
b

{2N, 4Y }
ac{1N}

a

(c)

Figure 2.11: Automata G (a); G` (b) and Diagnoser automaton Gd (c) of Example

2.10.

It is worth commenting on the fact that the presence of a cycle of uncertain

states in a diagnoser does not necessarily imply inability to diagnose with certainty
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an occurrence of event σf . This becomes clear in the following example.

Example 2.11 [11] Consider the system modeled by automaton G and its diag-

noser Gd depicted in Figure 2.12(a) and 2.12(b), respectively. The only unobservable

event in the system is the failure event σf . This diagnoser has a cycle of uncertain

states. However, we cannot form a cycle in the system from entries that appear in

the uncertain states in the diagnoser and have the Y label. The only system cycle

that can cause the diagnoser to remain in its cycle of uncertain states is the cycle

formed by states 7, 11 and 12 in G, and these states all have the N label in the

corresponding diagnoser states. The cycle of uncertain states in the diagnoser is

therefore not indeterminate. Due to the absence of indeterminate cycles, we can

say that L(G) is diagnosable. Indeed, if event σf occurs, the diagnoser will leave

the cycle of uncertain states and eventually enters state 6Y upon the observation of

event t. Thus, the fact that the system may cycle in states 7, 11, and 12, causing

the diagnoser to cycle in its cycle of uncertain states, cannot interpreted as a lack of

diagnosability, since the traces causing such cycling do not contain σf . Notice that

the diagnoser will for sure exit its cycle of uncertain states, via event t, if event σf

occurs in the system. This will occur in at most 6 observable transitions after the

occurrence of σf , i.e., suffix bgdbgt. This is different from the situation in Example

2.10, when the diagnoser may cycle in an indeterminate cycle due to a trace t of

arbitrarily long length after the occurrence of a failure event.
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Figure 2.12: Automata G (a) and Gd (b) of Example 2.11.

The first attempt to circumvent the restrictions imposed by assumptions H1.

and H2. was to modify the diagnoser proposed in [19] to include the so-called hidden

cycles [54,77,78]. The concept of hidden cycles is explained as follows. Assume now

that there exists a set of states {xi1 , xi2 , . . . , xik} ⊂ X that forms a cycle of states

connected with unobservable events. Consider a trace s = so(σi1σi2 . . . σik)
n ∈ L

(n ∈ N), where (σi1σi2 . . . σik)
n ∈ Σ∗uo and assume, without loss of generality, that

the last event of so is observable. Let us suppose, initially, that Σf /∈ s, and that

there is no faulty or failure trace1 s′ such that Po(s) = Po(s
′). In this case there will

exist in Gd a state xNd such that {xi1N, xi2N, . . . , xikN} ⊆ xNd . On the other hand, if

Σf ∈ so and f`(x0,`, so) = xY` , where f` is the transition function of G` = G‖A`, and

x0,` and xY` are, respectively, the initial and a Y -certain state of G`, and if there does

not exist any normal trace s′′ such that Po(s) = Po(s
′′), then, there will exist a Y -

certain state xYd of Gd such that (xY` ∪{xi1Y, xi2Y, . . . , xikY }) ⊆ xYd . It is still possible

that a normal trace s′′ (bounded length or not) such that f`(x0,`, so) = xN` , where

xN` is a normal state of G`, and Po(s) = Po(s
′′), exists, in which case, there will exist

an uncertain state xY Nd in Gd such that (xY` ∪ {xi1Y, xi2Y, . . . , xikY } ∪ xN` ) ⊆ xY Nd .

In all the above cases, Gd halts when it reaches the corresponding normal, faulty

1A trace s is said to be faulty (normal) if Σf ∈ s (resp. Σf /∈ s).
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and uncertain states, whether or not the plant continues evolving. We say, in this

case, that there exist hidden cycles in the aforementioned states.

Definition 2.8 [54,77,78] (Hidden cycles and indeterminate hidden cycles of Gd)

Let xd = {x1`1, x2`2, . . . , xn`n} be a state of Gd. Then, there exists a hidden cycle

in xd if for some index set {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n}, the following conditions

hold true:

HC.1) xi1 , xi2 , . . . , xik form a cycle in G;

HC.2) {σi1 , σi2 , . . . , σik} ⊆ Σuo, where σi1 , σi2 , . . . , σik are such that f(xij , σij) =

xij+1
, j = 1, 2, . . . , k − 1, and f(xik , σik) = xi1.

If xd is an uncertain state of Gd and besides conditions HC.1) and HC.2), the

following condition is also satisfied,

HC.3) `ij = Y , j = 1, 2, . . . , k,

then xd has an indeterminate hidden cycle. �

In accordance with Definition 2.8, only hidden (but not indeterminate) cycles

may exist in states xNd and xYd of Gd, on the other hand, indeterminate hidden cycles

may appear only in xY Nd . Notice that in the verification of language diagnosability,

state xYd (resp. xNd ) ensures that the failure has (resp. has not) occurred, and so,

the existence of hidden cycles in normal or certain states of Gd does not affect the

language diagnosability. On the other hand, the existence of indeterminate hidden

cycles implies that the language is not diagnosable since there will exist two traces,

a faulty trace (unbounded length), s, and a normal trace (bounded length), s′′,

such that Po(s) = Po(s
′′). Hidden cycles are represented in the state transition

diagrams of partial diagnosers by dashed self-loops: indeterminate hidden cycles

will be labeled as ihc and hidden cycles in normal or certain states will be labeled

simply as hc, since, as it will be seen in the sequel, they do not interfere in the

language diagnosability.

The following necessary and sufficient condition for diagnosability can be stated.

Theorem 2.2 [19, 54] The language L generated by automaton G is diagnosable

with respect to projection Po and Σf = {σf} if, and only if, its diagnoser Gd has no

indeterminate cycles (including hidden cycles).
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Figure 2.13: Automaton G of Example 2.12.
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Figure 2.14: Automaton G′d of Example 2.12.

Example 2.12 To illustrate the results of Theorem 2.2, consider automaton G

whose state transition diagram is depicted in Figure 2.13. Assume that Σ =

{a, b, c, d, σ, σf}, Σo = {c, d}, Σuo = {a, b, σ, σf}, and Σf = {σf}. Diagnoser au-

tomaton G′d which includes the hidden cycles is depicted in Figure 2.14. Notice that

since G′d has an indeterminate hidden cycle in state {3N, 4N, 6Y }, L(G) is not diag-

nosable with respect to projection Po and Σf = {σf}. This is so because failure trace

sY = aσfca
p, p ∈ N, and normal (bounded) trace sN = ac have the same projection

with respect to Po, i.e., Po(sN) = Po(sY ) = c. It is important to point out that G′d

has another hidden cycle, but not indeterminate, in state {7N} due to event b.

2.3.2 Decentralized Diagnosis

When the information is distributed, as in the case of communication networks,

manufacturing systems, and electric power systems, centralized diagnosis is no longer

used, being replaced with decentralized diagnosis systems. The authors in [21]

proposed a decentralized architecture, in which, sites Si, i = 1, 2, . . . , Ns, observe

the system behavior based on the information provided by the sensors connected to

it; therefore, forming sets Σoi , i = 1, 2, . . . , Ns, of observable events for each site, and

so, all events σ ∈ Σ\Σoi are considered unobservable for site Si. In the decentralized
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structure of Figure 2.15, each site processes the information received (an occurrence

of an event) and can only communicate their diagnosis decision to the coordinator,

which processes this information according to a predetermined rule and makes a

decision regarding the failure occurrence; this process is called protocol. One of

the protocols proposed in [21] has led to the concept of codiagnosability, which is a

property that requires that every trace s ∈ Ψ(Σf ) be diagnosed by at least one local

diagnoser.

System

Site S1

Σo1 Σo2

. . .

ΣoNs

Site S2 Site SNs

Coordinator

Local
observations

Local
diagnosis

Failure information

Figure 2.15: Coordinated decentralized architecture.

Definition 2.9 (Codiagnosability) Suppose that there are Ns local sites. Then, a

live and prefix-closed language L is codiagnosable with respect to projections Poi :

Σ∗ → Σ∗oi (i ∈ INs = {1, . . . , Ns}) and Σf if and only if:

(∃n ∈ N)(∀s ∈ Ψ(Σf ))(∀t ∈ L/s, |t| ≥ n)⇒ (∃i ∈ INs)(∀w ∈ P−1
oi (Poi(st)) ∩ L)[Σf ∈ w].

Definition 2.9 of codiagnosability generalizes Definition 2.6 of diagnosability, i.e.,

the decentralized case reduces to the centralized one when there exists only one site.

Implicit in the definition of codiagnosability is the fact that none of the sites can

alone diagnose the failure occurrence; otherwise there would not be necessary to use

a decentralized structure.

For codiagnosability verification [21], it is assumed that G has no cycles of un-

observable events with respect to Σoi ,∀i ∈ INs . Namely, assumptions H1. and H2.

holds true. In this regard, a test for codiagnosability verification was proposed in

[21] based on a test automaton Gtest, defined as:

Gtest = (||Nsi=1Gdi)||Gd, (2.24)
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where Gdi = (Xdi ,Σoi , fdi ,Γdi , x0di
) denotes the local diagnoser for site Si, i =

1, 2, . . . , Ns and Gd = (Xd,Σo, fd,Γd, x0d), where Σo =
⋃Ns
i=1 Σoi , denotes the

centralized diagnoser. Note that states xt of Gtest have the following structure:

xt = (xd1 , xd2 , . . . , xdNs , xd), where xdi ∈ Xdi and xd ∈ Xd. The definitions of un-

certain state and indeterminate cycles have been extended to codiagnosability as

follows:

Definition 2.10 (Certain and uncertain states in Gtest) A state xt of Gtest is Y -

certain if xd is Y -certain and xdi is Y -certain for some i ∈ {1, 2, . . . , Ns}, and is

uncertain if xd is uncertain and xdi is uncertain for all i ∈ {1, 2, . . . , Ns}.

Definition 2.11 (Indeterminate cycles in Gtest) A cycle in Gtest is indeterminate

if all the corresponding cycles in Gdi, i ∈ {1, 2, . . . , Ns} are indeterminate.

The following theorem can be stated.

Theorem 2.3 [21] A live and prefix-closed language L is codiagnosable with respect

to projections Poi : Σ∗ → Σ∗oi, i = 1, 2, . . . , Ns and Σf = {σf}, if and only if, Gtest

has no indeterminate cycles.

Example 2.13 Let us consider the system modeled by automaton G depicted in

Figure 2.16, where Σ = {a, b, c, d, σf} and assume that not all observable events

are available in one place. Therefore, it is necessary to rely on a decentralized di-

agnosis scheme. Let Σo1 = {a, c}, Σo2 = {b, c}, Σuo = {d, σf}. We will now

verify the codiagnosability of L(G) with respect to Poi, i = 1, 2, and Σf by us-

ing Theorem 2.3. First, we build the partial diagnosers Gd1 for Σo1 = {a, c},
Gd2 for Σo2 = {b, c}, and diagnoser Gd for Σo = {a, b, c}, which are depicted

in Figures 2.17(a), 2.17(b) and 2.17(c), respectively. Notice that L is not diag-

nosable with respect to Poi, i = 1, 2, and Σf , due to the existence of indetermi-

nate cycles in state {0N, 1Y, 2Y } of Gd1 and Gd2. The next step is to compute

Gtest = Gd1||Gd2||Gd. depicted in Figure 2.18. Notice that Gtest has a cycle in uncer-

tain state ({0N, 1Y, 2Y }, {0N, 1Y, 2Y }, {0N, 1Y, 2Y }). Since this cycle forms inde-

terminate cycles in Gd1, Gd2 and Gd, they also form indeterminate cycle in Gtest, and

thus, L is not codiagnosable with respect to projections Poi, i = 1, 2 and Σf = {σf}.
If we examine the traces of G, we can see that failure trace sY = cpσfdc

q, p, q ∈ N, is
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not detected by sites S1 and S2, since there exist normal traces (not necessarily equal)

sN1 = sN2 = cp such that Po1(sY ) = Po1(sN1) = cn and Po2(sY ) = Po2(sN2) = cn,

n ∈ N.

σf
2

c

10

a

b
d

c

Figure 2.16: Automaton G of Example 2.13.
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c
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c
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Figure 2.17: Automata Gd1 (a); Gd2 (b); and Gd (c) of Example 2.13.

({0N, 1Y, 2Y }, {0N, 1Y, 2Y }, {0N, 1Y, 2Y })

c

b

({2Y }, {0N, 1Y, 2Y }, {2Y }) ({0N, 1Y, 2Y }, {2Y }, {2Y })

ac c

Figure 2.18: Automaton Gtest = Gd1||Gd2||Gd of Example 2.13.

It is important to remark that the diagnoser automaton can be used either off-

line to check diagnosability or online (on-the-fly) by connecting it to the system to

provide on-line diagnosis upon the occurrence of observable events, being an efficient

structure because it provide a complete characterization of the diagnosis problem

under the considered model since updating the diagnosis after a new observation

only requires the firing of a single transition. However, the construction of the

entire diagnoser may be unwieldy as in the worst case its size is exponential in the

number of states of G, as well as in the number of faults if a single diagnoser is

desired. The second limitation can be addressed by building separate diagnosers
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for each fault type. In this case, when building a diagnoser for a given fault type,

the events corresponding to the other fault types are treated as other unobservable

events; thus, the total complexity is linear in the number of fault types.

The limitation for off-line purpose can be addressed by using the notion of verifier

automaton [44–47], whose corresponding verification algorithm requires polynomial

time in the cardinality of the state space and the event set of G as opposed to

diagnosers that require exponential time on the cardinality of the state space of G.

Broadly speaking, the verifier automaton is the parallel composition of the system

behavior with faults and the system behavior without faults, with a synchronization

on the observable events.

For the computation of the verifier automaton GV proposed in [47], we need to

define the renaming function R. In order to do so, let Σi = {σRi : σ ∈ Σuoi \ Σf},
ΣN = Σ \ Σf and define ΣRi = Σoi ∪ Σi, for i = 1, . . . , Ns. Then, Ri : ΣN → ΣRi ,

i = 1, 2, . . . ,m, such that:

Ri(σ) =

 σ, if σ ∈ Σoi

σRi , if σ ∈ Σuoi \ Σf

Verifier GV is constructed according to Algorithm 2.2 [47].

Algorithm 2.2 Construction of automaton GV [47]

Input Automaton G, sets Σf , Σoi and Σuoi , i = 1, 2, . . . , Ns.

Output Automaton GV .

Step 1. Compute automaton GN that models the normal behavior of G, as fol-

lows:

Step 1.1 Define ΣN = Σ \ Σf .

Step 1.2 Build automaton AN , depicted in Figure 2.19, composed of a single state

N (also its initial state) with a self-loop labeled with all events in ΣN ,.

Step 1.3 Construct the nonfailure automaton GN = G × AN =

(XN ,Σ, fN ,ΓN , x0,N).

Step 1.4 Redefine the event set of GN as ΣN .
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N Σ \ {σf}

Figure 2.19: Automaton AN .

Step 2. Compute automaton GF that models the failure behavior of the system,

as follows:

Step 2.1 Compute G` = G||A`, according to Equation (2.23), and mark all states

of G` whose second coordinate is equal to Y .

Step 2.2 Compute the failure automaton GF = CoAc(G`).

Step 3. Construct automata GN,i = (XN ,ΣRi , fN,i,ΓN,i, x0,N), for i =

1, 2, . . . , Ns, with fN,i(xN , Ri(σ)) = fN(xN , σ) for all σ ∈ ΣN .

Step 4. Compute the verifier automaton GV = (||Nsi=1GN,i)||GF =

(XV , (
⋃Ns
i=1 ΣRi) ∪ Σ, fV , x0,V ).

Codiagnosability verification can be carried out using GV , according to the fol-

lowing theorem.

Theorem 2.4 [47] L is not codiagnosable with respect to Poi, i = 1, . . . , Ns, and Σf

if and only if there exists a cycle cl := (xkV , σk, x
k+1
V , . . . , xlV , σl, x

k
V ), where l ≥ k ≥ 0,

in GV satisfying the following conditions:

∃j ∈ {k, k + 1, . . . , l}, s.t. for some xjV , (x
j
F = xY ) ∧ (σj ∈ Σ).
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b, c
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3 5
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1N 2N
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0N
b, c

(a) (b)

Figure 2.20: Automata G (a) and GN (b) of Example 2.14.
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Figure 2.21: Automata G` (a) and GF (b) of Example 2.14.
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Figure 2.22: Automata GN,1 (a) and GN,2 (b) of Example 2.14.

Example 2.14 [47] Consider the system modeled by automaton G depicted in Fig-

ure 2.20(a), and suppose we want to verify the codiagnosability of L(G) with respect

to Poi, i = 1, 2, and Σf , where Σ = {a, b, c, σu, σf}, Σo1 = {a, b}, Σo2 = {a, c},
Σuo = {σu, σf} and Σf = {σf}. According to Algorithm 2.2, the first step is to

obtain automaton AN to compute the nonfailure automaton GN , which are depicted

in Figures 2.19 and 2.20(b), respectively. The next step is to obtain automaton

G`, depicted in Figure 2.21(a), by computing the parallel composition between au-

tomaton G and A` (shown in Figure 2.10) and marking all states that has Y as the

second component. We must now build the failure automaton GF , depicted in Figure

2.21(b), by taking the coaccessible part of G`. The next step of Algorithm 2.2 is to

obtain automata GN,1 and GN,2 (shown in Figures 2.22(a) and 2.22(b), respectively)

from GN by renaming the unobservable events in the sets Σuo1 \ Σf = {c, σu} and

Σuo2 \Σf = {b, σu}, respectively. The final step of Algorithm 2.2 is the computation

of the verifier automaton GV = GN,1||GN,2||GF , depicted in Figure 2.23. In order

to check the codiagnosability it is necessary to find cycles of failure states in GV

formed with events in Σ. Notice that GV has several cycles, but only one (the one

formed in state {2N, 2N, 6Y }) has some event (σu) in Σ; all the others have events

in either ΣR1 \ Σf or ΣR2 \ Σf . The existence of cycle in {2N, 2N, 6Y } formed by

σu ∈ Σ implies that L(G) is not codiagnosable with respect to Poi, i = 1, 2, and Σf .
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Figure 2.23: Automaton GV of Example 2.14.

2.4 Concluding Remarks

The basic definitions about DES and failure diagnosis were presented in this chap-

ter. In Chapter 3, we will revisit the problem of codiagnosability of discrete event

systems, and first, we will propose a new necessary and sufficient condition to check

the property of codiagnosability by using an algorithm based on a diagnoser-like

automaton that overcomes the drawbacks of the approaches presented in [19, 21].

Second, assuming that the considered language is codiagnosable, we will propose

an algorithm to extend the language of verifier presented in Section 2.3 to show

not only the ambiguous paths but also those paths that lead to language diagnosis.

Third, we will show an application of these algorithms.
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Chapter 3

Codiagnosability of Discrete Event

Systems Revisited: A New

Necessary and Sufficient

Condition and Its Applications

In Chapter 2, we presented diagnosability and codiagnosability verification by using

diagnosers proposed by [19] and [21], respectively. These verifications have some

drawbacks, since the authors assume language liveness and nonexistence of unob-

servable cycles of states connected with unobservable events only. In this chapter,

we revisit the problem of codiagnosability of discrete event system and propose a

new test for diagnosability verification by changing the diagnoser structure so as to

consider both observable and unobservable events in order to circumvent the draw-

backs of the approaches proposed by [19] and [21]. In addition, we can adapt this

diagnoser-like automaton to check the codiagnosability of networked discrete event

systems with timing structure which will be presented in Chapter 4.

Regarding codiagnosability verification using verifiers, we saw in Chapter 2 that

when the language is not codiagnosable the verifier proposed in [47] necessarily has

a cycle cl of failure states where at least one of the events in cl belongs to the

set of events of the plant Σ. However, since the verifier is based on the search for

ambiguous traces, for (co)diagnosable languages, the verifier language stops when

the ambiguity ceases to exist. As a consequence, events that remove the ambiguity
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are not shown in the verifier. Thus, we will propose an algorithm to extend the

verifier automaton proposed in [47] to show the paths that lead to failure diagnosis.

As an application of the algorithms in this chapter to be proposed (the diagnoser-

like automaton and extended verifier), we will address two important problems of

DES: τ -codiagnosability and K-codiagnosability. In failure diagnosis, it is not only

important to check if the failure event has occurred or not (language diagnosabil-

ity) but also how long the diagnosis system takes to detect the failure occurrence

(τ -codiagnosability), or, if no time information is available, how many events occur

after the failure occurs before the diagnosis system becomes sure of its occurrence

(K-codiagnosability). One way to verify τ -codiagnosability is by adding weights

associated with transitions of the plant automaton, which can be accomplished by

using weighted automata. The use of weighted automata allows the maximum delay

τ to detect a failure to be defined as a performance measure. This approach has

another advantage that it also allows the verification of K-codiagnosability by replac-

ing all transition weights with unity weight, making, therefore, K-codiagnosability

a particular case of τ -codiagnosability. A version of the results obtained in this

chapter was published in [63] and submitted for publication in [79,80].

In Section 3.1, we propose a diagnoser-like automaton, and based on this au-

tomaton, we generalize the necessary and sufficient condition for diagnosability to

codiagnosability, and present a diagnosability verification algorithm which relies

solely on the search for strongly connected components. In Section 3.2, we propose

an extended verifier, developed to show not only the ambiguous paths but also those

paths that lead to language diagnosis. In Section 3.3, we apply the diagnoser-like

automaton and extended verifier to compute τ - and K-codiagnosability. Finally, in

Section 3.4, we draw some conclusions.

3.1 A New Diagnoser-Based Test for Codiagnos-

ability Verification

We address, in this section, the problem of language codiagnosability. Encouraged

by a recent conjecture [57] that diagnosers have state size Θ(n0.77 log k+0.63), on the

average, where k (resp. n) is the number of events (resp. states) of the plant
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automaton, we present a new necessary and sufficient condition for a language co-

diagnosability of DES and, based on this condition, we propose a new test for its

verification that is based on a diagnoser-like automaton. Since this automaton test

has in its event set both observable and unobservable events of the plant, the usual

assumptions on language liveness and nonexistence of unobservable cycles of states

connected with unobservable events only are no longer required here. An important

advantage of the test proposed here is that the search for indeterminate cycles is

replaced with the search for strongly connected components; the former has com-

putational complexity that is worse than exponential whereas the latter is linear in

the state size. Other advantages of the proposed test is that diagnosability verifica-

tion becomes a particular case of codiagnosability verification. The motivation for

proposing a new test is as follows:

• diagnosers Gd and Gtest do not carry enough information to determine if an

observed cycle of uncertain states is an indeterminate cycle, since it is nec-

essary to also perform a search for cycles in G. Namely, in order to check

diagnosability (resp. codiagnosability) in accordance with the test proposed

in [19] (resp. [21]), we need to find a set of uncertain states in Gd (resp. Gtest

associated to uncertain states in Gd1 , Gd2 , . . ., GdNs
) and verify if these states

lead to two cycles in G`: one cycle associated with states labeled by N and

another cycle formed with states labeled by Y . Thus, the centralized diagnoser

(resp. decentralized diagnoser), by itself, does not have enough information to

determine if a language is diagnosable or not;

• the same is true in Gd and Gtest as far as hidden cycles are concerned, i.e.,

it is also necessary to search for cycles of states connected with unobservable

events in G;

• the search for cycles, as pointed out in [58], is worse than exponential in the

number of states;

• although the approaches proposed to diagnosability and codiagnosability ver-

ification are both based on diagnosers, automaton Gtest proposed in [21] for

codiagnosability verification is not a generalization of Gd proposed in [19] —

notice that, for Ns = 1, Gtest = Gd||Gd which, although L(Gd||Gd) = L(Gd),
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an unnecessary parallel composition must be carried out in order to obtain the

Gtest;

• We will remove assumptions of language liveness and nonexistence of unob-

servable cycles of states connected with unobservable events only;

• We will check the codiagnosability of networked discrete event systems with

timing structure by using a slight variation of the decentralized diagnoser

presented in this chapter.

Let us introduce the following test automaton:

Gscc = Gd||G`, (3.1)

where G` = G||A`, A` is the label automaton and Gd is computed according to

Equation (2.23). We may state the following result.

Fact 3.1 L(Gscc) = L(G`) = L(G).

Proof. The proof is straightforward and comes from the fact that L(G`) = L and

L(Gd) = Po(L) since Gd = Obs(G`,Σo).

Notice that, since automaton Gscc is obtained by performing a parallel composition

between Gd and G`, its states are of the form (xd, x`), which leads to the following

inclusion relationship between x` and xd.

Fact 3.2 For every state (xd, x`) of Gscc, x` ⊆ xd.

Proof. The proof is straightforward and comes from the fact that automaton

Gscc = Gd||G` = Obs(G`,Σo)||G` is a state partition automaton [81].

We will now present a necessary and sufficient condition for language diagnos-

ability that replaces the search for cycles with the search for strongly connected

components, which, as shown in [60] and [59], is linear in the number of transitions.

Theorem 3.1 The language L generated by automaton G is diagnosable with respect

to projection Po and Σf = {σf} if, and only if, Gscc does not have strongly connected

components formed with states (xd, x`), such that xd is uncertain and x` is an Y-

labeled state, i.e., x` = (x, Y ), where x ∈ X.
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Proof. (⇒) Assume that there exists a strongly connected component formed

with states (xd1 , x`1), (xd2 , x`2), . . . , (xdn , x`n) such that xdi , x`i i = 1, . . . , n, are,

respectively, uncertain and Y-alabeled states.

Two possibilities arise:

(i) xd1 = xd2 = xd3 = . . . = xdn = xd. This means that states (xd, x`1), (xd, x`2),

. . . , (xd, x`n) are connected by unobservable events since these events are pri-

vate events of G`. In addition, due to Fact 3.2, x`i ∈ xd, which, together

with the fact that x`i are Y-labeled states, then, in accordance with Defini-

tion 2.8, we can conclude that there exists an indeterminate hidden cycle in

xd; therefore according to Theorem 2.2, L is not diagnosable.

(ii) There exists {i1, i2, . . . , ip} ⊆ {1, . . . , n} such that xdik 6= xdil , k 6= l, k, l ∈
{1, 2, . . . , p}. Since x`i , i = 1, 2, . . . , n are Y-labeled states, and L(Gscc) = L,

then, there exists an unbounded trace sY = st ∈ L such that s ∈ Ψ(Σf ) and

|t| ≥ n, for all n ∈ N. In addition, since xdik j = 1, 2, . . . , p, are uncertain

states, then, as proved in [19], there exists a trace sN ∈ L such that Po(sY ) =

Po(sN), which implies that L is not diagnosable with respect to Po and Σf .

(⇐) Assume, now, that L is not diagnosable with respect to Po and Σf . Thus,

there exist two traces: an unbounded trace sY = st, s ∈ Ψ(Σf ), and |t| > n for all

n ∈ N and a not necessarily unbounded trace sN , such that Σf /∈ sN , which satisfies

Po(sY ) = Po(sN). This implies that ∃xd ∈ Xd, sd ∈ L(Gd): fd(x0,d, sd) = xd, xd

uncertain and Po(sY ) = Po(sN) = sd. In addition, since L(G`) = L(G), ∃x`1 ∈ X` :

f`(x0,`, s) = x`1 , where x`1 an Y-labeled state. Two possibilities arise:

(i) If Po(sN) is bounded, then Po(sN) = Po(sY ) = sd will be bounded. Therefore

sY can be written as: sY = st1t2, where Po(st1) = sd and Po(t2) = ε. Thus,

∃p ≤ |X`| : t2 = (σ1, σ2, . . . , σp)
m, m ≥ 1, such that σi is unobservable,

∀i = 1, 2, . . . , p. This implies that there exists an indeterminate hidden cycle

in xd formed with Y-labeled states x`1 , x`2 , . . . , x`p related as follows:

f(x`i , σi) =

 x`i+1
, if i = 1, . . . , p− 1

x`1 , if i = p.
(3.2)
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Since σi, i = 1, . . . , p are private events of G`, and x`i ⊆ xd, according to

Fact 3.2, we have that the following cyclic path is formed in Gscc: ((xd, x`1),

σ1, (xd, x`2), σ2, . . . , (xd, x`p), σp, (xd, x`1)), which defines the following cycle in

Gscc: {(xd, x`1), (xd, x`2), . . . , (xd, x`p), (xd, x`1)}. Since, cycles are strongly

connected components, the result is proved.

(ii) If Po(sN) is unbounded, then Po(sN) = Po(sY ) = sd will be unbounded. Con-

sequently, since n can be arbitrarily large, then Po(t) is unbounded. Thus,

∃p ≤ |X`| : t = (σ1, σ2, . . . , σp)
m, m ≥ 1, {i1, i2, . . . , ik} ⊆ {1, . . . , p} such that

σi1 , σi2 , . . . , σik are observable. Without loss of generality and, for the sake of

simplicity, let us assume that there exist only two observable events σk, σ`, k, `

∈ {1, 2, . . . , p} and let x`i , i = 1, . . . , p be defined according to Equation (3.2).

Therefore, the following cyclic path is defined in Gd: (xd1 , σ`, xdk , σk, xd1),

which implies that following cyclic path is defined in Gscc: ((xd1 , x`1), σ1, . . . ,

σk−1, (xd1 , x`k−1
), σk, (xdk , x`k), σk+1, (xdk , x`k+1), σk+2, . . . , (xd`−1

, x`), σ`, (xd1 ,

x`), σ`+1, . . . , σp−1, (xd1 , x`,p−1), σp, (xd1 , x`1)), whose first components of the

states of Gscc are uncertain states of Gd and the second are Y-labeled states;

therefore concluding the proof.

Therefore, according to Theorem 3.1, diagnosability verification can be performed

according to Algorithm 3.1.

Algorithm 3.1 Diagnosability verification using automaton Gscc

Input: Plant G, Po and Σf = {σf}.
Output: Diagnosability decision: Yes or No.

Step 1. Compute automaton Gscc = Gd||G`.

Step 2. Find all strongly connected components of Gscc.

Step 3. Verify if there exists at least one strongly connected component formed

with states (xd, x`) such that xd is uncertain and x` is an Y-labeled state, i.e.,

x` = (x, Y ), where x ∈ X.

Step 4. If the answer is yes, then L is not diagnosable with respect to projection

Po and Σf = {σf}. Otherwise, L is diagnosable.

50



σf

1 3
c

2

4 6
uo

a

5

a a
b

a

b

σf

1N 3N
c

2N

4Y 6Y
uo

a

5Y

a a
b

a

b

(a) (b)

Indeterminate cycle

b

a

{4Y } {5Y, 6Y }

a

{3N, 5Y , 6Y }
b

{2N, 4Y }
ac{1N}

a

(c)

Figure 3.1: Automata G (a); G` (b) and Diagnoser automaton Gd (c) of Example

2.10, which are considered again in Example 3.1.

Example 3.1 Consider again the system of Example 2.10, modeled by automa-

ton G shown again in Figure 3.1(a), where Σo = {a, b, c} is the set of observable

events, and Σo = {uo, σf}. In order to check the language diagnosability according

to Algorithm 3.1, we first compute Gscc, depicted in Figure 3.2, by performing a par-

allel composition between automaton G` of Figure 3.1(b) and diagnoser automaton

Gd = Obs(G`,Σo), depicted in Figure 3.1(c). If we examine Gscc, we can observe

two properties of Gscc: L(Gscc) = L(G`) = L(G) (Fact 3.1) and its states are of the

form (xd, x`), being such that x` ⊆ xd (Fact 3.2). Since there exists a strongly con-

nected component formed by states ({2N, 4Y }, 4Y ) and ({3N, 5Y, 6Y }, 5Y ) whose

first component xd is an uncertain state and x` is an Y-labeled state, we can con-

clude according to Algorithm 3.1, that language L(G) is not diagnosable with respect

to projection Po and Σf = {σf}. The same result was obtained in Example 2.10.

However, notice that here is not necessary to find two cycling traces in automaton

G that have same projection to determine the diagnosability decision.
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Figure 3.2: Automaton Gscc of Example 3.1.
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Figure 3.3: Automata G (a) and Gd (b) of Example 2.11, which are considered

again in Example 3.2.

Example 3.2 Consider again the system of Example 2.11 modeled by automaton

G and its diagnoser Gd represented again in Figure 3.3(a) and 3.3(b), respec-

tively. We can compute Gscc through Equation (3.1), and the resulting automa-

ton is depicted in Figure 3.4. Due to the absence of strongly connected compo-

nents formed by states (xd, x`) such that xd is uncertain and x` is an Y-labeled

state, we can say that L(G) is diagnosable. Notice that, to obtain the diag-
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nosability decision by using Algorithm 3.1 it is not necessary to identify if un-

certain cycles of Gd are indeterminate cycles. For instance, the cycle formed

by normal states appear in Gscc as strongly connected components formed by

states ({12N, 5Y, 10Y }, 12N), ({11N, 4Y, 9Y }, 11N), ({7N, 3Y, 8Y }, 7N), where the

first component of xd is uncertain state whereas the second component is a normal

state.

σf
b

a

({11N, 4Y, 9Y }, 11N)

t

({7N, 3Y, 8Y }, 7N)

g d

({11N, 4Y, 9Y }, 9Y )

g

d

σf

b

({7N, 3Y, 8Y }, 3Y )b

({6Y }, 6Y )

g

t
a

({1N, 2Y }, 2Y )

({1N, 2Y }, 1N)({12N, 5Y, 10Y }, 12N)

({12N, 5Y, 10Y }, 10Y )

({7N, 3Y, 8Y }, 8Y )

({11N, 4Y, 9Y }, 4Y )

({12N, 5Y, 10Y }, 5Y )

Figure 3.4: Automaton Gscc of Example 3.2.
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Figure 3.5: Automaton G of Example 2.12 considered again in Example 3.3.

Example 3.3 Let us consider again automaton G whose state transition diagram

is depicted again in Figure 3.5. Remember that Σ = {a, b, c, d, σ, σf}, Σo = {c, d},
Σuo = {a, b, σ, σf}, and Σf = {σf}. Diagnoser automaton Gd, which does not in-

clude the hidden cycles, is depicted in Figure 3.6. We then obtain Gscc by following

Equation (3.1), being depicted in Figure 3.7. We can, then, conclude that Language

L(G) is not diagnosable with respect to projection Po and Σf = {σf} since there

exists a strongly connected component formed by state ({3N, 4N, 6Y }, 6Y ), which
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such that xd is uncertain and x` is an Y-labeled state. Notice that it is not nec-

essary to search for hidden cycles as in G′d of Example 2.12, since Gscc “shows”

the cycles in ({3N, 4N, 6Y }, 6Y ) (corresponding to ihc in Gd of Example 2.12) and

({7N}, 7N)(corresponding to hc in Gd of Example 2.12).

{4N}
c

d{1N, 2N, 5Y }

c

{7N}

{3N, 4N, 6Y } c

Figure 3.6: Automaton Gd of Example 2.12 (without hidden cycles).

σf

a

({1N, 2N, 5Y }, 1N)

d

({3N, 4N, 6Y }, 6Y )({7N}, 7N)

c

b

({1N, 2N, 5Y }, 2N) ({1N, 2N, 5Y }, 5Y )

c
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σ
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Figure 3.7: Automaton Gscc.

We will now extend the diagnosability verification test to codiagnosability, and,

to this end, we introduce automaton GNs
scc, which is defined as follows:

GNs
scc = (||Nsi=1Gdi)||G`, (3.3)

where Ns is number of sites. We may state the following result.

Fact 3.3 L(GNs
scc) = L(G`) = L(G).

Proof. The proof is straightforward from Fact 3.1.

Notice that, since automaton GNs
scc is obtained by performing a parallel com-

position between Gdi , i = {1, 2, . . . , Ns} and G`, its states are of the form

(xd1 , xd2 , . . . , xdNs , x`). Therefore the following inclusion relationship between x`

and xdi holds true.
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Fact 3.4 For all states (xd1 , xd2 , . . . , xdNs , x`) of GNs
scc, x` ⊆ xdi, i = 1, 2, . . . , Ns.

Proof. The proof is straightforward from Fact 3.2.

Let us now define Im = {1, 2, . . . ,m}, m ∈ N. We may state the following result.

Theorem 3.2 The language L generated by automaton G is codiagnosable with

respect to projections Poi : Σ∗ → Σ∗oi, i = 1, 2, . . . , Ns and Σf = {σf}, if, and only if,

GNs
scc has no strongly connected components formed with states (x1

d1
, x1

d2
, . . . , x1

dNs
, x1

`),

(x2
d1
, x2

d2
, . . . , x2

dNs
, x2

`), . . ., (xmd1 , x
m
d2
, . . . , xmdNs , x

m
` ), such that, for all j ∈ Im, xjdi,

i = 1, 2, . . . , Ns, is uncertain, and xj` is an Y-labeled state.

Proof. (⇒) Let us assume that there exists a strongly connected component formed

with states (x1
d1
, x1

d2
, . . . , x1

dNs
, x1

`), (x2
d1
, x2

d2
, . . . , x2

dNs
, x2

`),. . ., (xmd1 , x
m
d2
, . . . , xmdNs , x

m
` )

in GNs
scc, such that, for all j ∈ Im, xjdi , i = 1, 2, . . . , Ns, is uncertain, and xj` is an

Y-labeled state. Since L(G`) = L(G`||G`), we can rewrite GNs
scc as follows:

GNs
scc = Gscc1 ||Gscc2 || . . . ||GsccNs

= (Gd1||G`)||(Gd2 ||G`)|| . . . ||(GdNs
||G`).

Thus, there is a strongly connected component in GNs
scc formed with states ((x1

d1
,

x1
`), (x

1
d2
, x1

`), . . . , (x
1
dNs
, x1

`)), ((x
2
d1
, x2

`), (x
2
d2
, x2

`), . . . , (x2
dNs
, x2

`)), . . ., ((xmd1 , x
m
` ), (xmd2 ,

xm` ), . . . , (xmdNs , x
m
` )), such that, for all j ∈ Im, xjdi , i = 1, 2, . . . , Ns, is uncertain,

and xj` is an Y-labeled state. By construction, we can see that each Gscci i = 1, 2,

. . . , Ns has a strongly connected component formed with states (xjd1 , x
j
`), (xjd2 , x

j
`),

. . . , (xjdNs , x
j
`) such that xdi , x

j
` are, respectively, uncertain and Y-labeled states.

Therefore, according to Theorem 3.1, L is not diagnosable with respect to Poi and

Σf .

(⇐) Assume, now, that L is not codiagnosable with respect to projections

Poi : Σ∗ → Σ∗oi , i = 1, 2, . . . , Ns and Σf = {σf}. Thus, according to Definition 2.9,

there exists a fully-ambiguous trace1 s ∈ L(G), which, implies, due to Defini-

tion 2.6, that L is not diagnosable with respect to Poi and Σf , i = 1, 2, . . . , Ns.

Thus, according to Theorem 3.1, there exists a strongly connected component

in Gscci , (x1
di
, x1

`), (x2
di
, x2

`), . . ., (xmdi , x
m
` ), such that xdi , i = 1, 2, . . . , Ns, are

1An unbounded trace s ∈ L(G) is said to be fully-ambiguous with respect to projections Poi ,

i = 1, 2, . . . , Ns and Σf if there exist traces, s1, s2, . . . , sNs ∈ L(G) not necessarily unbounded and

not necessarily distinct, such that: Poi(s) = Poi(si), Σf ∈ s but Σf /∈ si, i = 1, 2, . . . , Ns.
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uncertain states and xj` are Y-labeled states. Since L(GNs
scc) = L(G`) = L(Gscci),

if we compute Gscc1 ||Gscc2 || . . . ||GsccNs
= (Gd1||G`)||(Gd2||G`)|| . . . ||(GdNs

||G`),

we obtain an automaton that has a strongly connected component

((x1
d1
, x1

`), (x
1
d2
, x1

`), . . . , (x1
dNs
, x1

`), x
1
`)((x

2
d1
, x2

`), (x
2
d2
, x2

`), . . . , (x2
dNs
, x2

`), x
2
`), . . .,

((xmd1 , x
m
` ), ((xmd2 , x

m
` ), . . . , ((xmdNs , x

m
` ), xm` ) in GNs

scc, such that, for all j ∈ Im, xjdi ,

i = 1, 2, . . . , Ns, is uncertain, and xj` is an Y-labeled state. Since L(G`||G`) = L(G`),

this strongly connected component also appears in GNs
scc, which completes the proof.

Remark 3.1 Notice that, when Ns = 1, G1
scc = Gd1||G` = Gd||G` = Gscc, which

shows that the diagnosability test is a particular case of the codiagnosability test

developed here as opposed to that proposed in [21].

Therefore, according to Theorem 3.2, we now present Algorithm 3.2 to be used

for codiagnosability verification based on automaton GNs
scc.

Algorithm 3.2 Codiagnosability verification using automaton GNs
scc

Input: Plant G, Poi, i = 1, 2, . . . , Ns, and Σf = {σf}.
Output: Codiagnosability decision: Yes or No.

Step 1. Compute automaton GNs
scc = (||Nsi=1Gdi)||G`.

Step 2. Find all strongly connected components of GNs
scc.

Step 3. Verify if there exists at least one strongly connected component

formed with states (x1
d1
, x1

d2
, . . . , x1

dNs
, x1

`), (x2
d1
, x2

d2
, . . . , x2

dNs
, x2

`), . . .,

(xmd1 , x
m
d2
, . . . , xmdNs , x

m
` ), such that, for all j ∈ Im, xjdi, i = 1, 2, . . . , Ns,

is uncertain, and xj` is an Y-labeled state.

Step 4. If the answer is yes, then L is not codiagnosable with respect to projections

Poi : Σ∗ → Σ∗oi, i = 1, 2, . . . , Ns and Σf = {σf}. Otherwise, L is codiagnosable.

Remark 3.2 Notice that, for the codiagnosability test proposed here, none of the

assumptions made in [19], [21] and [54] are necessary. Therefore, besides being more

efficient, as far as the search for cycles is concerned, the test proposed here can be

applied to a larger class of DES modeled by automata.
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Example 3.4 In order to illustrate the results of this section, let us consider au-

tomaton G, shown in Figure 3.8(a), where Σ = {a, b, c, σf} and Σf = {σf}. Let

Σo1 = {a, c} and Σo2 = {a, b}, and consider projections Po1 : Σ∗ → Σ∗o1 and

Po2 : Σ∗ → Σ∗o2. In order to verify if L is codiagnosable, with respect to projec-

tions Po1 and Σf , and Po2 and Σf , by applying Algorithm 3.1, we must, firstly,

compute Gd1 = Obs(G`,Σo1) and Gd2 = Obs(G`,Σo2), depicted in Figures 3.8(a)

and (b), respectively.

1

3

b

2

4 5

σf

6

ccc

a b a a

{5Y}

c

{1N, 3N, 2Y, 5Y}

{6N, 4Y}

c c

a

{6N}

b

a

{1N, 2Y}

{4Y} {3N, 5Y}

(a) (b) (c)

Figure 3.8: Plant G (a); diagnoser Gd1 , for Σo1 = {a, c} (b) and diagnoser automaton

Gd2 , for Σo2 = {a, b} (c) of Example 3.4.

Secondly, we compute Gscc1 = Gd1||G`, depicted in Figure and Figure 3.9. Ac-

cording to Theorem 3.1, since Gscc1 has a strongly connected component formed with

state ({6N, 4Y }, {4Y }), the language L generated by automaton G is not diagnos-

able with respect to projections Po1 and Σf . The same conclusion we draw when we

compute Gscc2 = Gd2 ||G`, which is shown in Figures 3.10, since Gscc2 has a strongly

connected component formed with state ({3N, 5Y }, {5Y }), L is not diagnosable with

respect to Po2 and Σf .

Finally, let us verify if L is codiagnosable with respect to Po1, Po2 and Σf =

{σf}, by applying Algorithm 3.2. Automaton G2
scc = Gd1||Gd2||G` is depicted in

Figure 3.11. Notice that since G2
scc has no strongly connected components formed

with states (xd1 , xd2 , x`), where xdi, i = 1, 2, are both uncertain and x` is an Y-labeled

state, we can conclude that language L, generated by automaton G, is codiagnosable

with respect to projections Po1, Po2 and Σf = {σf}.
An observation is worth making in this example is the following. When
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the system executes trace s′Y = σfbc, automaton G2
scc reaches state x′Y =

({5Y }, {3N, 5Y }, {5Y }). Notice that the Y-certain state {5Y } in the first com-

ponent of x′Y indicates that the failure occurrence is detected by site S1. On the

other hand, when the system executes trace s′′Y = σfa, automaton G2
scc reaches state

x′′Y = ({6N, 4Y }, {4Y }, {4Y }), and, in this case, the Y-certain state {4Y } in the

second component of x′′Y indicates that the failure occurrence is detected by site S2.

Therefore, the computation of G2
scc also allows the identification of the local site that

generates the diagnostic information, for every failure trace in L(G).

σf b

c

({1N, 3N, 2Y, 5Y}, 1N)

a

({6N, 4Y}, 6N)

({1N, 3N, 2Y, 5Y}, 2Y)

({6N,4Y}, 4Y)

({1N, 3N, 2Y, 5Y}, 3N)

a

({5Y}, 5Y)

({1N, 3N, 2Y, 5Y}, 5Y)

b

c

c
c

Figure 3.9: Diagnoser automata Gscc1 = Gd1||G` of Example 3.4.
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({1N, 2Y}, 2Y)

({4Y}, 4Y)
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({3N, 5Y}, 5Y)
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Figure 3.10: Diagnoser automata Gscc2 = Gd2 ||G` of Example 3.4.
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σf b

c
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({6N, 4Y}, {4Y}, 4Y)

({1N, 3N, 2Y, 5Y}, {3N, 5Y}, 3N)
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({5Y}, {3N, 5Y}, 5Y)

({1N, 3N, 2Y, 5Y}, {3N, 5Y}, 5Y)

b

c

c
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Figure 3.11: Diagnoser automaton G2
scc = Gd1||Gd2||G` of Example 3.4.

3.2 Extending Verifiers to Show All Diagnosis

Paths

Since verifier GV , constructed in Algorithm 2.2, only provides the paths where there

is ambiguity between faulty and normal traces, which is not enough for the problem

we deal with here, we will now present a new verifier automaton GV T that shows

the diagnosis paths necessary to ensure codiagnosability. We start by defining the

following projections:

PRi : (Σ ∪ ΣR1 ∪ ΣR2 . . .ΣRNs
)∗ → Σ∗Ri ;

PF : (Σ ∪ ΣR1 ∪ ΣR2 . . .ΣRNs
)∗ → Σ∗;

Poi : Σ∗ → Σ∗oi , i ∈ INs ,

where, as defined in Chapter 2, ΣRi = Σoi ∪ Σi, with Σi = {σRi : σ ∈ Σuoi \ Σf}.
We can state the following result, which is a generalization of Lemma 1 of [56].

Lemma 3.1 Let GV = (||Nsi=1GN,i)||GF . Then, for every sV ∈ L(GV ), there exist

traces sN ∈ L(GN) and sY ∈ L(GF ), such that Poi(sY ) = Poi(sN), i = 1, 2, . . . , Ns,

and conversely.
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Proof. (⇒) Let us consider a trace sV ∈ L(GV ), and let sRi = PRi(sV ), i ∈ INs and

sY = PF (sV ). Because GV = (||Nsi=1GN,i)||GF , then L(GV ) = (∩Nsi=1P
−1
Ri

(L(GN,i))) ∩
P−1
F (GF ), and thus, sRi ∈ L(GN,i), i ∈ INs , and sY ∈ L(GF ).

Since GN,i is obtained from GN by renaming the unobservable events of ΣN , there

always exists a trace sN such that sRi = Ri(sN). Notice that Poi(sN) = PF (sRi) and

Poi(sY ) = PRi(sY ). Since sRi = PRi(sV ) and sY = PF (sV ), we can conclude that

Poi(sN) = PF (PRi(sV )) and Poi(sF ) = PRi(PF (sV )). Finally, since PF (PRi(sV )) =

PRi(PF (sV )), it is not difficult to check that Poi(sY ) = Poi(sN), i ∈ INs .
(⇐) Since GN,i is obtained from GN by renaming its unobservable events,

then the renamed unobservable events of ΣRi , and the unobservable events of

Σ, become private events of GN,i and GF , respectively, in the parallel compo-

sition GV = (||Nsi=1GN,i)||GF . Let sN ∈ L(GN) and sY ∈ L(GF ) be such that

Poi(sN) = Poi(sF ), ∀i ∈ INs , and define sRi = Ri(sN). Then, by construction of the

verifier automaton, there exists a trace sV ∈ L(GV ) associated with sRi and sF .

We will now extend GV to show all traces that ensure language codiagnosability.

The idea is to augment GV by creating a new state F (marked) and transitions

labeled with events in ΣV from the states of GV to F , in such a way that for every

trace sV T = sV σ ∈ Lm(GV T ), there exists sY T = PF (sV T ) ∈ L(GF ), σf ∈ sY T , such

that ∃i ∈ INs , Poi(sY T ) 6= Poi(sNT ), for all sNT ∈ L(GN).

Algorithm 3.3 Construction of automaton GV T

Input Automaton G, Ns (number of sites), Σf , Σoi, and Σuoi, i = 1, 2, . . . , Ns.

Output Extended verifier automaton GV T .

Step 1. Compute GN,i, i = 1, 2, . . . , Ns and GV = (XV ,ΣV , fV , x0,V ) according to

Algorithm 2.2.

Step 2. For i = 1, 2, . . . , Ns:

Step 2.1 Form Xi = {x0N,i} ∪ {x ∈ XN,i : (∃(x̃, σ) ∈ XN,i × Σoi)[fN,i(x̃, σ) = x]}.

Step 2.2 Compute UR(Xi,Σuoi)={UR(x,Σuoi):x∈Xi}.

Step 2.3 If ∃Ũ , Û ∈ UR(Xi,Σuoi) : Ũ ⊆ Û , then set UR(Xi,Σuoi) =

UR(Xi,Σuoi) \ {Ũ}.
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Step 3. Compute GV T = (XV T ,ΣV , fV T , x0,V , Xm,V T ) from GV as follows:

Step 3.1 Set XV T = XV ∪ {F}, Xm,V T = {F}, ΓV T (F ) = ∅.

Step 3.2 Set fV T as follows:

1. fV T (x, σ) = fV (x, σ), ∀x∈ XV , σ∈Γ(XV ).

2. For each xV = (xN,1, xN,2, . . . , xN,Ns , xF ) ∈ XV such that xF =

(x, Y ), x ∈ X:

(a) Define Σ′o = (Σo ∩ ΓF (xF )) \ ΓV (xV )

(b) For each σ ∈ Σ′o:

– For each component xN,i, i = 1, 2, . . . , Ns, of xV , compute

i. Us(xN,i) := {U ∈ UR(Xi,Σuoi): xN,i ∈ U}.

ii. U(xN,i) =
⋃
U∈Us(xN,i) U .

iii. ΓN,i(U(xN,i)) :=⋃
xi∈ΓN,i(U(xN,i))

[ΓN,i(xi) ∩ Σoi ].

iv. If σ ∈ Σoi \ ΓN,i(U(xN,i)), then Set fV T (xV , σ) = {F}.

In Algorithm 3.3, we create automaton GV T as follows. We first compute au-

tomaton GV in Step 1. In Step 2, we calculate the unobservable reaches of the

initial state and of all states of GN,i, i = 1, 2, . . . , Ns, reached by observable events.

In the last step, we add a new (marked) state F that receives transitions labeled by

an event σ ∈ ΣV from a state xV = (xN,1, xN,2, . . . , xN,Ns , xF ) ∈ XV providing the

following conditions hold true:

C1. xF has an Y -label, meaning that, the failure has occurred;

C2. σ ∈ Σo;

C3. σ ∈ ΓF (xF ), but σ /∈ ΓV (xV );

C4. ∃i ∈ INs : σ ∈ Σoi and @x′V = (x′N,1, x
′
N,2, . . . , x

′
N,Ns

, x′F ) ∈ X ′V that has a

component x′N,i such that {xN,i, x′N,i} ⊆ Xi, and σ ∈ ΓN,i(x
′
N,i), i.e., if xN,i (resp.

x′N,i) is in the unobservable reach of x′N,i (resp. xN,i) then σ is not in the active

event set of x′N,i.

The following theorem shows that the completion of GV according to Algorithm

3.3, removes all trace ambiguities of GV .
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Theorem 3.3 Let GV T be constructed according to Algorithm 3.3. Then, every

trace sV T ∈ Lm(GV T ) is of the following form: sV T = sV σ, where sV ∈ L(GV ) and

σ ∈ Σo. Moreover, for every trace sV T ∈ Lm(GV T ), there exists sY T = PF (sV T ) ∈
L(GF ) such that ∀sNT ∈ L(GN), Poi(sNT ) 6= Poi(sY T ), for some i ∈ INs and con-

versely, for all traces sN , sY ∈ L(G) such that σf /∈ sN , sY = st, s ∈ Ψ(Σf ) and

|t| ≥ 1, Poi(sN) 6= Poi(sY ) for some i ∈ INs, there exists sY T ∈ sY such that σf ∈ sY T
and sY T = PF (sV T ) for some sV T ∈ Lm(GV T ).

Proof. (⇒) According to Lemma 3.1, for every trace sV ∈ L(GV ) there exist

traces sNi ∈ L(GN) and sY ∈ L(GF ) such that Poi(sNi) = Poi(sY ), ∀i ∈ INs. We

will now show that conditions C1–C3 are necessary for the existence of an event

σ that removes this ambiguity: (i) by Definition 2.9 and from the construction of

the states of GV , an state xV = (xN1 , xN2 , . . . , xNNs , xF ) ∈ XV , where xF = xY

only appears in GV if σf has occurred, and, thus, only those states of GV whose

last components have label Y can have transitions to state F ; (ii) all events in Σuo

and ΣRi, i = 1, . . . , Ns, are particular events of GF and GN,i, respectively, being

already in ΓV (xV ), which implies that, σ /∈ Σuo ∪ ΣRi or equivalently, σ ∈ Σo;

(iii) σ ∈ ΓF (xF ), since if σ /∈ ΓF (xF ) then sY T = sY σ = PF (sV )σ /∈ L(GF ),

and, consequently sY T /∈ L(G). However, from Lemma 3.1, such a σ must not

be in the active event of GV , i.e., σ /∈ ΓV (xV ). Therefore, σ ∈ Σ′o,where Σ′o =

(Σo ∩ ΓF (xF )) \ ΓV (xV ). Let us consider an event σ ∈ Σ′o and assume that

σ ∈ Σok for some k ∈ INs. Moreover, let xV = (xN,1, . . . , xN,k, . . . , xN,Ns , xF ) and

fV (x0V , sV ) = xV such that sV ∈ L(GV ). Define sRk = PRk(sV ) ∈ L(GN,k) where

fN,k(x0N , sRk) = xN,k. Let an event σ′ ∈ Σok . If ∃x′N,k ∈ U(xN,k): σ′ ∈ ΓN,k(x
′
N,k)

then σ′ ∈ Γ(U(xN,k)). By construction, for all x′N,k ∈ U(xN,k), ∃s′Rk ∈ Σ∗k such

that either fN,k(xN,k, s
′
Rk

) = x′N,k or fN,k(x
′
N,k, s

′
Rk

) = xN,k. Without loss of gener-

ality let us consider the first possibility only. Consequently, ∃s′V = PRk(s
′
Rk

) such

that fV (xV , s
′
V ) = x′V = (x′N,1, . . . , x

′
N,k, . . . , x

′
N,Ns

, x′F ). Indeed, since s′Rk ∈ Σ∗k,

there exist sNk = R−1(sRk) ∈ L(GN) and s′Nk = R−1(s′Rk) ∈ L(GN)/sNk such

that s′Nk ∈ Σ∗uok , then Pok(s
′
Nk

) = ε. If we define sNT = sNks
′
Nk
σ′, then:

Pok(sNT ) = Pok(sNk)Pok(s
′
Nk

)Pok(σ
′) = Pok(sNk)σ

′.

Define now sY T = sY σ such that sY = PF (sV ). Thus, Pok(sY T ) = Pok(sY )σ, and

since sY = PF (sV ) and sNk = R−1(PRk(sV )), by Lemma 3.1, we can conclude that
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Pok(sY ) = Pok(sNk). Therefore, if σ′ = σ then Pok(sNT ) = Pok(sY T ). But if σ′ 6= σ

then Pok(sNT ) 6= Pok(sY T ), for some k ∈ INs.
(⇐) Suppose that there exists a trace sY = st ∈ L(G), s ∈ Ψ(Σf ) and |t| ≥ 1

such that, for some k ∈ INs, Pok(sN) 6= Pok(sY ) for all traces sN ∈ L(G) for which

σf /∈ sN . Thus, there exist s′Y ∈ L(G), and σ ∈ Σo, such that Σf ∈ s′Y , s′Y ∈ sY and

Σf /∈ s′N , s′N ∈ sN such that Pok(s
′
Y ) = Pok(s

′
N), ∀k ∈ INs, and, for some k ∈ INs,

Pok(s
′
Y σ) 6= Pok(s

′
Ns
′′
N) and for all traces s′′N ∈ L(G)/s′N such that σf /∈ s′′N .

Thus, ∃s′V ∈ L(GV ) such that PF (s′V ) = s′Y and Pok(s
′
V ) = s′N , for some k ∈ INs.

In addition, sV T = s′V σ /∈ L(GV ) and satisfies conditions C1–C4, which completes

the proof.

Traces sY T ∈ PF (Lm(GV T )) have an important property, as follows.

Definition 3.1 (Minimum length codiagnosable traces) A trace sY ∈ L(GF ), where

Σf ∈ sY , is a minimum length codiagnosable trace with respect to projections Poi :

Σ∗ → Σ∗oi, i = 1, 2, . . . , Ns, and Σf , if: (i) ∃i ∈ INs : ∀sN ∈ L(GN), Poi(sY ) 6=
Poi(sN), and; (ii) ∀s′Y ∈ sY \ {sY }, Σf ∈ s′Y , ∃s′N,i ∈ L(GN) : ∀i ∈ INs , Poi(s′Y ) =

Poi(s
′
N,i).

Let Θ(L(GF )) denote the set of all minimum traces of GF , i.e., Θ(L(GF )) =

{sY ∈ L(GF ) : sY is a minimum length codiagnosable trace}. Comparing Definition

3.1, Lemma 3.1 and Theorem 3.3 , we can state the following fact.

Fact 3.5 Θ(L(GF )) = PF (Lm(GV T )).

The following example illustrates the results of this section.

Example 3.5 Let us consider again automaton G of Example 3.4, shown again

in Figure 3.12, where Σ = {a, b, c, σf} and Σf = {σf}. Let Σo1 = {a, c} and

Σo2 = {a, b}, and consider projections Po1 : Σ∗ → Σ∗o1 and Po2 : Σ∗ → Σ∗o2.

We will first illustrate the construction of automaton GV T using Algorithm 3.3.

The first step is to compute GN,1 and GN,2, shown in Figures 3.13(a) and 3.13(b),

respectively. Next, we obtain the failure automaton GF , depicted in Figure 3.13(c),

and compute GV = GN,1||GN,2||GF , according to Algorithm 2.2, which is shown

in Figure 3.14(a). According to Theorem 2.4, L(G) is codiagnosable with respect
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to Po1, Po2 and Σf . The next step is to construct state sets Xi, i = 1, 2, formed

with the initial state of GN,i and the states of GN,i reached through some observ-

able event. Thus, according to Step 2 of Algorithm 3.3, X1 = {{1N}, {6N}}
and X2 = {{1N}, {3N}, {6N}}. Using these two sets, it is possible to compute

UR(Xi,Σuoi), for i = 1, 2, which are given by UR(X1,Σuo1) = {{1N, 3N}, {6N}}
and UR(X2,Σuo2) = {{1N}, {3N}, {6N}}. The final step is to complete GV with

transitions to state F according to Step 3. In order to do so, we will consider

every state of GV . Notice that, since in states (1N, 1N, 1N) and (3N, 1N, 1N),

component xF does not have an Y -label, no transitions from these states to F can

be introduced. Consider now state (1N, 1N, 2Y ). Since Σo = {a, b, c}, ΓF (2Y ) =

{a, b} and ΓV ((1N, 1N, 2Y )) = {b, bR1}, we can see that Σ′o = (Σo ∩ ΓF (2Y )) \
ΓV ((1N, 1N, 2Y )) = {a}. Notice, for state (1N, 1N, 2Y ), that xN,1 = {1N} and

xN,2 = 1N , and, thus, according to Step 3.2.2).b), U(xN,1) = {1N, 3N} and

ΓN,1(U(1N)) = {a}, and since a /∈ Σo1 \ ΓN,1(U(1N)) = {c}, no transition la-

beled by event a from state (1N, 1N, 2Y ) to F must be initially introduced using the

set of observable events Σo1 of Site 1. On the other hand, U(xN,2) = U(1N) = {1N}
and ΓN,2(U(1N)) = {b}, and therefore a ∈ Σo2 \ ΓN,2(U(1N)) = {a}. Thus, accord-

ing to the last step of Algorithm 3.3, fV T ((1N, 1N, 2Y ), a) = {F}. Similar analysis

can be carried out for state (3N, 1N, 2Y ), (1N, 3N, 5Y ), and (3N, 3N, 5Y ), leading

to fV T ((3N, 1N, 2Y ), a) = fV T ((1N, 3N, 5Y ), c) = fV T ((3N, 3N, 5Y ), c) = {F}.
To conclude the example, notice that after the occurrence of trace σfbc (resp.

σfa), Site 1 (resp. 2) detects the occurrence of σf . Therefore, Θ(L(GF )) =

{σfa, σfbc}. Comparing with Figure 3.14(b), it is not difficult to conclude that

PF (Lm(GV T )) = Θ(L(GF )).

1
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4 5

σf

6

ccc

a b a

Figure 3.12: Plant G of Example 3.4, which is considered again in Example 3.5.
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Figure 3.13: Automata GN,1 (a); GN,2 (b) and GF (c); of Example 3.5.
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Figure 3.14: Automata GV (a); and GV T (b) of Example 3.5.

3.3 Application of the Proposed Approach to τ-

and K-Codiagnosability Analysis

In a decentralized architecture, codiagnosability ensures that at least one local site

detects and diagnoses the failure occurrence within a bounded number of event

occurrences. However, just being sure that the failure has occurred may be not

enough; for example, components may burn or parts may misalign before the failure

occurrence is detected. So, it is important to also incorporate either the time elapsed

or the number of event occurrences since the failure occurrence as a performance

index for the decentralized diagnosis system; possibly based on this parameter, we

may, for instance, establish further safety measures. This suggests that, besides

codiagnosability analysis, two performance indices should also be considered, as
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follows.

• τ -codiagnosability, which ensures that the failure occurrence is detected in at

most τ time units after the occurrence of the failure event;

• K-codiagnosability, which ensures that the failure occurrence is detected in at

most K events after the failure occurrence.

With those objectives in mind, we will propose in this section a new methodology

to compute performance indices τ and K based on automata GNs
scc and GV T , proposed

in this thesis. In order to approach τ -codiagnosability we need to add to the untimed

model used in the previous section, some information regarding the time that the

system takes to complete the transitions. Such an information can be provided by

using weighted automaton.

3.3.1 Brief Review on Weighted Automaton

A finite-weighted automaton [49] is a two-tuple (G,w), where G = (X,Σ, f,Γ,

X0, Xm)2 and w : X × Σ → R+ is the weight function that assigns a nonnega-

tive weight to each transition of G and is defined over a pair (x, σ) ∈ X ×Σ if, and

only if, transition f(x, σ) is defined. The weights denote the duration required for

the corresponding transition to be completed. We will denote weighted automata

as G = (G,w).

The parallel composition of weighted automata G1 = (G1, w1) and G2 = (G2, w2)

is denoted as G = (G,w) = G1||G2 = (G1, w1)||(G2, w2), where G = G1||G2, and

w : X1 ×X2 × (Σ1 ∪ Σ2)→ R+ is defined as follows.

w((x1, x2), σ) =



w1(x1, σ), if σ ∈ Γ1(x1) \ Σ2

w2(x2, σ), if σ ∈ Γ2(x2) \ Σ1

max{w1(x1, σ), w2(x2, σ)}, if σ ∈ Γ1(x1) ∩ Γ2(x2)

undefined, otherwise.

(3.4)

Since G = (G,w) only adds weights to G, the languages generated by G and

G are the same; thus, L(G) and L(G) will be used indistinctly throughout the

2Notice that from this point onwards, automaton G will be assumed to be nondeterministic.

The reason for that will become clear later on the text.
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Figure 3.15: Weighted automaton G.

text. With some abuse of notation, we denote Trim(G) = (Trim(G), T rim(w)),

where Trim(w) consists of removing all weight functions of w associated with those

transitions of G removed by Trim(G).

Figure 3.15 depicts weighted automaton G = (G,w), where G was obtained from

automatonG of Figure 3.8(a) by adding the following weight functions: w(1, σf ) = 0,

w(1, b) = w(2, b) = 2.2, w(2, a) = 1.1, w(3, a) = 1.3, w(4, c) = 3.2, w(5, c) = 3.4

and w(6, c) = 3.3. Notice that label “a/1.1” over transition f(2, a) = 4 means that

w(2, a) = 1.1; the remaining labels are interpreted similarly.

The introduction of weighted automata allows the formulation of an important

problem, namely the computation of the maximum weight of all paths between

states in weighted automata. When automaton G is acyclic, this problem can be

solved by following the steps of Algorithm 3.4.

Algorithm 3.4 Computation of the maximum weight of all paths between states xp

and xq in an acyclic weighted automaton

Input: Acyclic weighted automaton G = (G,w), source state xp, and sink state xq.

Output: τ , the maximum weight between states xp and xq.

Step 1. Create a topological ordering of all states in G, i.e., TO(X) =

(y1, y2, . . . , yn) = Topological Sort(G) [60], where yi ∈ X, for i ∈ In, such

that In = {1, 2, . . . , n} and n = |X|.

Step 2. Map xp → yk and xq → y`.

Step 3. Form a list L = (yk, yk+1, . . . , y`−1) ⊆ TO(X).
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Step 4.

For i = 0, 1, . . . , `− k

If i = 0 then

Set d[yk+j] = 0, j = 0, 1, . . . , `− k

Otherwise

For j = i, i+ 1, . . . , `− k

If f(yk+i−1, yk+j)!

Set d = d[yk+i−1] + w(yk+i−1, yk+j)

If d[yk+j] < d, then set d[yk+j] = d.

Step 5. τ = d[y`].

Algorithm 3.4 works as follows. In the first step, a topological sort is carried out

which returns the linked list of the states of G, such that if G has a transition from

state u to v, then u appears before v in the ordering. As seen in [60], topological

sort is linear in the number of transitions of an acyclic automaton and thus, O(n2)

in number of states of the automaton. In Step 4, we travel over all transitions from

xp to xq following the ordering of list L and store the weights in a variable d for

every state in L. Thus, when state xq (that is mapped to y`) is reached, we obtain

τ = d[y`].

Example 3.6 Consider the acyclic weighted automaton G1 of Figure 3.16. We will

illustrate the computation of the maximum weight of all paths between source state

x0 (initial state of G1) and sink state x3 (marked state of G1) according to Algorithm

3.4. First, according to Step 1, we create a topological ordering of G1, as shown in

Figure 3.17, and map state x0 (resp. x3) into y1 (resp. y4) according to Step 2.

Table I shows the execution of Step 4 of Algorithm 3.4, and from it, it is clear that

the maximum weight is τ = 7.
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x1

a/1
d/4

b/2

x2 x3

x4

a/1
c/3

d/4

Figure 3.16: Weighted automaton G1.

y1
a/1y2 y3 y4

c/3

a/1

d/4

b/2

d/4

Figure 3.17: Weighted automaton G1 after topological ordering.

Table 3.1: Step 4 of Algorithm 3.4 to Example 3.6

j = 0 j = 1 j = 2 j = 3

Iteration d[y1] d[y2] d[y3] d[y4]

i = 0 0 0 0 0

i = 1 0 3 1 4

i = 2 0 3 4 7

i = 3 0 3 4 7

Weighted automata that have all cycles of states connected with zero-weight

transitions are called zero-weight cycle automata. In this case, it is possible to

exploit the weighting structure of zero-weight cycle automata to find the strongly

connected components in order to obtain an equivalent acyclic component automa-

ton by shrinking each of the strongly connected components to a single state (and

consequently, it will be possible to apply Algorithm 3.4). This can be done according

to Algorithm 3.5.

69



Algorithm 3.5 Transformation of zero-weight cycle automata into acyclic weighted

automata

Input: Zero-weight cycle automaton G = (G = (X,Σ, f,Γ, X0, Xm), w).

Output: Acyclic weighted automaton G ′ = (((G′ = (X ′,Σ, f ′,Γ′, X ′0, Xm), w)).

Step 1. Find all strongly connected components Xscc1 , Xscc2 , . . . , Xsccnc in G and

shrink each strongly connected component Xscci = {xi1 , xi2 , . . . , ximi}, in single

states called “super states” xsupi, i ∈ Inc, where Inc = {1, . . . , nc}, by removing

all transitions between the states of each strongly connected component.

Step 2. Form Xscc = Xscc1∪Xscc2∪. . .∪Xsccnc and Xsup = {xsup1 , xsup2 , . . . , xsupnc}.

Step 3. Set X ′ = (X \Xscc) ∪Xsup.

Step 4. Set

f ′(x, σ) =



f(x, σ), if x ∈ X \Xscc and (@y ∈ Xscc)[f(x, σ) = y]

xsupi , if x ∈ X \Xscc and ((∃i ∈ Inc)∧
(∃y ∈ Xscci))[f(x, σ) = y]

f(x̃, σ), if (x = xsupi , for some i ∈ Inc)and

(∃x̃ ∈ Xscci , )[f(x̃, σ) ∈ X \Xscc]

xsupj , if (x = xsupi , for some i ∈ Inc)and

(∃(j, x̃) ∈ Inc \ {i} ×Xscci)[f(x̃, σ) ∈ Xscci ]

undefined, otherwise.

Step 5. Set Γ′(x) = {x ∈ X ′ : (∃σ ∈ Σ)[f(x, σ)!]}, ∀x ∈ X ′.

Step 6. Set X ′0 = X0.

For each i ∈ Inc

Set Xaux = X0 ∩Xscci;

If Xaux 6= ∅, set X ′0 = (X0 \Xaux) ∪ {xsupi}.
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Since, in this section, the marked states will represent the states in which the

failure occurrence is detected, they will not have output transitions. Thus, they

cannot belong to any strongly connected component. Therefore, Xm is the set of

marked states of both the input and output automata of Algorithm 3.5.

Example 3.7 We will illustrate here how we obtain an weighted automaton G3 that

has no zero-weight cycles equivalent to a zero-weight cycle automaton. To this end,

consider weighted automaton G2 illustrated in Figure 3.18(a). According to Algo-

rithm 3.5, after the first step, we find all strongly connected components of G2,

which are given by Xscc1 = {x0, x2, x3} and Xscc2 = {x4, x5}, and shrink into sin-

gle states xsup1 and xsup2, respectively. In accordance with Step 2, we form sets

Xscc = {x0, x2, x3, x4, x5} and Xsup = {xsup1 , xsup2}. Finally, Steps 3 to 7 of Algo-

rithm 3.5 are to effectively build the corresponding acyclic time-weighted automaton

G3, which is illustrated in Figure 3.18(b).

It is important to remark that since G3 is an acyclic time-weighted automaton,

we can apply Algorithm 3.4 to compute the maximum weight between any two states

of G3.

Remark 3.3 Note, as illustrated in Example 3.7, that the resulting output of Algo-

rithm 3.5 can be a nondeterministic automaton that has multiple transitions leaving

a state with the same event label. However, since we are only interested in the com-

putation of the maximum weight between states, it is not necessary to compute the

observer automaton if we apply Algorithm 3.4 to the new automaton. In addition,

in the context of this application, such transitions may only appears as a result of

the suppression of zero-weight cycles.

3.3.2 τ-Codiagnosability Analysis

We will now address the problem of finding the maximum time a diagnosis system

takes to diagnose a failure occurrence. To this end, we introduce the definition of

τ -codiagnosability, as follows.

Definition 3.2 (τ -codiagnosability) A language L(G) is τ -codiagnosable with re-

spect to Poi, i = 1, 2, . . . , Ns and Σf = {σf} if it is possible to detect the occurrence

of σf in at most τ time units after the occurrence of the failure event.
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x0

x1 x2
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b/1

c/2

x4a/0

a/0

x3

a/0

a/0

x5
a/0

a/0

b/1 c/2

c/2 x1

x6

b/1

b/1, c/2xsup1 xsup2
c/2

a/0
c/2

(a) (b)

Figure 3.18: Zero-weight cycle automaton G2 (a) and acyclic time-weighted automa-

ton G3 (b).

We make the following assumption.

AT1. Language L is codiagnosable with respect to projections Poi : Σ∗ → Σ∗oi ,

i = 1, 2, . . . , Ns, and Σf = {σf}.
Assumption AT1 is necessary since the problem addressed here would not make

sense if L were not codiagnosable. Let Θ(L(G)) denote the set of all minimum

length codiagnosable traces of L(G), according to Definition 3.1.

We may state the following result.

Fact 3.6 Let st ∈ Θ(L(G)), and assume that s ∈ Ψ(Σf ). Write s and t as s = s̃σf

and t = σ1σ2 . . . σn and assume that xf = f(x0, s̃), for some x0 ∈ X0, x1 = f(xf , σf )

and xj+1 = f(xj, σj), j = 1, . . . , n. Define

τ(st) =
n∑
j=1

w(xj, σj). (3.5)

Then, L(G) is τ -codiagnosable for

τ := max
st∈Θ(L(G)):s∈Ψ(Σf )

τ(st). (3.6)

We will now present two methods for computing τ : the first one using the

diagnoser-like automaton, proposed in Section 3.1 and the second one using the

extended verifier automaton proposed in Section 3.2.

(1) Computation of τ using diagnoser

In order to compute τ using the diagnoser-like weighted automaton GNsscc, we must

compute weighted automata Gdi = (Gdi , wdi), i = 1, . . . , Ns. In order to do so, let
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G = (G,w) denote the weighted automaton that models the plant. The observer of

G = (G,w) with respect to a set Σo of observable events is defined as follows:

Obs(G,Σo) = Obs(Obs(G,Σo), wo), (3.7a)

where

wo(xobs, σ) = min
x∈xobs

w(x, σ). (3.7b)

The choice for the minimum weight has been made by technical reasons and will

become clear in Example 3.8.

Let A` denote the weighted label automaton, which is obtained from A` by

adding the weight functions w(N, σf ) and w(Y, σf ) to the corresponding transitions.

Thus, we can define the following weighted automata:

G` = G`||A` (3.8)

and

Gdi = Obs(G`,Σoi), i = 1, . . . , Ns (3.9)

Thus, we may define weighted automaton GNsscc, as follows.

GNsscc = (||Nsi=1Gdi)||G` (3.10)

The following example illustrates the computation of GNsscc for Ns = 2.

Example 3.8 Let us consider weighted automaton G of Figure 3.15, and, assume

that Po1 : Σ∗ → Σ∗o1 and Po2 : Σ∗ → Σ∗o2, where Σo1 = {a, c} and Σo2 = {a, b}.
Firstly, to construct diagnoser G2

scc, we must compute, according to Equation (3.8),

weighted automaton G` = (G||A`, w`), which is shown in Figure 3.19(a). Weighted

automata Gd1 = Obs(G`,Σ∗o1) and Gd2 = Obs(G`,Σ∗o2) are obtained according to Equa-

tion (3.8) whose corresponding transition diagrams are depicted in Figures 3.19(b)

and 3.19(c), respectively. After obtaining all weighted automata necessary to com-

pute G2
scc, we can obtain weighted automaton G2

scc = Gd1‖Gd2‖G`, according to Equa-

tion (3.10), which is shown in Figure 3.19(d). Notice that not only the languages of

G2
scc and G` are equal but also their respective transition weights.
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{1N, 2Y}

{4Y} {3N, 5Y}

(a) (b) (c)

σf/0 b/2.2

({1N, 3N, 2Y, 5Y}, {1N, 2Y}, 1N)

({6N, 4Y}, {6N}, 6N)

({1N, 3N, 2Y, 5Y}, {1N, 2Y}, 2Y)

({6N, 4Y}, {4Y}, 4Y)

({1N, 3N, 2Y, 5Y}, {3N, 5Y}, 3N)

a/1.3

({5Y}, {3N, 5Y}, 5Y)

({1N, 3N, 2Y, 5Y}, {3N, 5Y}, 5Y)

c/3.3

c/3.4

c/3.4
c/3.2

b/2.2a/1.1

(d)

Figure 3.19: Weighted automata: Gd1 (a); Gd2 (b); G` (c) and G2
scc (d).

We will now clarify the point behind the definition of the weight function of

observers, i.e., wo(xobs, σ) = minx∈xobs w(x, σ) in Equation (3.7b). To this end,

consider states 4Y and 6N of G` shown in Figure 3.19(c). Notice that w`(4Y, c) = 3.2

and w`(6N, c) = 3.3 being therefore different, but associated with the same event

c. When we compute diagnoser Gd1, they form a unique state ({6N, 4Y }), and,

according to Equation (3.7b), wd1({6N, 4Y }, c) = min(w`(4Y, c), w`(6N, c)) = 3.2.

In addition, since event c is unobservable for site S2, states {6N} and {4Y } have no

transitions in Gd2, and thus, wd2({6N}, c) and wd2({4Y }, c) are not defined. When

we compute G2
scc = Gd1‖Gd2‖G` through a parallel composition, weight function of

G2
scc is defined according to Equation (3.4), and thus, w2

scc(({6N, 4Y }, {4Y }, {4Y }),
c) = max(wd1({6N, 4Y }, c), w`(4Y, c)) = 3.2 and w2

scc(({6N, 4Y }, {6N}, {6N}), c) =
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max (wd1({6N, 4Y }, c) , w`(6N, c)) = 3.3, which are equal to the values obtained

by w`(4Y, c) and w`(6N, c), respectively. This would not occur if wo(xobs, σ) had

been defined as maxx∈xobs w(x, σ). In this case, w2
scc(({6N, 4Y }, {4Y }, {4Y }), c) =

w2
scc(({6N, 4Y }, {6N}, {6N}), c) = 3.3, which is not correct.

We will now present a methodology for computing τ based on weighted automa-

ton GNs
scc. We start by calculating a new weighted automaton Gdf , according to the

following algorithm.

Algorithm 3.6 Computation of nondeterministic weighted automaton Gdf

Input Weighted automaton G, A`, Σf and Σoi i = 1, 2, . . . , Ns.

Output Nondeterministic weighted automaton Gdf .

Step 1. Compute G` = G‖A` and Gdi = Obs(G`,Σoi) with respect to Poi, i =

1, 2, . . . , Ns, according to Equations (3.8) and (3.9), respectively.

Step 2. Compute GNsscc = (||Nsi=1Gdi)||G`, according to Equation (3.10).

Step 3. Compute GNs,mscc from GNsscc by marking all states (xd1 , xd2 , . . . , xdNs , x`) from

GNsscc such that ∃xdi, for some i = 1, 2, . . . , Ns, xdi Y -certain, and x` an Y-

labeled state.

Step 4. For all marked states xm of GNs,mscc , set Γ(xm) = ∅. Compute GNs,mscc,t =

Trim(GNs,mscc ) = (XNs,m
scc,t ,Σ

Ns,m
scc,t , f

Ns,m
scc,t ,Γ

Ns,m
scc,t , x

Ns,m
0scc,t , X

Ns,m
mscc,t).

Step 5. Compute automaton Gdf as follows.

Step 5.1 Form the set Xσf = {x ∈ GNs,mscc,t : (∃x′ ∈ GNs,mscc,t )[fNs,mscc,t (x′, σf ) = x]}.

Step 5.2 Construct automaton GNs,fscc = (XNs,f
scc , ΣNs,f

scc , fNs,fscc ,ΓNs,fscc , XNs,f
0scc ,

XNs,f
mscc ), such that XNs,f

scc = XNs,m
scc,t , ΣNs,f

scc = ΣNs,m
scc,t , fNs,fscc = fNs,mscc,t ,

ΓNs,fscc = ΓNs,mscc,t , XNs,f
0scc = Xσf and XNs,f

mscc = XNs,m
mscc,t.

Step 5.3 Gdf = Trim(GNs,fscc ).

We explain the key steps of Algorithm 3.6. In Step 1 and 2, we build weighted

automaton GNsscc. In Step 3, we build GNs,mscc by marking the states of GNsscc that
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have at least one component xdi and x` are both, i ∈ 1, 2, . . . , Ns, Y -certain, since

this indicates that there exists at least one local diagnoser that is certain that

the failure has occurred. In Step 4, we remove all transitions from these states

and compute GNs,mscc,t by Trim operation since we are only interested in determining

the first reached Y -labeled state. In Step 5.2, we form weighted automaton GNs,fscc

whose unique difference with respect to GNs,mscc,t is the new initial state set whose

components are all states of GNs,mscc,t reached by transitions labeled by failure event

σf (Xσf determined in Step 5.1). After computing the Trim operation, we then

obtain nondeterministic weighted automaton Gdf . It is worth remarking that Gdf
is assumed to be nondeterministic only because it may have more than one initial

states.

The main idea behind Algorithm 3.6 is to obtain an automaton that marks the

language after the failure whose marked states are certain states. Thus, we can may

state the following result regarding language of Gdf .

Lemma 3.2 Lm(Gdf ) = Θ(L(G))/s, where s ∈ Ψ(Σf ).

Proof. By construction, according to Algorithm 3.6, the set of all minimum codiag-

nosable traces Θ(L(G)) = Lm(GNs,mscc,t ), where GNs,mscc,t is computed in Step 4. From au-

tomaton GNs,mscc,t , we construct Gdf whose marked language is Lm(Gdf ) = Lm(GNs,mscc,t )/s,

where s ∈ Ψ(Σf ) such that Ψ(Σf ) denotes the set of all traces of Lm(GNs,mscc,t ) that

end with the failure event σf .

Lemma 3.3 Weighted automaton Gdf does not have strongly connected components.

Proof. Since the language generated by G is codiagnosable with respect to the set

of projections Poi : Σ∗ → Σ∗oi , i = 1, 2, . . . , Ns and Σf = {σf}, we may conclude

that, according to Theorem 3.1, GNs,mscc , and consequently, Gdf do not have strongly

connected components formed with states (xd1 , xd2 , . . . , xdNs , x`), such that all xdi ,

i = 1, 2, . . . , Ns, are uncertain and x` is an Y-labeled state. However, we still need

to consider the possibility of Gdf to have strongly connected components formed as

follows: (i) with states (xd1 , xd2 , . . . , xdNs , x`) such, for some i ∈ INs , both xdi and

x` are Y-certain states, (ii) with states (xd1 , xd2 , . . . , xdNs , x`) such that for some i ∈
INs , both xdi and x` are normal states, (iii) with states (xd1 , xd2 , . . . , xdNs , x`) where

76



all components xdi and x` are normal. A strongly connected component formed with

all xdi Y -certain and x` an Y-labeled state is not possible, since, by the construction,

all transitions leaving marked states are removed. Also by construction, we can

exclude possibilities (ii) and (iii), since the initial state of Gdf is always a state after

the occurrence of the failure event.

Notice that, since L(GNsscc) = L(G) and Gdf is constructed from GNsscc by considering

only those traces after the failure occurrence, and also, according to Lemma 3.3, Gdf
has no strongly connected components, the maximum time τ necessary to diagnose

the failure occurrence can be calculated according to the following algorithm.

Algorithm 3.7 Computation of τ using diagnoser

Input Nondeterministic weighted automaton Gdf .

Output The maximum time to diagnose the failure occurrence, τ .

Step 1. Using Gdf as input, apply Algorithm 3.4 for all x0k ∈ X0 and xm ∈ Xm.

Step 2. Let t1, t2, . . . , tn be all outputs of Step 1. Set τ = max(t1, t2, . . . , tn).

Theorem 3.4 Let τ be computed in accordance with Algorithm 3.7. Then, L is

τ -codiagnosable.

Proof. The proof is straightforward from Fact 3.6, Lemma 3.2 and Lemma 3.3.

Remark 3.4 (Computational complexity analysis of Algorithm 3.6) Table 3.4 shows

the maximum number of states and transitions of all automata that must be computed

in order to obtain Gdf , according to Algorithm 3.6, assuming Ns local diagnosers.

Notice that, in the worst case, the size of Gdf is equal to the size of GNsscc, and thus

the computational complexity of Algorithm 3.6 is O(|X||Xd|Ns|Σ|). Therefore, as

expected, the proposed algorithm requires exponential time in the number of states of

G and local sites Ns, and is linear in the number of events of G.

Example 3.9 We will illustrate the computation of τ with weighted automaton

G depicted in Figure 3.15, and, to this end, assume the same projections as Ex-

ample 3.8. According to Steps 1 and 2 of Algorithm 3.6, we compute automa-

ton G2
scc shown in Figure 3.19(d). In Step 3, we build G2,m

scc by marking states
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Table 3.2: Computational complexity of Algorithm 3.6

No. of states No. of transitions

G |X| |X||Σ|

A` 2 2

G` 2|X| 2|X||Σ|

Gdi |Xd| = 22|X| 22|X||Σo|

||Nsi=1Gdi |Xd|Ns |Xd|Ns|Σo|

GNsscc 2|X||Xd|Ns 2|X||Xd|Ns|Σ|

Complexity O(|X||Xd|Ns|Σ|)

({6N, 4Y }, {4Y }, {4Y }) and ({5Y }, {3N, 5Y }, {5Y }) of G2
scc. In Step 4, we remove

all transitions from these states and compute G2,m
scc,t by Trim operation. In Step 5.1,

we form a new initial state set whose components are all states of G2,m
scc,t reached by

transitions labeled by the failure event σf . Notice, in this case, that there exists

only one initial state ({1N, 3N, 2Y, 5Y }, {1N, 2Y }, {2Y }). We then obtain, in ac-

cordance with Step 5.2 of Algorithm 3.6, weighted automaton Gdf , which is shown

in Figure 3.20. Finally, applying Algorithm 3.7, we obtain τ = 5.6, which implies

that L is 5.6-codiagnosable.

a/1.1
({1N, 3N, 2Y, 5Y}, {1N, 2Y}, 2Y) ({6N, 4Y}, {4Y}, 4Y)

({5Y}, {3N, 5Y}, 5Y)({1N, 3N, 2Y, 5Y}, {3N, 5Y}, 5Y)

b/2.2
c/3.4

Figure 3.20: Weighted automaton Gdf of Example 3.9.

(2) Computation of τ using verifier

Let us define the following weighted automata:

GN,i = (GN,i, wN,i), i = 1, . . . , Ns, (3.11a)
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and

GF = (GF , wF ), (3.11b)

where

wN,i(xN, σ) =

 w(x, σ), if σ ∈ Σ

0, if σ ∈ ΣR,i

(3.11c)

wF (x`, σ) = w(x, σ), (3.11d)

where x∈X and `∈{N, Y }. We will now address the problem of computing τ and,

to do so, we propose Algorithm 3.8 to construct GVf .

Algorithm 3.8 Computation of automaton GVf

Input Weighted automaton G = (G,w), sets Σf and Σoi, i = 1, 2, . . . , Ns.

Output Weighted automaton GVf = (GVf , wVf ).

Step 1. Compute automata GN,i, i = 1, . . . , Ns and GF according to Equa-

tions (3.11a)–(3.11d).

Step 2. Compute GV = (‖Nsi=1GN,i)‖GF .

Step 3. Compute GV T by adding marked state F to GV , according to Step 3 of

Algorithm 3.3 with GV in place of GV and set wV T (xV T , σ) = wF (xF , σ), ∀xV T :

fV T (xV T , σ) = F .

Step 4. Form set XVσf
= {x ∈ XV T : (∃x′ ∈ GV T )[fV T (x′, σf ) = x]}.

1. Construct G ′V T = ((X ′V T ,Σ
′
V T , f

′
V T ,Γ

′
V T , X

′
V T,0, X

′
m,V T ), wV T ), where

X ′V T = XV T , Σ′V T = ΣV T , f ′V T = fV T , Γ′V T = ΓV T , X ′V T,0 = XVσf

and X ′V T = XV T .

2. GVf = Trim(G ′V T ).

The idea behind Algorithm 3.8 is to obtain a weighted automaton that marks

the language after the failure occurrence of GV T . Thus, nondeterministic weighted

automaton GVf , constructed according to Algorithm 3.8, has the following properties.
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Lemma 3.4 All strongly connected components of weighted automaton GVf , con-

structed according to Algorithm 3.8, if they exist, will be formed with states xVf ∈ XVf

connected with events σ ∈ ΣV T such that wVf (xVf , σ) = 0.

Proof. According to Theorem 2.4, since, by assumption, L(G) is codiagnosable,

the verifier constructed according to Algorithm 2.2 only has cycles formed with

renamed events, which, according to Equations (3.11a)–(3.11d) have zero weights.

Consequently, GV T , constructed according to Algorithm 3.3, does not have such

cycles either. Since GVf is constructed from GV T by choosing as its initial state,

some particular states of GV T , and performing the Trim operation over the new

defined automaton, we may conclude that weighted automaton GVf can only have

strongly connected components whose states xVf ∈ XVf are connected with events

σ ∈ ΣV T such that wVf (xVf , σ) = 0.

Lemma 3.5 PF
(
Lm(GVf )

)
= Θ(L(GF ))/s, where s ∈ Ψ(Σf ).

Proof. (⇒) Let us consider a trace sV ∈ L(GV ). Since GV = (||Nsi=1GN,i)||GF ,

it is clear that sV ∈ P−1
F (L(GF )). Then, ∃sY = PF (sV ) ∈ L(GF ). Form trace

sV T = sV σ ∈ Lm(GV T ), and notice that, by construction, sV σ ∈ P−1
F (L(GF )).

Thus, PF (sV σ) = sY σ ∈ L(GF ). Write sV T = s′t′σ, where s′ = s′′σf and Σf /∈
s′′. By construction of GVf in Algorithm 3.8, t′σ ∈ Lm(GVf ), which implies that

PF (t′σ) = t ∈ PF (Lm(GVf )). In addition, PF (sV T ) = PF (s′)PF (t′σ) = st, and,

by the construction of Algorithm 3.8, t ∈ L(GF )/s for every s ∈ Ψ(Σf ), and,

from Definition 3.1, we can conclude that t ∈ Θ(L(GF ))/s. Conversely, let t ∈
Θ(L(GF ))/s, where s ∈ Ψ(Σf ). From Fact 3.5, t ∈ PF (Lm(GV T )) /s, and since,

by construction, GVf is formed by states of GV T after the failure occurrence, t ∈
PF
(
Lm(GVf )

)
.

Based on Lemmas 3.4 and 3.5, we propose Algorithm 3.9 to compute τ .

Algorithm 3.9 Computation of maximum delay τ using verifier

Input Nondeterministic weighted automaton GVf = (GVf , wVf ).

Output The maximum delay to diagnose the failure occurrence, τ .

Step 1. If GVf has zero-weight cycles then transform it into an acyclic weighted

automaton [60].
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Step 2. Using GVf as input, apply Algorithm 3.4 for all x0k ∈ X0, and for state

F ∈ Xm. Let t1, t2, . . . , tn be all outputs. Set τ = max(t1, t2, . . . , tn).

Theorem 3.5 Let τ be computed in accordance with Algorithm 3.9. Then, L is

τ -codiagnosable.

Proof. The proof is straightforward from Lemma 3.4, Lemma 3.5, Fact 3.6, and

Equation (3.6).

Example 3.10 Let us consider the weighted automaton G = (G,w) obtained from

automaton G of Example 3.5 by adding the following weight function: w(1, σf ) = 0,

w(1, b) = w(2, b) = 2.2, w(2, a) = w(3, a) = 1.1, w(4, c) = w(5, c) = w(6, c) = 3.4.

In addition, consider the same projections as in Example 3.5, Po1 : Σ∗ → Σ∗o1 and

Po2 : Σ∗ → Σ∗o2, where Σo1 = {a, c} and Σo2 = {a, b}. Following Algorithm 3.3,

we obtain the weighted extended verifier automaton GV T which is similar to the

extended verifier shown in Figure 3.14(b), with the following arc weights: w((1N,

1N, 1N), bR1) = 0, w((1N, 1N, 1N), σf ) = 0, w({3N, 1N, 1N}, σf ) = 0, w((1N, 1N,

2Y ), bR1) = 0, w((1N, 1N, 2Y ), b) = 2.2, w((1N, 1N, 2Y ), a) = 1.1, w((3N, 1N, 2Y ),

a) = 1.1, w((3N, 1N, 2Y ), b) = 2.2, w((1N, 3N, 5Y ), bR1) = 0, w((1N, 3N, 5Y ), c) =

3.4, w((3N, 3N, 5Y ), c) = 3.4. After computing GV T , the next step of Algorithm 3.8

is to compute automaton GVf , which is depicted in Figure 3.21. Finally, applying

Algorithm 3.9, we obtain τ = max{1.1, 5.6} = 5.6, which implies that L is 5.6-

codiagnosable, which is the same result as that obtained by using diagnosers, as

expected.

bR1/0

F

1N 1N 2Y

3N 1N 2Y 1N 3N 5Y

3N 3N 5Y

b/2.2

b/2.2 a/1.1

c/3.4c/3.4
a/1.1

bR1/0

Figure 3.21: Weighted automaton GVf .
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Table 3.3: Computational complexity of Algorithm 3.8

No. of states No. of transitions

GV |XV | = 2|X|Ns+1 |XV |(|Σ|+Ns|Σnf |)

GV T |XV T | = |XV |+ 1 |XV |(|Σ|+ |Σo|+Ns|Σnf |))

Complexity O(Ns|X|(Ns+1)|Σ|)

Remark 3.5 (Computational complexity analysis of Algorithm 3.8) Table 3.5 shows

the maximum number of states and transitions of all weighted automata that must

be computed in order to obtain GVf , according to Algorithm 3.8, where Σnf = Σ \Σf

and Ns is the number of local diagnosers. In the worst case, the size of GVf is

equal to the size of GV T and, thus, the computational complexity of Algorithm 3.8 is

O(Ns|X|(Ns+1)|Σ|). As expected, the proposed algorithm requires polynomial time in

the number of states of G, and is linear in the number of events of G. In addition,

notice that the Algorithm 3.9 requires the computation of τ by topological order-

ing and transforming the verifier obtained in Algorithm 3.8 into acyclic weighted

automaton, which, as seen in [60], are both linear in the number of transitions of

the automaton. Therefore, the computational complexity of Algorithm 3.9 is, still

O(Ns|X|(Ns+1)|Σ|), which is significantly smaller than that of the algorithm proposed

in [65], which can be checked to be O(|X|(2(Ns+1))|Σ|(2(Ns+1))).

3.3.3 K-Codiagnosability Analysis

In this section, we will address the problem of finding the maximum number of events

a codiagnosis system takes to diagnose a failure occurrence (K-codiagnosability). We

start with the following definition.

Definition 3.3 (K-codiagnosability) Given a system modeled as an automaton G,

we say that L(G) is K-codiagnosable with respect to Σf = {σf} and Poi, i = 1, . . . , Ns

if L(G) is codiagnosable with respect to Σf and Poi, i = 1, . . . , Ns and the maximum

number of event occurrences necessary for the codiagnosis system to diagnose the

occurrence of σf is K.

Let us form from G the following weighted automaton: GK = (G,wK), where for
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all x ∈ X and σ ∈ Γ(x), wK(x, σ) = 1. The following proposition establishes the

relationship between K-codiagnosability and τ -codiagnosability.

Proposition 3.1 Let GK = (G,wK) be a weighted automaton obtained from G such

that wK(x, σ) = 1, for all x ∈ X and σ ∈ Γ(x), and let τ denote the maximum time

to diagnose the failure occurrence, computed according to Algorithm 3.7. Then, G

is K-codiagnosable if GK is τ -codiagnosable for T = K.

Proof. According to Equation (3.6), L(G) is τ -codiagnosable for τ :=

max
st∈Θ(L(G)):s∈Ψ(Σf )

(T (st)). Writing t = σ1σ2 . . . σnst then:

τ(st) =
nst∑
j=1

w(xj, σj),= nst,

and since wK(x, σ) = 1, we can conclude that τ(st) = nst, where nst is the number

of events necessary to diagnose the failure occurrence for trace st. Therefore:

τ = max {nst : (st ∈ Θ(L(G))) ∧ (s ∈ Ψ(Σf ))} = K,

where the last equality comes from Definition 3.1.

According to Proposition 3.1, it is clear that there are two ways to compute the

maximum number of events K necessary to diagnose a failure occurrence:

(i) by first applying Algorithm 3.6 to GK and, after that by using Algorithm 3.7

(using diagnoser-like approach);

(ii) by first applying Algorithm 3.8 to GK and, after that by using Algorithm 3.9

(using verifier approach).

The following example illustrates the computation of K.

Example 3.11 Consider once again weighted automaton G of Figure 3.15.

In order to compute K by using diagnoser-like method we first construct the

weighted automaton GK = (G,wK), where for all x ∈ X and σ ∈ Γ(x), wK(x, σ) = 1.

Let us initially apply Algorithm 3.6 choosing GK as input. The resulting weighted

automaton Gdf is shown in Figure 3.22, from where we can see that this automa-

ton is the same as that of Figure 3.20 except that all transitions have unit weight.

Therefore, applying Algorithm 3.7, we obtain K = 2.
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In order to compute K by using the verifier method, we apply Algorithm 3.8,

choosing GK as input, we obtain automaton GVf , depicted in Figure 3.23, which is

the same as that of Figure 3.21 except that transitions a/1.1, b/2.2 and c/3.4 are

replaced with a/1, b/1 and c/1, respectively. Finally, applying Algorithm 3.9, we

obtain K = 2, which is the same result as that obtained by diagnoser.

a/1
({1N, 3N, 2Y, 5Y}, {1N, 2Y}, 2Y) ({6N, 4Y}, {4Y}, 4Y)

({5Y}, {3N, 5Y}, 5Y)({1N, 3N, 2Y, 5Y}, {3N, 5Y}, 5Y)

b/1
c/1

Figure 3.22: Weighted automaton Gdf of Example 3.11.

bR1/0

F

1N 1N 2Y

3N 1N 2Y 1N 3N 5Y

3N 3N 5Y

b/1

b/1 a/1

c/1c/1
a/1

bR1/0

Figure 3.23: Weighted automaton GVf of Example 3.11.

3.4 Concluding Remarks

In this chapter, we first proposed a new test for the verification of language codiag-

nosability based on diagnosers that also takes into account the time interval due to

the occurrence of unobservable events and does not require the usual assumptions

on language liveness and prevention of cycles of states connected with unobservable

events. In addition, the proposed test is based on the search for strongly connected

components, as opposed to cycles [19, 21, 54]. Regarding codiagnosability verifica-

tion using verifiers, we extended the verifier automaton proposed in [47] to also show

those paths that lead to language diagnosis. We proposed two algorithms for the

computation of the maximum time τ for failure diagnosis: one algorithm that uses
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diagnosers and another one that uses verifiers. We solved the K-codiagnosability

problem by converting it into an equivalent τ -codiagnosability one; therefore making

K-codiagnosability a particular case of τ -codiagnosability. The resulting algorithms

have the lowest worst case computational complexity among those proposed in the

literature for τ -codiagnosability [63, 64] of weighted discrete event systems and for

K-codiagnosability verification of finite automata [44, 62, 65]. In next chapter, we

will propose another problem in the contex of failure diagnosis: codiagnosability of

networked discrete event systems with timing structure. In order to check this prop-

erty we will propose a slight variation of the diagnoser-like automaton introduced

in this chapter and on the verifier proposed in [47].
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Chapter 4

Codiagnosability of Networked

Discrete Event Systems With

Timing Structure

In the standard failure diagnosis problem described in Section 2.3, it is assumed

that diagnosers observe the occurrence of an event immediately after it has been

executed by the plant and without loss in the communication channels. When the

plant and diagnosers are either far from each other or a more complex network is

used to connect them, communication delays are unavoidable and must be taken

into account. Such a diagnosis problem is referred, in the literature, to as codi-

agnosability of networked discrete event systems [42]. In this chapter, we consider

the codiagnosability problem of Networked Discrete Event Systems With Timing

Structure (NDESWTS) subject to bounded communication delays and intermittent

loss of observations. We assume that the communication between the plant and the

local diagnosers is carried out through a network that can have several channels,

so that communication delays can cause changes in the order of the observations.

Preliminary versions of the results presented in this chapter have been published

in [82,83]. In addition, the model for NDESWTS proposed here has also been used

to address the supervisory control of NDESWTS subject to event communication

delays and loss of observations in [38,39].

This chapter is organized as follows. In Section 4.1, we formally define

NDESWTS, and present a motivating example. In Section 4.2, we propose the
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model of the plant subject to communication delays and, in the sequel, we include

intermittent loss of observations. In Section 4.3, we present necessary and sufficient

conditions for codiagnosability of NDESWTS and propose two tests to its verifica-

tion: the first one based on diagnosers, being slight variation of the diagnoser-like

automaton introduced in Chapter 3, and a second one, based on verifiers. We present

some final comments in Section 4.4.

4.1 Problem Formulation

In this thesis, we consider the networked architecture for a distributed plant intro-

duced in [42,43], formed with m measurement sites MSj, j = 1, . . . ,m, and Ns local

diagnosers LDi, for i = 1, . . . , Ns. Each measurement site MSj can detect a subset

ΣMSj ⊂ Σo of the observable event set of the system. In this configuration, only the

events detected by measurement site MSj can be communicated through channel

chij to local diagnoser LDi.

Differently from the approach adopted in [42], where communication delays were

represented by steps, we consider that each channel chij has a maximal delay Tij ∈
R∗+, where R∗+ denotes the set of positive real numbers 1. We denote the set of

events communicated to local diagnoser LDi, through communication channel chij,

as Σoij ⊆ ΣMSj . If the communication channel chkl, between a measurement site

MSl and a local diagnoser LDk, does not exist, then Σokl = ∅. Thus, the set of

observable events of LDi, Σoi , is given by:

Σoi =
m⋃
j=1

Σoij (4.1)

and, the set of observable events of the whole system is Σo =
⋃Ns
i=1 Σoi .

Figure 4.1 shows the NDESWTS architecture proposed in this work for a system

with three measurement sites and two local diagnosers. Measurement site MS1

communicates to local diagnoser LD1 through channel ch11, those events in Σo11 ⊆
ΣMS1 , and has a maximal delay equal T11. Measurement site MS2 communicates

the events in Σo12 ⊆ ΣMS2 and Σo22 ⊆ ΣMS2 to the local diagnosers LD1 and LD2,

1This means that Tij 6= 0, i = 1, . . . , Ns, j = 1, 2, . . . ,m (no instantaneous transmission) but

can be made arbitrarily small.
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respectively, through communication channels ch12 and ch22 with maximal delays

T12 and T22. Finally, measurement site MS3 communicates to local diagnoser LD2

through channel ch23, those events in Σo23 ⊆ ΣMS3 with maximal delay T23.

Coordinator

Local Diagnoser 1 Local Diagnoser 2

Plant

MS1

ΣMS1

MS2 MS3

ΣMS2 ΣMS3

ch11 ch22 ch23

Σo11

T11

ch12

Σo12

T12

Σo22 Σo23

T23T22

Figure 4.1: NDESWTS architecture.

We make the following assumptions.

A1. L(G) is codiagnosable with respect to Poi , i = 1, . . . , Ns and Σf , where G is

the automaton that models the plant.

A2. There is only one communication channel chij between measurement site MSj

and local diagnoser LDi, communicating the events in Σoij .

A3. Each channel chij, is modeled by a first-in first-out (FIFO) queue, and it is

subject to a previously known maximal communication delay Tij ∈ R∗+, Tij

finite;

A4. ΣMSi ∩ ΣMSj = ∅, i, j ∈ Im = {1, 2, . . . ,m}, i 6= j, i.e., different measurement

sites have no common events.

A5. Σo = Σilo∪̇Σnilo, where Σilo (resp. Σnilo) denotes the set of events subject

(resp. not subject) to communication losses.

Assumption A1 ensures that the only cases of interest are those when the lan-

guage is codiagnosable, a priori, i.e., when both no delay and no loss in the trans-

mission of the signal that corresponds to event observation is assumed. In accor-

dance with Assumption A2, an observable event occurrence is transmitted through

a unique channel to a local diagnoser; however, there may exist two channels to
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transmit an event occurrence to two different local diagnosers. Assumption A3

imposes that the maximal communication delays are strictly different from zero

for all channels. In addition, since each communication channel is modeled by a

FIFO queue, there is no change of order of observation among events transmitted

through the same channel. According to Assumption A4, two different measure-

ment sites cannot record the occurrence of the same event, which is justified by the

fact that, in practice, different measurement sites are required when the system is

either decentralized in nature (for example, computer and communication networks,

manufacturing, process control and power systems, etc.) or is informationally decen-

tralized. Finally, according to Assumption A5, the loss of observation of an event

does not change the plant behavior, but only the observation.

The consequences of transmission delays in the diagnosis system depend on the

dynamic behavior of the plant, since if the dynamic of the plant is sufficiently slow,

transmission delays may generate no adverse consequences. Therefore to better

consider the effects of the dynamic behavior in real systems, it is reasonable to

assume that a state transition cannot occur immediately after a previous one, that

is, the system needs to remain for some time in a given state before a new transition

occurs. Thus, we need to define the partial function tmin : X × Σ → R∗+, where

tmin(x, σ) = τ , for σ ∈ Γ(x), means that event σ can only occur at state x if the

time elapsed since the last transition occurrence is greater than (but not equal to)

τ . Namely, tmin assigns a minimal time to the firing of each transition of G and

is defined, over a pair (x, σ) ∈ X × Σ if, and only if, transition f(x, σ) is defined.

In addition, we assume that, ∀x ∈ X and σ ∈ Γ(x), tmin(x, σ) > 0. The need

for excluding τ = 0 is imposed by a technical constraint necessary to allow the

NDESWTS to be converted into an untimed finite-state automaton. With a slight

abuse of language, we will refer to tmin(s, σ) as the minimal activation time. Partial

function tmin is extended to domain X × Σ∗ in the following recursive manner: for

all x ∈ X, tmin(x, ε) = 0, and tmin(x, sσ) = tmin(x, s) + tmin(f(x, s), σ) for s ∈ Σ∗

and σ ∈ Σ∗. We can now introduce the concept of NDESWTS.

Definition 4.1 (NDESWTS) A networked discrete event system with timing

structure NDESWTS is a 3-tuple NDESWTS = (G, tmin, T ), where G =

(X,Σ, f,Γ, x0 , Xm) is a finite automaton, tmin : X × Σ → R∗+ is the minimal time
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LD1

MS1 MS2

Σo11 = {a}
T11 = 2

Σo12 = {b, c}
T12 = 0.1

x0
0.1/σf

(a)

1/b

1/a

x4

x5

1/a

x1

x2

3/b

x31/c

(b)

1/c

Figure 4.2: NDESWTS = (G, tmin, T ) for Example 4.1: communication delay

structure (a) and automaton G with minimal time function tmin (b).

function and T : n × m is the maximal matrix delay, where each element Tij rep-

resents the maximal delay of each channel chij such that Tij ∈ R∗+, if there exists

a communication channel between measurement site MSj and local diagnoser LDi,

and Tij =∞, otherwise. �

It is worth remarking that a state transition (x, σ, y), where f(x, σ) = y, of

NDESWTS only occurs when the time elapsed since the occurrence of the last state

transition is greater than a known minimal activation time tmin(x, σ) ∈ R∗+. Notice

that this modeling is not restrictive since the minimal firing time tmin(x, σ) can be

as small as possible. The following example illustrates a networked discrete event

system with timing structure.

Example 4.1 Consider the networked discrete event system with timing structure

NDESWTS = (G, tmin, T ) shown in Figure 4.2(a), where the communication delay

structure of the NDESWTS architecture is presented and Figure 4.2(b), where au-

tomaton G together with the minimal time function tmin is depicted. Notice that

the NDESWTS communication delay structure consists of two measurement sites

and only one local diagnoser; measurement site MS1 communicates only event a

to local diagnoser LD1 through channel ch11, with maximal delay T11 = 2 time

units (t.u.), whereas measurement site MS2 communicates events b and c to lo-

cal diagnoser LD1 with maximal delay T12 = 0.1 t.u. Therefore T = [T11 T12] =

[2 0.1]. Regarding the minimal time function tmin, according to Figure 4.2(b) tmin

is given as: tmin(x0, σf ) = 0.1, tmin(x0, b) = tmin(x1, a) = tmin(x3, c) = tmin(x4, a) =
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tmin(x5, c) = 1 and tmin(x2, b) = 3. Notice that label over transition f(x4, a) = x5

means that tmin(x4, a) = 1, which means that the event a occurs at least 1 t.u. after

G enters in state x4; the remaining labels are similarly interpreted.

In order to distinguish between the occurrences of events a, b and c and their

observations by diagnoser LD1, let as, bs and cs denote the successful observation

of events a, b and c, respectively. Notice that when the system generates trace

s1 = σfabc
p, where p ∈ N, event a will always be observed by the local diagnoser

LD1 before the occurrence of event b, since the observation of event a can be delayed

by at most T11 = 2 t.u. and event b occurs at least 3 t.u. after the occurrence

of event a, as show in time line depicted in Figure 4.3. In addition, event c is

always observed by LD1 after the observation of b since they are transmitted through

the same communication channel. Therefore, after the occurrence of trace s1, the

diagnoser observes s1s = asbsc
p
s. Notice that, in this case, the system dynamics and

the communication channel delays do not interfere in the order of trace observation

of events.

On the other hand, when the system executes trace s2 = bacq, where q ∈ N, events

b and a will not be observed in a different order of occurrence since tmin(x4, a) >

T12. However, it is possible that the diagnoser observes either s2s = bsasc
q
s or

s′2s = bscsasc
q−1
s as shown in the time line, depicted in Figure 4.4. Notice that

since tmin(x5, c) = 1 < T11 = 2, the first observation of c (cs) may take place before

the observation of event a (as). However, the subsequent observation of c will be

made after as, since tmin(x5, cc) = tmin(x5, c) + tmin(x5, c) = 2 = T11; notice that

in Figure 4.4, even though as and the second event c occur at the same time, cs is

always observed after as, since cs must occur after event c, i.e., between ]2; 2.1] time

units after occurrence of event a.

Remark 4.1 If, in the networked system of Example 4.1, we adopt, instead of the

NDESWTS structure proposed here, the the communication delay approach using

steps, proposed in [33,42,43], and assuming that the delays of channels ch11 and ch12

are at most 1 and 0 steps, respectively, then a change in the order of the observation

of events a and b after trace s1 = σfabc
p must also be taken into account, i.e., two

observation traces must be considered; s1s = asbsc
p
s and s′1s = bsasc

p
s. Regarding

trace s2 = bacq, like in the structure adopted here ,two observation are possible,
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T11

a

2 3.13

T12

tmin(x2, b)

as b bs

Figure 4.3: Time line after occurrence of events a and b, in trace s1 = σfabc
p,

where p ∈ N.

T11

a

T12

21

tmin(x5, c)

1.1 2.1

tmin(x5, c)

T12

c cs as, c cs

Figure 4.4: Time line after occurrence of event a and two events c, in trace s2 = bacq,

where q ∈ N.

s2s = bsasc
q
s or s′2s = bscsasc

q−1
s . Notice that s′1s = s2s, which implies that, in this

case, the language is not networked diagnosable [42,43], which is incorrect since, as

we saw in Example 4.1, the observed trace s′1s = bsasc
p
s cannot occur.

Motivated by this example, we propose, in this thesis, an alternative approach

for failure codiagnosability that considers heterogeneous temporal behavior of the

plants.

4.2 Modeling of NDESWTS

4.2.1 An Equivalent Untimed Model of NDESWTS Subject

to Communication Delays Only

In order to propose a model that takes into account possible changes in the order

of observation of the events when compared with actual order of occurrence in the

system, we need to distinguish an event σ ∈ Σoij , that is being transmitted from

measurement site MSj to the local diagnoser LDi through communication channel
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chij, from its observation by the local diagnoser LDi. To this end, we create an

event σsi that models the successful observation of σ by LDi and form the set of

observable events that are successfully communicated to local diagnoser LDi, as

follows.

Σs
oi

=
m⋃
j=1

Σs
oij
, (4.2)

where Σs
oij

= {σsi : σ ∈ Σoij}.

Let us now define function ψi, for i = 1, . . . , Ns, that returns the successful

observation event σsi of event σ generated by the plant as follows.

ψi : Σ∗oi → Σs∗
oi
, (4.3)

where ψi(ε) = ε, ψi(σ) = σsi , for all σ ∈ Σoi and ψi(sσ) = ψi(s)ψi(σ), ∀s ∈ Σ∗oi

and σ ∈ Σoi . Function ψi is extended to languages by applying it to all strings

in the language. In this regard, for the set of events Σoi , ψi(Σoi) =
⋃
σ∈Σoi

ψi(σ).

In addition, we can define ψ−1
i its inversion function as ψ−1

i : Σs∗
oi
→ Σ∗oi , where

ψ−1
i (ε) = ε, ψ−1

i (σsi) = σ, for all σsi ∈ Σs
oi

and ψ−1
i (sσsi) = ψ−1

i (s)ψ−1
i (σsi), ∀s ∈ Σs∗

oi

and σsi ∈ Σs
oi

. The system behavior in the presence of delays will, therefore, be

modeled by a language defined over the following extended set of events:

Σi := Σ ∪ Σs
oi
. (4.4)

In order to obtain all possible observations of a trace s ∈ L(G) by a local diag-

noser LDi, we introduce a function that inserts events belonging to Σs
oi

based on

the maximal communication delay bound Tij, minimal time function tmin and event

sets Σoij . Let us first define the following projections:

Pi : Σ∗i → Σ∗, (4.5)

Pi,oij : Σ∗i → Σ∗oij , (4.6)

Pi,sij : Σ∗i → Σs∗
oij
, (4.7)

Pis : Σ∗i → Σs∗
oi
. (4.8)

In addition, let wσ(l) denote the prefix of a trace w ∈ Σ∗i whose last event is the l-th

occurrence of σ, and let w
σ
(l)
si

be the prefix of w whose last event is the l-th occurrence

of σsi , if σ
(l)
si ∈ w, or w, if σ

(l)
si /∈ w. For instance, let Σ1 = {a, b, c, σf , as1 , cs1} and
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w = abas1accs1as1c. Then, wa(2) = abas1a, w
c
(1)
s1

= abas1accs1 and w
c
(2)
s1

= w. The idea

of defining wσ(l) and w
σ
(l)
si

is to establish a comparison between the event occurrence

and its observation in a given trace. We can now introduce the concept of insertion

function.

Definition 4.2 (Insertion function) An insertion function associated with local di-

agnoser LDi and observable events in Σoij , transmitted through communication

channels chij that have maximal communication delays bounds Tij, is a mapping:

χi : L(G)→ 2Σ∗i

s 7→ χi(s),

where w ∈ χi(s) if it satisfies the following conditions:

1. Pi(w) = s;

2. For all σ ∈ Σoij , and σ(l) ∈ w:

tmin(x0, Pi(wσ(l)
si

))− tmin(x0, Pi(wσ(l))) < Tij (4.9)

3. For all σsi ∈ Σs
oij

, and σ
(l)
si ∈ w:

σ(l) ∈ w
σ
(l)
si

, (4.10)

and

|Pi,oij(wσ(l))| = |Pi,sij(wσ(l)
si

)|, (4.11)

where |.| denotes the length of the trace.

The extension of χi to the domain 2L(G) is defined as χi(L(G)) =
⋃
t∈L(G) χi(t).

Condition 1 ensures no event in Σoi can be inserted to s in order to form w, i.e.,

only w must be obtained from s by inserting events in Σs
oi

. Condition 2 ensures that

the delay between the occurrence of event σ ∈ Σoij , and its observation σsi ∈ Σs
oij

is

not larger than the maximum delay bound Tij (Equation (4.9)). Finally, Condition 3

ensures that the observation σsi of an event σ only occurs after event σ has occurred

in trace w (Equation (4.10)), and that the observation of events transmitted through

the same communication channel is in the same order of their occurrence in trace s

(Equation (4.11)). The following example illustrates the usefulness of insertion

function χi.
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LD1

MS1 MS2

Σo11 = {a}
T11 = 2

Σo12 = {b, c}
T12 = 0.1

x0
0.1/σf

(a)

1/b

1/a

x4

x5

1/a

x1

x2

3/b

x31/c

(b)

1/c

Figure 4.5: NDESWTS = (G, tmin, T ) for Example 4.1, where communication

delay structure (a) and automaton G with minimal time function tmin (b), which is

considered again in Example 4.2.

Example 4.2 Consider the networked discrete event system with timing structure

NDESWTS = (G, tmin, T ) shown again in Figures 4.5(a) and 4.5(b), and assume

that trace s1 = σfabc
p, p ∈ N has been executed by the system. Let us consider

traces2 w1, w2, w3, w4 ∈ Σ∗1, where w1 = σfaabbsas(ccs)
p, w2 = σfabasbs(ccs)

p, w3 =

σfaasbsb(ccs)
p and w4 = σfaasbccsbs(ccs)

p−1. Notice that none of these traces belongs

to χ1(s1), since (i) P1(w1) = σfaabc
p 6= s1 (w1 violates Condition 1 of Definition

4.2); (ii) tmin(x0, P1(σfabas) − tmin(x0, Pi(σfa)) = tmin(x0, σfab) − tmin(x0, σfa) =

(0.1 + 1 + 3) − (0.1 + 1) = 3 > T11 = 2 (w2 violates Condition 2 of Definition

4.2); (iii) b
(1)
s ∈ w3, but b(1) /∈ w3

b
(1)
s

(w3 violates Condition 3, Equation (4.10), of

Definition 4.2); (iv) one event c is observed before b in trace w4, however, these

events are transmitted through the same communication channel; this is recognized

by Equation (4.11), as follows: |P1,o12(σfaasb)| = |b| = 1 6= |P1,s12(σfaasbccsbs)| =

|csbs| = 2 (w4 violates Condition 4 of Definition 4.2). As we are going later on in

this section, the set of traces in Σ∗1 associated with all possible observations of trace

s by local diagnoser LD1 due to communication delays will be given by:

χ1(s1) = {σfaasbbs(ccs)p}.

Notice that the projection in Σs
o1

of the trace in χ1(s1) is P1s(χ1(s1)) = s1s = asbsc
p
s,

as expected.

2Since, in this example, there exists one local diagnoser only, we omit the subscript associated

with the local diagnoser number, i.e., replace σs1 with σs.
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To characterize the behavior of NDESWTS in the presence of delays of obser-

vations, we will present an algorithm for the computation of untimed finite state

automaton Gi = (Xi,Σi, fi,Γi, x0i , ∅), formed from NDESWTS = (G, tmin, T ). In

order to capture the observable event occurrences and their possible observations,

the states of Gi will have two components, as follows: (i) the first component ac-

counts for the corresponding state of G, and (ii) the second component accounts for

the observable events that were generated by G in order to reach state x and whose

observations are being transmitted to local diagnoser LDi together with the minimal

time elapsed between the occurrences of these observable events. For instance, let us

consider a hypothetical state (x, a 0.5 b 0.2 c) of Gi, depicted in Figure 4.6, which

corresponds to the case when some plant G has reached state x after the execution

of a trace s ∈ L(G) that contains, in that order, the observable events a, b and c,

whose observations are still being transmitted to the local diagnoser, and the time

elapsed between the occurrence of event a and b (resp. b and c) is, at least, equal

to 0.5 (resp. 0.2) t.u. It is worth remarking that, trace s can have other observable

events whose observation finished before state (x, a 0.5 b 0.2 c) was reached.

(x, a0.5b0.2c)Associated plant state

Observable events whose occurrences
are still being transmitted.

Order of occurrence in the plant:
a → b → c

Minimal time elapsed between
the occurrences of a and b

Minimal time elapsed between
the occurrences of b and c

Figure 4.6: Example of a state of automaton Gi.

The construction of Gi is carried out by manipulating traces composed by events

and real numbers that form the second components of the states of Gi. To this end,

let Ip = {1, 2, . . . , p}, where p ∈ N, with N denoting the set of positive integers, and

define set Qi := {q = q1q2 · · · ql : ∀k ∈ I`, (qk ∈ Σoi)∨ (qk ∈ R+)}, where R+ denotes

the set of non-negative real numbers and i ∈ INs . With slight abuse of notation, we

say that qp ∈ q, if there exist q′, q′′ ∈ Qi such that one of the following conditions

in satisfied: (i) q = q′qpq′′; (ii) q = q′qp; (iii) q = qpq
′′; (iv) q = qp. Notice that, the
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elements of Qi are traces formed by observable events in Σoi and numbers in R+.

Let us define the following operations.

Definition 4.3 (a) The link operation is the mapping link : Qi ×Qi → Qi where,

for every q = q1 · · · ql and p = p1 · · · pk belonging to Qi,

link(q, p) =

 q1 · · · ql−1 (ql + p1) p2 · · · pk, if ql, p1 ∈ R+

q1 · · · ql p1 · · · pk, otherwise.
(4.12)

(b) The cut operation is the mapping cut : Qi → Qi where, ∀q = q1q2 · · · ql ∈ Qi,

cut(q) =

 qw qw+1 · · · ql, if (∃w ≤ l)[(qw ∈ Σoi) ∧ (qj ∈ R+,∀j ∈ {1, ..., w − 1})]
0, if qj ∈ R+,∀j ∈ {1, 2, ..., l}.

(4.13)

(c) The addition operation is the mapping add : Qi×X ×Σ→ Qi where, for all

q = q1q2 · · · ql ∈ Qi, x ∈ X and σ ∈ Σ,

add(q, x, σ) =


cut(link(q, tmin(x, σ)σ)), if (σ ∈ Σoi) ∧ (f(x, σ)!)

cut(link(q, tmin(x, σ))), if (σ ∈ Σuoi) ∧ (f(x, σ)!)

undefined, otherwise.

(4.14)

(d) The removal operation is the mapping

rem : Qi × N→ Qi

where, for all q = q1q2 · · · ql ∈ Qi,

rem(q, k) =



cut(q2 · · · ql), if (k = 1)

link(q1 · · · qk−1, qk+1 · · · ql), if (1 < k < l)

cut(q1 · · · ql−1), if (k = l)

undefined, otherwise.

(4.15)

(e) The measurement site index function ms is the mapping

ms : Σoi → {1, 2, . . . ,m}

where, for all σ ∈ Σoi,

ms(σ) =

 j: if σ ∈ Σoij for some i ∈ {1, . . . , Ns}
undefined, otherwise.

(4.16)
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(f) The observable event index function Ioi is the mapping

Ioi : Qi × 2Σo → 2N

where, for all q = q1 · · · ql and all Σoi ⊆ Σo,

Ioi(q,Σoi) = {k ∈ {1, . . . , l} : qk ∈ Σoi} (4.17)

According to Definition 4.3, function link(q, p) simply concatenates two traces q

and p that form the second component of the states of Gi in the usual way except

when the last element of q and the first element of p are numbers, in which case they

will sum up. Function cut(q) either eliminates the prefix of trace q formed only by

numbers before the first observable event or set q to 0 if q is formed only by numbers.

Function add(q, x, σ) adds elements to q that depends on if σ is observable or not in

order to form the second component of the new state of Gi after the occurrence of

σ as follows: (i) if σ is observable, it is added together with the minimal activation

time; (ii) if σ is unobservable, only the minimal activation time is added. Function

rem(q, k) removes from q its k-th element and function ms(σ) returns the index j

which corresponds to measurement site MSj that detects the occurrence of event σ.

Finally, the observable event index function of trace q is the set of indices of all

events in trace q that belong to Σoi .

We now present Algorithm 4.1 to construct Gi. The idea behind Algorithm 4.1

is to model all changes in the order of observation of the events by local diagnoser

LDi, caused by delay in the communication channels chij, for j ∈ Im.

Algorithm 4.1 Construction of automaton Gi

Input Networked system NDESWTS = (G, tmin, T ), Σoij , for all j ∈ Im.

Output Automaton Gi = (Xi,Σi, fi,Γi, x0i , ∅).

Step 1. Define the initial state as x0i = (x0, 0) and Xi = ∅;

Step 2. Form sets Σoi, Σs
oij

, for all j ∈ Im, Σs
oi

and Σi according to Equations

(4.1), (4.2) and (4.4), respectively;

Step 3. Create a FIFO queue F and add x0i to F ;
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Step 4. While F 6= ∅ do:

Step 4.1 (x, q)← Head(F ) and Dequeue(F );

Step 4.2 Xi ← Xi ∪ {(x, q)};

Step 4.3 Let q = q1 q2 · · · ql and I` = {1, . . . , l}. Form the following set of indices:

(a) Ioi = Ioi(q,Σoi), in accordance with Equation (4.17);

(b) It,r = I` \ Ioi;

Step 4.4 For σ ∈ Γ(x):

Step 4.4.1 Set FLAG = TRUE

Step 4.4.2 If Ioi 6= ∅ then

While (k ∈ Ioi) ∧ (FLAG = TRUE) :

(a) Compute

minet(qk) =


∑

p∈It,r\Ik
qp, k < `

0, if k = `.

(b) Compute ρ = ms(qk)

(c) If minet(qk) + tmin(x, σ) ≥ Tiρ then Set FLAG = FALSE

Step 4.4.3 If FLAG = TRUE then

Set x̃i = fi((x, q), σ) = (f(x, σ), add(q, x, σ));

Else x̃i not defined

Step 4.4.4 If (x̃i 6∈ Xi) ∧ (x̃i 6∈ F ) ∧ x̃i!, then Enqueue(F, x̃i);

Step 4.5 For j ∈ Im:

Step 4.5.1 For σ ∈ Σoij :

(a) Form set Yj = {k ∈ Ioi : qk ∈ Σoij}.

(b) If Yj 6= ∅ then:

• Compute υ = min(Yj);

• Compute σsυ = ψ(qυ), according to Equation (4.3);
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• Set x̂i = fi((x, q), σ
s
υ) = (x, rem(q, υ));

• If (x̂i 6∈ Xi) ∧ (x̂i 6∈ F ), then do enqueue(F, x̂i);

Step 5. Define Γi(xi) = {σ ∈ Σi : fi(xi, σ) is defined}, ∀xi ∈ Xi;

In Step 1 of Algorithm 1, we define the initial state of automaton Gi as x0i =

(x0, 0), where x0 is the initial state of plant G, and the second component is set as

zero to determine that no observation is being transmitted to the local diagnoser

LDi at state x0i . In Step 2, we form the set of successfully observed events Σs
oi

that are communicated to local diagnoser LDi, and the extended set of events Σi.

In Step 3, in order to define the other states and the transition function of Gi, we

create a queue of states F , which is initially equal to F = [x0i ]. In Step 4.1, we

set state (x, q) as the first state in F and remove this state from F . In Step 4.2,

we add it to set Xi and, in Step 4.3, we form sets Ioi which stores the indices of

the positions of the observable events in q, and It,r, which stores the indices of the

minimal times on the right of the observable events whose indices are stored in Ioi .

This is important since the sum of those times will determine if a new event σ can

be added to q, when the sum is smaller than the maximal delay of all events in q,

or that one of the events in q must be observed by the local diagnoser. These are

the ideas behind Steps 4.4 and 4.5, which are detailed as follows.

In Steps 4.4 and 4.5, we define the transitions from (x, q) and add to F only

the new states reached by these transitions. In order to compute all accessible part

of Gi, we repeat Step 4 until F becomes empty. At each iteration of Step 4, the

new transitions, from state (x, q) are defined as follows. In Step 4.4, we define

transitions from state (x, q) that correspond to new occurrences of events in the

plant, and thus, they are labeled by events that are active at state x of G. To this

end, in Step 4.4.1, we set a boolean flag equal to TRUE. In Step 4.4.2, if Ioi is

not empty then, for each index in Ioi , we compute: (a) the sum of real numbers

(minimal times) which are on the right of event qk in q and (b) the measurement

site index of event qk, in accordance with Equation (4.16). In Step 4.4.2(c), if the

sum of the minimal elapsed time of event qk and the minimal time of σ is greater

than the maximal communication delay of qk then we set FLAG = FALSE. In Step

4.4.3, if FLAG is TRUE then the transition corresponding to event σ can be defined
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in state (x, q), since either (i) there is no event in q, namely, Ioi = ∅ or (ii) there

is no observable event qk inside q whose transmission of its observation must be

finished before the occurrence of σ, i.e., ∀qk,minet(qk) + tmin(x, σ) < Tiρ. We then

obtain the state x̃i reached by the new transitions by means of f(x, q) and add

operation. In Step 4.4.4, if x̃i does not belong to the set of events Xi and queue F ,

then we add x̃i to the end of queue F . In Step 4.5, we search for the events whose

observation transmission can be successfully observed at state (x, q). Notice that,

for each communication channel, only the first event inside q whose observation is

transmitted through this channel can be successfully observed at state (x, q), since

the channels are modeled by FIFO queues. In Step 4.5.1(a), we form Yj, which is

the set of all indices corresponding to events in q transmitted by the same channel

chij. If Yj is not empty, in Step 4.5.1(b), we define transitions from state (x, q)

labeled by events in Σs
oi

, i.e., events corresponding to the success of the observation

transmission to the diagnoser, as follows. First, we compute υ = min(Yj). Second,

the successful observation event of qυ, σ
s
υ, is computed according to Equation (4.3).

It is important to notice that since υ is the smaller index of Yj, then there is no

change in the order of event observations that are transmitted through the same

channel, which guarantees that each channel chij is modeled by a first-in first out

(FIFO) queue. After computing σsυ, we set state x̂i which is reached from (x, q)

through σsυ by applying rem operation. If new state x̂i does not belong to the set

of events Xi and queue F , we add x̂i to the end of queue F . Finally, in Step 5, we

compute the set of active events, for all states of Gi.

Remark 4.2 The observable event set of Gi is Σio = Σs
oi

and not Σoi, and the un-

observable event set is Σiuo = Σ, i.e., the occurrence of an event σsi ∈ Σs
oi

represents

the successful observation of event σ ∈ Σoi by the local diagnoser LDi.

Example 4.3 Let us consider the networked discrete event system with timing

structure NDESWTS = (G, tmin, T ) shown in Figures 4.7(a) and 4.7(b), where

Σ = {σf , a, b, c}, Σo1 = {a, b, c}. Applying Algorithm 4.1, by using as input G,

Σo11 = {a}, Σo12 = {b, c}, T = [T11 T12] = [2 0.1] and tmin, defined according to Fig-

ure 4.2, we obtain automaton Gi, i = 1, depicted in Figure 4.8, whose construction

can be explained as follows. In Step 1, we define the initial state of automaton (x0, 0),
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LD1

MS1 MS2

Σo11 = {a}
T11 = 2

Σo12 = {b, c}
T12 = 0.1

x0
0.1/σf

(a)

1/b

1/a

x4

x5

1/a

x1

x2

3/b

x31/c

(b)

1/c

Figure 4.7: NDESWTS = (G, tmin, T ) for Examples 4.1 and 4.2, where communi-

cation delay structure (a) and automaton G with minimal time function tmin (b),

which is considered again in Example 4.3.

where value 0 second component indicates that no observation is being sent to the

diagnoser. In Step 2, we form the sets Σo1 = {a, b, c}, Σs
o11

= {as}, Σs
o12

= {bs, cs},
Σs
o1

= {as, bs, cs}, and Σ1 = {σf , a, b, c, as, bs, cs}. In Step 3, we create a queue of

states F = [x0, 0], and thus, we repeat Step 4 until F becomes empty. In Steps 4.1

and 4.2, we set (x, q) = (x0, 0), F = [ ] and X1 = {(x0, 0)}. In Step 4.3, we create

the set of indices Io1 that contains the indices of the events which belongs to Σo1

inside q. Thus, Io1 = ∅ since q = 0. In Step 4.4 (resp. Step 4.5), we define the

transitions from state (x, q), labeled by events in Σ (resp. Σs
o1

) associated with the

occurrences of events in the plant (resp. successful observations). In Step 4.4.1,

we set FLAG = TRUE. The next step, Step 4.4.2, should be skipped since Io1 = ∅.
Since Γ(x0) = {σf , b} and FLAG = TRUE, we define, in Step 4.4, two transitions

from state (x0, 0) labeled by events b and σf , which define new states (x4, b) and

(x1, 0), respectively, and, thus F = [(x4, b), (x1, 0)]. Notice that, event b (resp. σf)

is added (resp. not added) to the second component of the reached state since it is

an observable (resp. unobservable) event. Finally, since Io1 = ∅, then sets Yj, to

be formed in Step 4.5 for each communication channel chij, for j = 1, 2 are also

empty. Therefore, no transition will be defined in Step 4.5.

Assume that after some iterations of Step 4, state (x2, a) is the first state of

queue F . Then, in Step 4.3, we obtain Io1 = {1} and It,r = ∅. In Steps 4.4.2(a) and

4.4.2(b), we compute minet(a) = 0 and ρ = ms(a) = 1, respectively. Notice that
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even b ∈ Γ(x2), transition labeled by b is not defined in state (x2, a). This so because,

in Step 4.4.2(c), minet(a) + tmin(x2, b) = 3 > T11 = 2. In Step 4.5, since Io1 = {1}
and υ = 1 (corresponding to the position of event a in q), we define the state to be

reached by (x2, a) as f1((x2, a), ψ1(a)) = f1((x2, a), as) = (x2, rem(a, 1)) = (x2, 0),

and thus, transition labeled by as is defined in state (x2, a). This means that event b

cannot occur before the observation of a. Let us now assume that (x, q) = (x5, a) at

the beginning of Step 4. Then, in Step 4.3, we obtain Io1 = {1} and It,r = ∅. In Steps

4.4.2(a) and 4.4.2(b), we compute minet(a) = 0 and ρ = ms(a) = 1, respectively.

Notice that transition labeled by c is defined in state (x5, a) in Figure 4.8. This so

because, c ∈ Γ(x5) and (minet(a) + tmin(x5, c)) = 1 < T11 = 2. We define the

state to be reached by (x5, a) due to event c as (f(x5, c), add(a, x5, c)) = (x5, a1c).

In Step 4.5, since Io1 = {1} and υ = 1, we define the state to be reached by (x5, a)

as f1((x5, a), ψ1(a)) = f1((x5, a), as) = (x5, rem(a, 1)) = (x5, 0), and thus, transition

labeled by as is defined in state (x5, a).

To conclude the example, let us consider state (x5, a1c). Then, in Step 4.3,

we obtain Io1 = {1, 3} and It,r = {2}. In Steps 4.4.2(a) and 4.4.2(b), we com-

pute minet(a) = 1, minet(c) = 0, ρa = 1 and ρc = 2, respectively. No-

tice that even c ∈ Γ(x5), transition labeled by c is not defined in state (x5, a1c).

This so because, in Step 4.4.2(c), (minet(a) + tmin(x5, c)) = 2 = T11 = 2 and

(minet(c) + tmin(x5, c)) = 1 > T12 = 0.1. In Step 4.5, two states can be reached

by state (x5, a1c): (i) f1((x5, a1c), ψ1(a)) = f1((x5, a1c), as) = (x5, rem(a1c, 1)) =

(x5, c), and (ii) f1((x5, a1c), ψ1(c)) = f1((x5, a1c), cs) = (x5, rem(a1c, 3)) = (x5, a1).

x0, 0

x4, b

b

x4, 0 x5, a x5, a1c
a

c
x1, 0

σf

x2, a
a b

x3, b

x5, c

as

bs

x2, 0

x5, 0

x3, 0 x3, c

c
x5, a1

c

cs

bs

cs

as as
cs

as

Figure 4.8: Example of automaton G1 of Example 4.3.
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Remark 4.3 There are some simple observations we can immediately make re-

garding the previous example. First, L(G1) = {σfaasbbs(ccs)p, bbsaas(ccs)q,
bbsaccsas(ccs)

q−1, bbsacascs(ccs)
q−1}, p, q ∈ N. L(G1) is equal to χ1(s1) ∪ χi(s2)

by checking the conditions of Definition 4.2 for Example 4.2, where s1 = σfabc
p

and s2 = bacp. Since L(G) = {s1, s2}, L(G1) = χ1(L(G)). In this section, we will

get into formal details in order to prove that the equality L(Gi) = χi(L(G)) always

holds.

Second, notice that from failure trace s1 = σfabc
p, we can obtain trace

P1s(χ1(s1)) = s1s = asbsc
p
s which is actually observed by local diagnoser LD1. From

normal trace s2 = bacq we can obtain traces P1s(χ1(s2)) = {s2s, s
′
2s}, such that

s2s = bsasc
q
s and s′2s = bscsasc

q−1
s . Thus, for inspection, we can point out that lan-

guage G1 is diagnosable by LD1, since local diagnoser LD1 will be sure of the failure

occurrence σf after receiving the information of first event as ( traces s2s and s′2s

starts with event bs). Formally, we will define codiagnosability of networked discrete

event systems with timing structure (NDESWTS) in Section 4.3.

The following results concern automaton Gi obtained by Algorithm 4.1.

Lemma 4.1 Let w ∈ L(Gi) and define (x, q) = fi(x0i , w). Then:

(a) x = f(x0, Pi(w));

(b) q = 0 if, and only if, every event σ in w that belongs to Σoi has its occurrence

either successfully transmitted σsi in w. Otherwise, q = q1q2 · · · qk ∈ Qi, where

q1 ∈ Σoi and every qk ∈ Σoi, k ∈ {1, 2, . . . , k}, corresponds to one occurrence

of event qk in w which is still being transmitted, with minet(qk) (stated in Step

4.4.2(c) of Algorithm 4.1) equal to the minimal time interval elapsed since the

occurrence of qk in the plant.

Proof. The proof is done by induction in the length of the traces w ∈ L(Gi).

• Basis step: According to Step 1 of Algorithm 4.1, the initial state of Gi is

equal to x0i = (x0, 0). Thus, for w = ε, fi(x0i , w) = (x0, 0), which agrees

with the facts that: (a)f(x0, Pi(ε)) = x0, and (b) there is no event in w whose

occurrence has not been transmitted.
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• Induction hypothesis : ∀w ∈ L(Gi), such that |w| ≤ p, fi(x0i , w) =

(f(x0, Pi(w)), q), where q = 0 if, and only if, every event σ in w that be-

longs to Σoi has its occurrence successfully transmitted σsi in w. Otherwise,

q = q1q2 . . . ql ∈ Qi where q1 ∈ Σoi and every qk ∈ Σoi , k ∈ {1, 2, . . . , l}, corre-

sponds to one occurrence of event qk in w which is still being transmitted, with

minet(qk) equal to the minimal time interval elapsed since the occurrence of

qk in the plant.

• Inductive step: Consider a trace wσ ∈ L(Gi) such that |w| = p and σ ∈ Σi.

We will prove initially item (a) and, after that, item (b).

(a) Notice that, according to the induction hypothesis, the first component of

state fi(x0i , w) is equal to f(x0, Pi(w)). Let us first consider the case when

σ ∈ Σ. Then, according to Step 4.4 of Algorithm 4.1, σ ∈ Γ(f(x0, Pi(w)))

and the first component of the reached state is equal to f(f(x0, Pi(w)), σ) =

f(x0, Pi(w)σ) = f(x0, Pi(wσ)). Let us now consider the case when σ ∈ Σs
oi

.

Since, according to Steps 4.5 of Algorithm 4.1, the transitions of Gi labeled

by events in Σs
oi

do not modify the first component of the state, the first com-

ponent of fi(x0i , wσ) is equal to f(x0, Pi(w)), which is equal to f(x0, Pi(wσ))

since Pi(w) = Pi(wσ).

(b) Let q denote the second component of state fi(x0i , w). Then, according to the

induction hypothesis, q satisfies part (b) of the lemma statement with respect

to trace w. According to Algorithm 4.1 the second component of the state

reached from state fi(x0i , w) by a transition labeled by an event σi ∈ Σi is

determined as follows:

(b1) If σi = σ ∈ Σ, then, according to Step 4.4, the second component of

the reached state is add(q, x, σ), where, according to Definition 4.3(a),

function add links, to the right of q, either trace tmin(x, σ)σ, if σ ∈ Σoi ,

or tmin(x, σ), if σ ∈ Σuoi , and also removes the largest prefix formed only

with non-negative real numbers. In this case, the second component of

the state reached from fi(x0i , w) by the transition labeled by σ will be as

follows: tmin(x, σ) must be added to the right of q after the occurrence

of σ in the plant to enforcing that minet(qk), defined according Step
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4.4.2(c) of Algorithm 4.1, be equal to the minimal time interval elapsed

since the occurrence of the k-th event of the second component of the

reached state; in addition, σ has to be added to q when σ ∈ Σoi , since

its occurrence has not been observed in wσ, whereas, in the case when

σ ∈ Σuoi , nothing else has to be added to q.

(b2) If σi = σsυ ∈ Σs
oi

, then, according to Step 4.5 the second component of

the reached state is rem(q, υ), where υ is the index of the first occurrence

of event ψ−1
i (σsυ) in q and, according to Definition 4.3(d), function rem

removes qυ from q, and also removes the largest prefix formed only with

non-negative real numbers. Thus, the occurrence of an event σsυ ∈ Σs
oi

represents the successful of the observation of an event in w, namely, it

models the successful of the observation of event qυ stored in q. Thus, we

can conclude that we must remove qυ from q to obtain the second com-

ponent of the reached state, as done by using function rem in Algorithm

4.1. In addition, notice that, functions add and rem are defined by using

function cut, which removes, from q ∈ Qi, the largest prefix formed only

with non-negative real numbers.

Finally, notice that in (b1) and (b2), functions add and rem guarantee that the

first element of the second component of the reached state belongs to Σoi , if the

second component of the reached state has at least one element belonging to Σoi ,

or that the second component of the reached state is equal to 0, otherwise. In both

cases, the lemma statement holds true, and this completes the proof.

Based on Algorithm 4.1, we can state the following theorem related to the ob-

servation of the language generated by Gi.

Theorem 4.1 L(Gi) = χi(L(G)).

Proof. The proof is done by induction in the length of the traces w ∈ Σ∗i .

• Basis step: Let w = ε. Then, w ∈ χi(L(G)) since Pi(ε) = ε ∈ L(G) and ε

satisfies Conditions 2 and 3 of Definition 4.2. In addition, we can also conclude

that w ∈ L(Gi) since the initial state of Gi is defined ((x0, 0)).

• Induction hypothesis : For all traces w ∈ Σ∗i such that |w| ≤ p, w ∈ L(Gi) ⇔
w ∈ χi(L(G)).
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• Inductive step: Let wσi ∈ Σ∗i be such that |w| = p and σi ∈ Σi. From

Definition 4.2, if w /∈ χi(L(G)) then wσi /∈ χi(L(G)). In addition, since L(Gi)

is, by definition, prefix-closed, if w /∈ L(Gi) then wσi /∈ L(Gi). From induction

hypothesis, we can only consider the case when w ∈ L(Gi) and w ∈ χi(L(G)).

This implies, according to Definition 4.2, that there exists s ∈ L(G) such that

s = Pi(w) and that w satisfies Conditions 2 and 3 of Definition 4.2. We will

first consider the case when σi = σ ∈ Σ, and, in the sequel, the case when

σi = σsυ ∈ Σs
oi

.

(i) σi = σ ∈ Σ: in this case, Condition 3 of Definition 4.2 is satisfied for wσ since

it is also satisfied for w. Regarding Condition 1 of Definition 4.2, notice that

transitions from state fi(x0i , w) labeled by events in Σ are defined, in Step 4.4

of Algorithm 4.1, for those events that belong to Γ(f(x0, s)) since, according

to statement (a) of Lemma 4.1, the first component of state fi(x0i , w) is equal

to f(x0, s). It makes sense, since Pi(wσ) = sσ, wσ satisfies Condition 1 of

Definition 4.2 only for trace sσ, which implies that sσ must be in L(G) for wσ

to be in χi(L(G)), or equivalently, σ must be in Γ(f(x0, s)). To check if wσ

satisfies Condition 2, let q denote the second component of state fi(x0i , w),

and consider the problem of verifying the possibility of occurrence of event

σ ∈ Σ before the observation of one of the events belonging to Σoi that form q.

According to Step 4.4, this verification is carried out by checking if q = 0 or,

when q 6= 0, by comparing, for every qk ∈ Σoi that forms q, the minimal time

elapsed since the occurrence of qk with the delay bound of the channel that

send the occurrences of qk to the diagnoser. Thus, the transition labeled with

an event σ ∈ Γ(f(x0, s)) from state fi(x0i , w) is defined if, and only if, either

q = 0 or, for every qk ∈ Σoi that forms q, the delay bound Tiρ, ρ = ms(qk)

is higher than minet(qk) + tmin(f(x0, Pi(w)), σ). Notice that, in accordance

with statement (b) of Lemma 4.1, checking this condition is equivalent to ver-

ify if every event in Σoi , that has occurred in wσ and whose observation has

not occurred, satisfies Equation 4.11. In addition, since w satisfies Condi-

tion 2, every event in w whose occurrence has been observed in w also satisfies

Equation 4.11. Therefore, we can conclude that, when σ ∈ Σ, wσ ∈ L(Gi),

wσ ∈ χi(L(G)).
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(ii) σi = σsυ ∈ Σs
oi

: in this case, Pi(wσ
s
υ) = Pi(w), which implies that wσsυ satisfies

Condition 1 of Definition 4.2 for s ∈ L(G). In addition, wσsυ also satisfies Con-

dition 2 of Definition 4.2 since it is satisfied for w. Thus, it remains to check if

Condition 3 holds true for trace wσsυ. To do so, let us consider a transition from

state fi(x0i , w), labeled by event σsυ ∈ ψi(Σoi), carried out in Step 4.5, which

is repeated for each communication channel chij, j = 1, 2, . . . ,m. In Step 4.5,

the set of indices Yj is computed with respect to the second component of

state fi(x0i , w), denoted by q, and set Σoi . Notice that, in accordance with

Lemma 4.1, wσsυ satisfies Equation (4.10) if, and only if, ∃ψ−1
i (σsυ) ∈ q. Thus,

when Yj is nonempty, index υ = min(Yj), computed in Step 4.5, defines event

qυ that corresponds to the first event in q whose occurrence is sent through

channel chij. As a consequence, ψi(qυ) is the only one event in ψi(Σoi) such

that wψi(qυ) satisfies Equations (4.10) and (4.11), and, according to Step 4.5,

it is also the unique event in ψi(Σoi) that is used to create a new transition

from state fi(x0i , w). Therefore, it can be concluded that, when σi = σsυ ∈ Σs
oi

,

wσi ∈ L(Gi)⇔ wσi ∈ χi(L(G)), which completes the proof.

Remark 4.4 (Complexity to compute automaton Gi) Given a networked discrete

event system with timing structure NDESWTS = (G, tmin, T ) let us define the fol-

lowing variables: T ′ = max{Tij : Tij ∈ R∗+} and t = min(tmin(x, σ)), for all x ∈ X,

σ ∈ Σ, and T = max{z ∈ Z : z < T ′/t}, where Z is the set of integer numbers. In

order to compute the maximal number of states of Gi, let us consider that link(q, p)

only concatenates q and p. Namely, it does not add the last element of q with the

first element of p when they are real numbers, and thus, every state of Gi has the

following form:

(i) either the form (x, q0) where x ∈ X and q0 ∈ Σoi ∪ {0};

(ii) or the form (x, q0e1e2 . . . ek) where x ∈ X, q0 ∈ Σoi and, for r = 1, 2, . . . , k,

either er is a real number (the minimal activation time that corresponds to ei-

ther an event in Σuoi or an event in Σoi whose transmission has been finished),

or er is a real number concatenated with an event belonging to Σoi (which cor-

responds to a minimal activation time and its associated event in Σoi whose

occurrence is still being sent).
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In the worst case, Gi will have |X|(|Σoi |+ 1) states for (i) and |X|2|Σoi |(|Σoi|+
|Σ|)k states with the form (ii). In addition, by assuming that all minimal activation

times are equal to t and all maximal observation delays are equal to T , it can be

seen that k ≤ T since, if k > T , then the maximal observation delay of event q0 is

violated. Thus, we can conclude that, in the worst case:

|X|(|Σoi |+ 1) + |X|2|Σoi |
T∑
k=1

(|Σoi |+ |Σ|)k.

Therefore, Xi is:

O
(
|X|2|Σoi |(|Σoi |+ |Σ|)T +1

)
.

Finally, it is worth noting that the number of states in the worst case may only

decrease if we compute link(q, p) as determined by Definition 4.3, i.e., by adding the

last element of q with the first element of p when they are real numbers.

4.2.2 An Equivalent Untimed Model of NDESWTS Subject

to Communication Delays and Intermittent Loss of

Observations

We will now extend the model developed in Algorithm 4.1 to also take into account

the intermittent loss of observation of events in the communication channels. In

order to do so, we will use the dilation function introduced in [54].

Let us partition the set of observable events associated with diagnoser LDi as

Σio = Σi,ilo∪̇Σi,nilo, where Σi,ilo and Σi,nilo denote, respectively, the set of events

that are subject to intermittent loss of observation, and the set of events that are

not subject to intermittent loss of observation. Let Σs
i,ilo = ψ−1(Σi,ilo) and Σs

i,nilo =

ψ−1(Σi,nilo), where ψ−1 denotes the inverse function of ψ. Since the observable event

set of Gi is given by Σio = Σs
oi

, we can make the following partition of the observable

event set of Gi:

Σs
oi

= Σs
i,ilo∪̇Σs

i,nilo (4.18)

where the events of Σs
i,ilo and Σs

i,nilo denote the successful transmission to diag-

noser LDi of the events of Σi,ilo and Σi,nilo, respectively. Let us now define the

following sets: (i) the set of unobservable events that models the intermittent loss

of observation of events σs ∈ Σs
i,ilo as Σs′

i,ilo = {σ′s : σs ∈ Σs
i,ilo} and; (ii) set
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Σ′i = Σi ∪ Σs′

i,ilo. The dilation function Dsi : Σ∗i → 2(Σ′i)
∗

is defined in a recur-

sive way as: Dsi(ε) = {ε}; Dsi(σ) = {σ}, if σ ∈ Σi \ Σs
i,ilo, Dsi(σ) = {σ, σ′}, if

σ ∈ Σs
i,ilo; Dsi(siσ) = Dsi(si)Dsi(σ),∀si ∈ Σ∗i , ∀σ ∈ Σi. The dilation operation Dsi

is extended to languages in a straightforward way as Dsi(L) =
⋃
s∈LDsi(s).

We can now obtain automaton G′i that generates language Dsi [L(Gi)], and which

models both, all possible ordering of observation of events σ ∈ Σoi due to commu-

nication delays and the intermittent loss of observation of events σ ∈ Σi,ilo. This

automaton will be defined as follows:

G′i = (Xi,Σ
′
i, f
′
i ,Γ
′
i, x0i , ∅), (4.19)

where Γ′i(xi) = Dsi [Γi(xi)], ∀xi ∈ Xi, and f ′i(xi, σ
′) = fi(xi, σ), if σ′ ∈ Σs′

i,ilo, and

f ′i(xi, σ) = fi(xi, σ), if σ ∈ Σi \ Σs′

i,ilo. Notice that, if Σi,ilo = ∅, G′i = Gi, which

implies that Dsi [L(Gi)] = L(Gi). It is worth remarking that the set of observable

events of G′i is Σ′io = Σs
oi

and the set of unobservable events of G′i is Σ′iuo = Σ∪Σs′

i,ilo.

Regarding the events of G′i, the following projections can be defined.

P ′is := Σ
′∗
i → Σs∗

oi
. (4.20)

P ′i := Σ
′∗
i → Σ∗. (4.21)

LD1

MS1 MS2

Σo11 = {a}
T11 = 2

Σo12 = {b, c}
T12 = 0.1

x0
0.1/σf

(a)

1/b

1/a

x4

x5

1/a

x1

x2

3/b

x31/c

(b)

1/c

Figure 4.9: NDESWTS = (G, tmin, T ) for Examples 4.1–4.3, where communication

delay structure (a) and automaton G with minimal time function tmin (b), which is

considered again in Example 4.4.
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x0, 0

x4, b

b

x2, a x2, 0 x3, c
as

x1, 0

σf

x5, c

a

x5, a1

c

cs

x3, b x3, 0
bsb

b′s

x4, 0 x5, a x5, a1c
bs c

b′s

a

x5, 0

as as

c

cs

cs

as

Figure 4.10: Example of automaton G′1 of Example 4.4.

After giving some intuition diagnosability of NDESWTS to the reader, we can

now formally state the concept in next section.

Example 4.4 Let us consider again the networked discrete event system with timing

structure NDESWTS = (G, tmin, T ) shown in Figures 4.9(a) and 4.9(b), where Σ =

{σf , a, b, c}, Σo1 = {a, b, c} and G1 obtained in Example 4.3, depicted in Figure

4.8. Assume that Σs
1,ilo = {bs} is the set of events subject to intermittent loss

of observation, and Σs
1,nilo = {as, cs} is the set of events that are not subject to

intermittent loss of observation. Thus, we can form the set of unobservable events

that model the intermittent loss of observation as Σs′

1,ilo = {b′s}. We can then obtain

automaton G′1, depicted in Figure 4.10, by applying the dilation function over the

language of automaton G1, depicted in Figure 4.8. Notice that automaton G′1 is

formed by adding to G1 transitions labeled by b′s in parallel with the transitions

labeled by bs.

Regarding traces observed by local diagnoser LD1, we can make the following

observation. If we apply dilation function to failure trace s1 = σfabc ∈ L(G),

we obtain Ds1(χ1(s1)) = {σfaasbbs(ccs)p, σfaasbb′s(ccs)p, }, p ∈ N, such that trace

sd1 = σfaasbb
′
s(ccs)

p represents the trace with lost of observation of event b. This

trace has the following projection over the set Σs
o1

:

P ′1s(sd1) = asc
p
s.

As consequence, only events as and cs can be observed by local diagnoser

LD1 for this trace. On the other hand, if we apply dilation function to

normal trace s2 = σfabc ∈ L(G), we obtain Ds1(χ1(s2)) = {bbsaas(ccs)p,
bb′saas(ccs)

p, bbsaccsas(ccs)
p−1, bb′saccsas(ccs)

p−1, bbsacascs(ccs)
p−1, bb′sacascs(ccs)

p−1}.
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Notice that there exists a trace sd2 = bb′saas(ccs)
p ∈ Ds1(χ1(s2)) that has the follow-

ing projection over the set Σs
o1

:

P ′1s(sd2) = asc
p
s = P ′1s(sd1).

Thus, since the information of the occurrence of event b may be lost (modeled by

event b′s), diagnoser LD1 does not make sure whether failure σf occurs or not.

Therefore, L(G′1) is not diagnosable, for inspection.

4.3 NDESWTS Codiagnosability

As seen in previous section, change of order of observation of a trace s ∈ L(G) due

to communication delays to change the diagnosability decision. This is formalized

in the following definition.

Definition 4.4 A prefix-closed language L, generated by G, is said to be NDESWTS

codiagnosable with respect to χi, Dsi, and P ′is, for i = 1, . . . , Ns, and Σf if:

(∃z ∈ N)(∀s ∈ Ψ(Σf ))(∀t ∈ L/s, |t| ≥ z)⇒

(∃i ∈ {1, . . . , Ns})(∀ω ∈ P ′−1
is (P ′is[Dsi(χi(st))]) ∩ L)(Σf ∈ ωi).

�

According to Definition 4.4, language L is not NDESWTS codiagnosable if there

exists a failure trace s and an arbitrarily long length trace t, such that there exist

traces siti ∈ Dsi(χi(st)), i = 1, 2, . . . , Ns, where siti is not necessarily different

from sjtj for i, j ∈ {1, 2, . . . , Ns} and siN ∈ Dsi(χi(ωi)), with Σf /∈ ωi, satisfying

P ′is(siti) = P ′is(siN ), for all i ∈ {1, . . . , Ns}. This means that a language L is not

NDESWTS codiagnosable if there exist a failure trace st, with arbitrarily long length

after the occurrence of the failure event, and normal traces ωi, for i = 1, . . . , Ns, such

that, the change in the order of observation and the loss of observation of events

create ambiguous observations in all local diagnosers.

We now present necessary and sufficient conditions for network codiagnosability

and propose two tests to verify this property: the first one based on diagnosers, and

a second one, based on verifiers.
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4.3.1 NDESWTS Diagnoser

Centralized case

To check the diagnosability of NDESWTS discrete event systems with timing struc-

ture, we use diagnoser developed in Section 3.1 by applying Algorithm 3.1 with the

input Gi (without loss of observation) or G′i (with events subject to loss of obser-

vation). Since G′i = Gi if Σi,ilo = ∅, i.e., Gi is particular case of G′i, from now on,

we will always assume, without loss of generality, G′i as input of algorithms in or-

der to deal with (co)diagnosability of networked discrete event systems with timing

structure. Thus, let us instead rewrite Equation (3.1) as follows.

G′scci = G′di ||G′`i , (4.22)

where G′di = obs(G′`i ,Σ
s
oi

) and G′`i = G′i||A`.
Therefore, we can rewrite Theorem 3.1 as follows.

Theorem 4.2 The language L generated by automaton G is NDESWTS diagnos-

able with respect to χi, P
′
is, Dsi and Σf = {σf} if, and only if, G′scci, i ∈ {1, . . . , Ns}

does not have strongly connected components formed with states (x′di , x
′
`i

), such that

x′di is uncertain and x′`i is an Y-labeled state, i.e., x′`i = (x′i, Y ), where x′i ∈ X ′i.

Proof: The proof is straightforward from Theorem 3.1 by considering G′i as input

of Algorithm 3.1, such that Σs
oi

is the set of observable events Σ∪̇Σs′

i,ilo is the set of

unobservable events. �

Remark 4.5 It is worth remarking that Facts 3.1 and 3.2 are still valid, i.e.,

L(G′scci) = L(G′`i) = L(G′i) and for every state (x′di , x
′
`i

) of G′scci, x
′
`i
⊆ x′di.

The following example illustrates the application of Algorithm 3.1 to check the

diagnosability of networked discrete event systems with timing structure.

Example 4.5 Let us consider again the networked discrete event system with tim-

ing structure NDESWTS = (G, tmin, T ) shown in Figures 4.2(a) and 4.2(b), where

Σ = {σf , a, b, c}, Σo1 = {a, b, c}, such that Σs
o1

= {as, bs, cs}. First, we consider the

case without observation losses. As a consequence, Σ1,ilo = ∅ and G′1 = G1. From

G1, depicted in Figure 4.8, we can sequentially obtain: (i) automaton G`1 = G1||A`,
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depicted in Figure 4.11; (ii) diagnoser automaton Gd1 = obs(G`1 ,Σ
s
o1

), depicted in

Figure 4.11; (iii) and finally, automaton Gscc1 = Gd1||G`1, depicted in Figure 4.13.

According to Theorem 4.2, the language L generated by automaton G is NDESWTS

diagnosable with respect to χ1, P1s, and Σf = {σf} since Gscc1 does not have strongly

connected components formed with states (xd1 , x`i), such that xd1 is uncertain and

x` is an Y-labeled state. Notice that we also obtained the same conclusion, for in-

spection, based on the language of G1 in Example 4.3. Let us consider now, as

Example 4.4, Σ1,ilo = {b}, i.e., the observation of event b is subject to loss. Thus,

from G′1, depicted in Figure 4.10, we can obtain automaton G′`1 = G′1||A`, depicted

in Figure 4.14 and diagnoser automaton G′d1 = obs(G′`1 ,Σ
s
o1

), depicted in Figure

4.14. Automaton G′scc1 can be obtained by performing the parallel composition be-

tween Gd1 and G`1. Since 25 states of G′scc1 are labeled by a lot of states of G′1, we

only shows, in Figure 4.16, the path of automaton G′scc1 that contains a strongly con-

nected component formed by states ({(x5, 0)N, (x5, c)N, (x3, 0)Y, (x3, c)Y }, (x3, 0)Y )

and ({(x5, 0)N, (x5, c)N, (x3, 0)Y, (x3, c)Y }, (x3, c)Y ), where xd is uncertain and x`

is an Y-labeled state. Therefore, L is not NDESWTS diagnosable with respect to χ1,

P ′1s, Ds1 and Σf = {σf}.

(x0, 0)N

(x4, b)N

b

as
(x1, 0)Y

σf

a
c

cs

bsb

bs ca
as as

c

cs

(x2, a)Y (x2, 0)Y (x3, b)Y (x3, 0)Y (x3, c)Y

(x4, 0)N (x5, a)N

(x5, c)N (x5, 0)N

(x5, a1c)N (x5, a1)N
cs

as

Figure 4.11: Automaton G`1 of Example 4.5.

as

{(x0, 0)N,(x4, b)N,(x1, 0)Y,(x2, a)Y}
bs

cs

{(x2, 0)Y,(x3, b)Y} {(x4, 0)N,(x5, a)N,(x5, a1c)N}

{(x3, 0)Y,(x3, c)Y} {(x5, a1)N} {(x5, 0)N,(x5, c)N}

asbs cs

as

cs

Figure 4.12: Automaton Gd1 of Example 4.5.
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a

({(x0, 0)N,(x4, b)N,(x1, 0)Y,(x2, a)Y},(x0, 0)N)

cs

({(x2, 0)Y,(x3, b)Y},(x2, 0)Y)

({(x4, 0)N,(x5, a)N,(x5, a1c)N},(x4, 0)N)

bs

as
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Figure 4.13: Automaton Gscc1 of Example 4.5.
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Figure 4.14: Automaton G′`1 of Example 4.5.
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Figure 4.15: Automaton G′d1 of Example 4.5.
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Figure 4.16: A path of automaton G′scc1 of Example 4.5 that contains a strongly

connected component where xd is uncertain and x` is an Y-labeled state.

Decentralized case

We will now address the codiagnosability of networked discrete event systems with

timing structure. Let us give some intuition before formally stating the standard

algorithm based on diagnoser developed in Section 3.1. To this end, consider net-

worked discrete event system with timing structure NDESWTS = (G, tmin, T ) such

that its NDESWTS architecture has, without loss of generality, two local diagnosers

LD1 and LD2. In order to simplify the analysis, let us consider the system without

losses of observation and assume now that we compute G1 and G2 according to

Algorithm 4.1. We then apply Equation (4.22) to obtain Gscc1 and Gscc2 . Suppose

that from Theorem 4.2, we verify that L is not NDESWTS diagnosable for both

LD1 and LD2. Therefore, we can conclude that:

(i) there exists a trace st ∈ L(G), where s is a failure trace and t is an arbitrarily

long length trace, such that there exist traces s1σf t1 ∈ Ds1(χ1(st)), and s1N ∈
Ds1(χ1(ω1)), with Σf /∈ ω1, satisfying P ′1s(s1σf t1) = P ′1s(s1N ). According

to Theorem 4.2, there exists a strongly connected component in automaton
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Gscc1 formed with states (xd1 , x`1), where xd1 is uncertain and x`1 is an Y-

labeled state. In addition, assume that we mark the states that form this

strongly connected component. An example of trace s1σf t1 ∈ L(Gscc1), where

t1 = (σσs1)
p and p ∈ N is depicted in Figure 4.17(a). Dashed line arrows

represent other possible traces of L(Gscc1).

(ii) there exists a trace s′t′ ∈ L(G), where s′ is a failure trace and t′ is an arbitrarily

long length trace, such that there exist traces s2σf t2 ∈ Ds2(χ2(s′t′)), and

s2N ∈ Ds2(χ2(ω2)), with Σf /∈ ω2, satisfying P ′2s(s2σf t2) = P ′2s(s2N ), where

P1 : (Σ1 ∪ Σ2)∗ → Σ∗1 and P2 : (Σ1 ∪ Σ2)∗ → Σ∗2. According to Theorem

4.2, there exists a strongly connected component in automaton Gscc2 formed

with states (xd2 , x`2), where xd2 is uncertain and x`2 is an Y-labeled state. In

addition, assume that we mark the states that form this strongly connected

component. An example of trace s2σf t2 ∈ L(Gscc2), where t2 = (σσs2)
p and

p ∈ N is depicted in Figure 4.17(b). Dashed line arrows represent other possible

traces of L(Gscc2).

Now, suppose that st = s′t′, i.e., there exists a failure trace generated by plant G

such that neither local diagnoser LD1 nor LD2 can diagnose the failure occurrence

in trace st. This implies that L is not NDESWTS codiagnosable. As a consequence,

there exists a strongly connected component in automaton Gscc1||Gscc2 formed with

marked states (xd1 , x`1 , xd2 , x`2), where xd1 is uncertain, x`1 is an Y-labeled state,xd2

is uncertain and x`2 is an Y-labeled state. The reason is explained as follows. Since

L(Gscci) = L(Gi), common events between Σ1 = Σ ∪ Σs
o1

and Σ2 = Σ ∪ Σs
o2

are

the set of plant events Σ. As we mentioned Section 2.1.4, the parallel composition

between automata synchronize the common events and allows the execution of pri-

vate events, and thus, the traces of Gscc1 and Gscc2 that reach a strongly connected

components formed by marked states also will be synchronized. Taking a look at

Figure 4.17(c), we can see traces sσf (σσs1σs2)
p and sσf (σσs2σs1)

p of Gscc1||Gscc2 ,

where s ∈ P−1
1 [L(Gscc1)]∩P−1

2 [L(Gscc2)]. Notice that, since states of a parallel com-

position Gscc1||Gscc2 are marked only if are composed from marked states in both

automata Gscc1 and Gscc2 , strongly connected components in automaton Gscc1||Gscc2

with marked states are the form (xd1 , x`1 , xd2 , x`2), where xd1 is uncertain, x`1 is an

Y-labeled state, xd2 is uncertain and x`2 is an Y-labeled state.
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(a) (b) (c)

Figure 4.17: Hypothetical traces of Gscc1 (a); Gscc2 (b) and Gscc1||Gscc2 (c).

Another interesting aspect to consider is that the inverse direction is intuitive,

i.e., if Gscc1||Gscc2 has strongly connected components with marked states, xd1 , x`1

and xd2 , x`2) are marked states of Gscc1 and Gscc2 , respectively, then L is not diag-

nosable with respect to local diagnosers LD1 and LD2 by the same failure trace.

Therefore, L is not NDESWTS codiagnosable.

NDESWTS codiagnosability verification by using diagnoser can be formalized

by the following algorithm.

Algorithm 4.2 NDESWTS codiagnosability verification using diagnoser

Input Automaton G′i = (Xi,Σ
′
i, f
′
i ,Γ
′
i, xi0), for i = 1, . . . , Ns.

Output NDESWTS codiagnosability decision: Yes or No.

Step 1. Compute automata G′scci = G′di ||G′`i, for i ∈ {1, . . . , Ns} according to Equa-

tion (4.22).

Step 2. Mark all strongly connected components of G′scci, i ∈ {1, . . . , Ns}, formed

with states (x′di , x
′
`i

), such that x′di is uncertain and x′`i is an Y-labeled state,

i.e., x′`i = (x′i, Y ), where x′i ∈ X ′i.

Step 3. Compute automaton GNET
scc = ||Nsi=1G

′
scci

.

Step 4. Verify if there exists at least one strongly connected component formed with

marked states in GNET
scc .
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Step 5. If the answer is yes, then language L generated by automaton G is not

NDESWTS codiagnosable with respect to χi, P
′
is, Dsi, i = 1, . . . , Ns and Σf =

{σf}. Otherwise, L is NDESWTS codiagnosable.

From Algorithm 4.2, the following theorem may be stated.

Theorem 4.3 The language L generated by automaton G is NDESWTS codiag-

nosable with respect to χi, P
′
is, Dsi, i = 1, . . . , Ns, and Σf = {σf} if, and only if,

automaton GNET
scc = ||Nsi=1G

′
scci

does not have strongly connected components formed

with states of type (x′d1 , x
′
`1

), (x′d2 , x
′
`2

), . . . , (x′dNs , x
′
`Ns

), such that x′di is uncertain and

x′`i is an Y-labeled state, i.e., x′`i = (x′i, Y ), where x′i ∈ X ′i, for all i ∈ {1, . . . , Ns}.

Proof. The proof is similar to proof of Theorem 3.2 and it is presented as follows.

(⇒) Let us assume that there exists a strongly connected component formed with

states (x′d1 , x
′
`1

), (x′d2 , x
′
`2

), . . . , (x′dNs , x
′
`Ns

), such that x′di is uncertain and x′`i is an

Y-labeled state, i.e., x′`i = (x′i, Y ), where x′i ∈ X ′i, for all i ∈ {1, . . . , Ns}.
Since GNET

scc = ||Nsi=1G
′
scci

, L(GNET
scc ) =

⋂Ns
i=1 P

′−1
i L(G′scci), such that P ′i :⋃Ns

i=1 Σ′
∗
i → Σ′

∗
i , for i ∈ {1, 2, . . . , Ns}. Thus, by construction, there exists a trace

s′i ∈ G′scci , i = 1, 2, . . . , Ns that reaches a strongly connected component formed

with states of type (x′di , x
′
`i

), such that x′di is uncertain and x′`i is an Y-labeled state,

i.e., x′`i = (x′i, Y ), where x′i ∈ X ′i. Therefore, according to Theorem 4.2, L is not

NDESWTS diagnosable with respect to χi, P
′
is, Dsi and Σf = {σf}, i = {1, . . . ,

Ns}.
(⇐) Assume now that the language L generated by automaton G is not

NDESWTS codiagnosable with respect to χi, P
′
is, Dsi , i = 1, . . . , Ns, and Σf = {σf}.

Thus, according to Definition 4.4, there exists a failure trace s and an arbitrarily

long length trace t, such that there exist traces siti ∈ Dsi(χi(st)), i = 1, 2, . . . , Ns,

and siN ∈ Dsi(χi(ωi)), with Σf /∈ ωi, satisfying P ′is(siti) = P ′is(siN ), for all

i ∈ {1, . . . , Ns}. As a consequence, the language L generated by automaton G

is NDESWTS diagnosable with respect to χi, P
′
is, Dsi and Σf = {σf}. In addi-

tion, since L(G′scci) = L(G′i) (Remark 4.5), siti ∈ L(G′scci). According Theorem

4.2, automata G′scci , i ∈ {1, . . . , Ns} have strongly connected components formed

with states (x′di , x
′
`i

), such that x′di is uncertain and x′`i is an Y-labeled state, i.e.,

x′`i = (x′i, Y ), where x′i ∈ X ′i. Since trace siti ∈ L(G′scci) and P ′i (siti) = st, where
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Figure 4.18: NDESWTS = (G, tmin, T ) for Example 4.6: communication delay

structure (a) and automaton G with minimal time function tmin (b).

P ′i := Σ
′∗
i → Σ∗, for all i ∈ {1, . . . , Ns}, when we compute GNET

scc = ||Nsi=1G
′
scci

,

trace st will synchronize the strongly connected components formed with states

(x′di , x
′
`i

), such that x′di is uncertain and x′`i is an Y-labeled state, i.e., x′`i = (x′i, Y )

for each G′scci , forming a strongly connected component in GNET
scc with states of type

(x′d1 , x
′
`1

), (x′d2 , x
′
`2

), . . . , (x′dNs , x
′
`Ns

), such that x′di is uncertain and x′`i is an Y-labeled

state.

Example 4.6 Consider NDESWTS = (G, tmin, T ) depicted in Figure 4.18(a) and

4.18(b). From Figure 4.18(a), it can be seen that the communication delay struc-

ture has two local diagnosers, LD1 and LD2, and three measurement sites, MS1,

MS2 and MS3. Let ΣMS1 = {b}, ΣMS2 = {c} and ΣMS3 = {a}, be the sets of

events that the measurement sites MS1, MS2 and MS3, respectively, detects. As-

sume that the set of observable events of local diagnoser LD1 is Σo1 = {b, c}. Thus,

the occurrence of the events in Σo1 are transmitted through communication chan-

nels ch11 and ch12, i.e., Σo11 = {b} and Σo12 = {c}. Assume now that the set

of observable events of LD2 is, Σo2 = {a, c}. Thus, the occurrence of the events

in Σo2 are communicated through channels ch22 and ch23, i.e., Σo22 = {c} and

Σo23 = {a}. Figure 4.18(b) depicts automaton G, where Σ = {a, b, c, σf}, and

the minimal time function is given as: tmin(x0, σf ) = 0.1, tmin(x1, a) = tmin(x2, c) =

tmin(x4, c) = tmin(x0, b) = tmin(x5, a) = tmin(x6, c) = tmin(x7, a) = tmin(x8, c) = 1,

tmin(x2, b) = 2 and tmin(x3, b) = 0.5. Finally, the maximal delay matrix is
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Figure 4.19: Automaton G1 of Example 4.6.

T = [T11 T12 T13; T21 T22 T23], where T11 = 0.3, T12 = 0.9, T13 = ∞, T21 = ∞,

T22 = 0.5 and T23 = 0.1. It is not difficult to check that L(G) is codiagnosable with

respect to Poi and Σf , i = 1, 2. We will now verify if NDESWTS remains codiagnos-

able in the presence of communication delays and intermittent loss of observation.

Automaton G1, shown in Figure 4.19, is computed according to Algorithm 4.1

as follows. In Step 1, we define the initial state of G1 as the pair (x0, 0), where x0

is the initial state of G. In Step 2, the set of events Σs
o11

= {bs1}, Σs
o12

= {cs1},
Σs
o1

= {bs1 , cs1} and Σ1 = {σf , a, b, c, bs1 , cs1} are created. Step 3 forms queue F =

[(x0, 0)] and, in Step 4, we establish new transitions and states. In Step 4, we obtain

(x, q) = (x0, 0), set F = [ ] and X1 = (x0, 0) in Steps 4.1 and 4.2. In Step 4.3, we

create the set of indices Io1 that records the indices of the observable events inside

q. Thus, Io1 = ∅, since q = 0. In Step 4.4, we compute, for all k ∈ Io1, the

minimal elapsed time after the occurrence of event qk in the plant, which is denoted

as minet(qk). We define two transitions from state (x0, 0) labeled by events σf and

b, since Γ(x0) = {σf , b} and q = 0, and the states reached by these transitions are,

respectively, (x1, 0) and (x5, b). We then add these states to queue F , which becomes

F = [(x1, 0), (x5, b)]. Notice that, event b (resp. σf ) is added (resp. not added)

to the second component of the reached state (x5, b) (resp.(x1, 0)) because it is an

observable event (resp. unobservable event). Since q = 0, no transition is defined in

Step 4.5. The iterations are performed until F becomes empty. Notice that in the

trace s = σfacbbs1cs1 ∈ L(G1) occurs a change of order in the observation of local

diagnoser LD1. The plant generates events c and b, in this order, however, the local
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diagnoser LD1 observes event bs1 before event cs1.

The next step in the verification of the NDESWTS is the computation, according

to Algorithm 4.1, of automaton G2, depicted in Figure 4.20. Notice that, the set of

observable and unobservable events of local diagnoser LD1 are Σ1o = {bs1 , cs1} and

Σ1uo = {a, b, c, σf}, respectively, and the set of observable and unobservable events of

local diagnoser LD2 are Σ2o = {as2 , cs2} and Σ2uo = Σ1uo = {a, b, c, σf}, respectively.

Let us now assume that event b is subject to intermittent loss of observation only

by local diagnoser LD1, and event a is subject to intermittent loss of observation

only by local diagnoser LD2. Thus, for: (i) local diagnoser LD1: Σ1,ilo = {b},
Σ1,nilo = {c} and Σs′

1,ilo = {b′s}; (ii) local diagnoser LD2, Σ2,ilo = {a}, Σ2,nilo = {c}
and Σs′

2,ilo = {a′s}. After forming those sets, we can compute automata G′1 and G′2,

according to Equation (4.19), that model the communication delay and intermittent

loss of observations of the events in Σ1,ilo and Σ2,ilo, respectively. State transition di-

agrams corresponding to automata G′1 and G′2 are depicted in Figures 4.21 and 4.22,

respectively. In order to check NDESWTS codiagnosability, according to Algorithm

4.2, we first to compute automata G′scc1 and G′scc2. Since states of diagnosers have

a long label, we rename states from G′1 and G′2 according to Table 4.6.

In Step 1 of Algorithm 4.2, we can compute automata G′scc1 = G′d1||G′`1 and

G′scc2 = G′d2||G′`2 according to Equation (4.22), where G′`1, G′`2 G
′
d1

, G′d2 are depicted

in Figures 4.23, 4.24, 4.25 and 4.26 respectively. In Step 2, we mark all strongly

connected components of G′scci, i ∈ {1, 2}, formed with states (x′di , x
′
`i

), such that

x′di is uncertain and x′`i is an Y-labeled state, i.e., x′`i = (x′i, Y ), where x′i ∈ X ′i.

Due to the size of automata G′scc1 and G′scc2, we show in Figures 4.27 and 4.27 only

the paths that reach strongly connected components with marked states in G′scc1 and

G′scc2, respectively. Since there exist those strongly connected components, according

to Theorem 4.2, the language L is not NDESWTS diagnosable. We now check if L

is NDESWTS codiagnosable or not. To this end, we need to check if some marked

strongly connected component of G′scci, i ∈ {1, 2}, “survives” to the parallel composi-

tion. In Step 3, we compute automaton GNET
scc = G′scc1||G′scc2. Since this automaton

has strongly connected components with marked states, as shown in Figure 4.29, L

is not NDESWTS codiagnosable with respect to χi, P
′
is, Dsi, i = 1, 2 and Σf = {σf}.

122



x0, 0

x5, 0

b

x6, a x6, 0 x6, c
a

c

x1, 0 x2, a
a

as2

cs2

x2, 0
as2

x3, 0

c
b

σf

as2

x3, c

b

x7, 0 x8, a

x4, c

x4, 0

x8, 0

cs2

a

x8, c

c

ccs2

cs2

Figure 4.20: Automaton G2 of Example 4.6.
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Figure 4.21: Automaton G′1 of Example 4.6.
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Figure 4.22: Automaton G′2 of Example 4.6.

123



Table 4.1: Renaming states of G′1 and G′2 of Example 4.6.

State of G′1 State of G′2 No. State of G′1 State of G′2 No.

(x0, 0) (x0, 0) 0 (x8, 0) (x8, a) 9

(x5, b) (x5, 0) 1 (x8, c) (x8, 0) 10

(x5, 0) (x6, a) 2 (x3, c) (x8, c) 11

(x6, 0) (x6, 0) 3 (x4, c0.5b) (x3, c) 12

(x6, c) (x6, c) 4 (x4, c0.5) (x3, 0) 13

(x1, 0) (x1, 0) 5 (x4, 0) (x4, 0) 14

(x2, 0) (x2, a) 6 (x4, c) (x4, c) 15

(x7, b) (x2, 0) 7 (x4, b) — 16

(x7, 0) (x7, 0) 8 (x3, 0) — 17
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b
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Figure 4.23: Automaton G′`1 of Example 4.6.

b

a
c

a

as2

cs2

as2

c
b

σf

as2

b

cs2

a

a′s2

a′s2

a′s2
ccs2

ccs2

0N

1N 2N 3N 4N

5Y 6Y 7Y

8Y 9Y 10Y

11Y

12Y 13Y 14Y

15Y

Figure 4.24: Automaton G′`2 of Example 4.6.
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cs1

bs1

{3N, 8Y, 13Y, 0N, 11Y, 4N, 7Y, 5Y, 1N, 10Y, 6Y, 2N, 9Y, 12Y}

{10Y, 8Y, 13Y, 3N, 2N, 9Y, 4N} {3N, 17Y, 4N, 15Y, 10Y, 9Y, 16Y, 14Y}

{3N, 4N, 15Y, 10Y, 9Y, 14Y} {14Y, 15Y}

cs1

cs1

cs1 cs1

bs1

Figure 4.25: Automaton G′d1 of Example 4.6.

cs2

as2

{3N, 8Y, 0N, 11Y, 4N, 7Y, 5Y, 1N, 10Y, 6Y, 2N, 9Y, 12Y}

{10Y, 15Y, 13Y, 3N, 11Y, 4N, 14Y} {3N, 8Y, 10Y, 11Y, 9Y, 7Y, 4N, 12Y}

{10Y, 15Y, 3N, 11Y, 4N, 14Y} {10Y, 11Y}

cs2

cs2

cs2

as2

cs2

Figure 4.26: Automaton G′d2 of Example 4.6.

cs1

({3N, 8Y, 13Y, 0N, 11Y, 4N, 7Y, 5Y, 1N, 10Y, 6Y, 2N, 9Y, 12Y}, 0N)

({3N, 4N, 15Y, 10Y, 9Y, 14Y}, 9Y)

s11 s12

c

({3N, 4N, 15Y, 10Y, 9Y, 14Y}, 10Y)

cs1c

({3N, 4N, 15Y, 10Y, 9Y, 14Y}, 14Y)

({3N, 4N, 15Y, 10Y, 9Y, 14Y}, 15Y)

Figure 4.27: Paths that reach strongly connected components with marked states

in G′scc1 of Example 4.6, where s11, s12 ∈ L(Gscc1).

125



cs2

({3N, 8Y, 0N, 11Y, 4N, 7Y, 5Y, 1N, 10Y, 6Y, 2N, 9Y, 12Y}, 0N)
s21 s22

c cs2c

({10Y, 15Y, 3N, 11Y, 4N, 14Y}, 10Y)

({10Y, 15Y, 3N, 11Y, 4N, 14Y}, 11Y)

({10Y, 15Y, 3N, 11Y, 4N, 14Y}, 14Y)

({10Y, 15Y, 3N, 11Y, 4N, 14Y}, 15Y)

Figure 4.28: Paths that reach strongly connected components with marked states

in G′scc2 of Example 4.6, where s21, s22 ∈ L(Gscc2).

cs2

({3N, 8Y, 13Y, 0N, 11Y, 4N, 7Y, 5Y, 1N, 10Y, 6Y, 2N, 9Y, 12Y}, 0N),

sNET1

c

cs2

({3N, 4N, 15Y, 10Y, 9Y, 14Y}, 14Y),

({3N, 8Y, 0N, 11Y, 4N, 7Y, 5Y, 1N, 10Y, 6Y, 2N, 9Y, 12Y}, 0N)

sNET2

({10Y, 15Y, 3N, 11Y, 4N, 14Y}, 14Y)

({3N, 4N, 15Y, 10Y, 9Y, 14Y}, 15Y),
({10Y, 15Y, 3N, 11Y, 4N, 14Y}, 15Y)

({3N, 4N, 15Y, 10Y, 9Y, 14Y}, 15Y),
({10Y, 15Y, 3N, 11Y, 4N, 14Y}, 14Y)

c

cs1

cs1
cs2

c

cs2

({3N, 4N, 15Y, 10Y, 9Y, 14Y}, 9Y),
({10Y, 15Y, 3N, 11Y, 4N, 14Y}, 10Y)

({3N, 4N, 15Y, 10Y, 9Y, 14Y}, 10Y),
({10Y, 15Y, 3N, 11Y, 4N, 14Y}, 11Y)

({3N, 4N, 15Y, 10Y, 9Y, 14Y}, 10Y),
({10Y, 15Y, 3N, 11Y, 4N, 14Y}, 10Y)

({3N, 4N, 15Y, 10Y, 9Y, 14Y}, 9Y),
({10Y, 15Y, 3N, 11Y, 4N, 14Y}, 11Y)

c

cs1

cs1

({3N, 4N, 15Y, 10Y, 9Y, 14Y}, 14Y),
({10Y, 15Y, 3N, 11Y, 4N, 14Y}, 15Y)

Figure 4.29: Paths that reach strongly connected components with marked states

of GNET
scc of Example 4.6, where sNET1 , sNET2 ∈ L(GNET

scc ).

Remark 4.6 (Computational complexity of Algorithm 4.2) The computational com-

plexity of Algorithm 4.2 is based on the computation of GNET
scc that is performed by

parallel composition between automata G′scci, i = 1, . . . , Ns. Since each G′scci is the

parallel composition between G′di and G′`i we can construct Table 4.6 to show the

maximum number the states and transitions of all automata that must be computed

to obtain GNET
scc from G′i. It is worth remarking that |Xi| (the number of states of

G′i) as function of |X| (number of states of the plant) was computed in Remark 4.4.
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Table 4.2: Computational complexity of Algorithm 4.2.

No. of states No. of transitions

G′i |Xi| |Xi||Σ′i|

A` 2 2

G′`i 2|Xi| 2|Xi||Σ′i|

G′di |Xdi | = 22|Xi| 22|Xi||Σs
oi
|

G′scci 2|Xdi||Xi| 2|Xdi ||Xi||Σ′i|

GNET
scc

∏Ns
i=1 2|Xi||Xdi| (

∏Ns
i=1 2|Xi||Xdi ||Σ′i|

Complexity O(
∏Ns

i=1 |Xi||Xdi ||Σ′i|)

4.3.2 NDESWTS Verifier

We will now present an algorithm for the verification of NDESWTS codiagnosability

of DES based on the same idea as the verifier proposed in [47]. To this end, we first

present the definition of the one-to-one event renaming function, as follows.

ρi : Σ′iN → Σ′iρ (4.23)

σ 7→ ρi(σ) =

 σρi , if σ ∈ (Σ ∪ Σs′

i,ilo) \ Σf

σ, if σ ∈ Σs
oi
.

where Σ′iN = Σ′i \ Σf , for i = 1, . . . , n. The domain of function ρi can be extended

to Σ′∗iN as usual, i.e., ρi(sσ) = ρi(s)ρi(σ), for all s ∈ Σ′∗iN and σ ∈ Σ′iN . Function ρi

can also be applied to a language K as ρi(K) = ∪s∈Kρi(s).

Algorithm 4.3 NDESWTS codiagnosability verification using verifier

Input Automaton G′i = (Xi,Σ
′
i, f
′
i ,Γi, xi0), for i = 1, . . . , Ns.

Output Automaton V = (XV ,ΣV , fV ,ΓV , x0,V , XVm)

Step 1. Compute automaton G′i,N = (X ′iN ,Σ
′
iN
f ′iN ,Γ

′
iN
, (xi0 , N), ∅), where Σ′iN =

Σ′i \ Σf , for i = 1, . . . , Ns, that models the normal behavior of automaton G′i

as presented in Algorithm 2.2;
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Step 2. Compute automaton G′i,F = (X ′iF ,Σ
′
i, f
′
iF
,Γ′iF , (xi0 , N), XiFm

), for i =

1, . . . , Ns, that models the failure behavior of G′i as presented in Algorithm

2.2;.

Step 3. Construct automaton G′i,ρ = (X ′iN ,Σ
′
iρ , f

′
iρ ,Γ

′
iρ , (xi0 , N), ∅) where Σ′iρ =

ρi(Σ
′
iN

), and f ′iρ(xiN , σρi) = f ′iN (xiN , σ) with σρi = ρi(σ), for all σ ∈ Σ′iN and

xiN ∈ X ′iN .

Step 4. Compute automaton V̄i = G′i,ρ‖G′i,F = (YVi ,ΣVi , fVi ,ΓVi , yVi,0, ∅), for i =

1, . . . , Ns, where ΣVi = Σ′iρ ∪ Σ′i.

Step 5. Find all cyclic paths cli = (ykVi , σk, y
k+1
Vi

, σk+1, . . . , σ`, y
k
Vi

), where ` ≥ k > 0

in V̄i that satisfy the following condition:

∃j ∈ {k, k + 1, . . . , `} such that, for some

yjVi = (xji , N, y
j
i , Y ),∧(σj ∈ Σ′i) (4.24)

where xji , y
j
i ∈ Xi.

Step 6. Compute automata Vi = (YVi ,ΣVi , fVi ,ΓVi , yVi,0, YVi,m), where YVi,m is

formed by the states of V̄i that belong to strongly connected components that

contain cyclic paths cli which violate condition (4.24).

Step 7. Compute the verifier automaton V = V1‖ . . . ‖VNs =

(XV ,ΣV , fV , xV,0, XVm), where ΣV =
⋃Ns
i=1 ΣVi.

Step 8. Verify the existence of a cyclic path cl = (xkV , σk, x
k+1
V , σk+1, . . . , σ`, x

k
V ) in

V , ` ≥ k > 0, that satisfies the following condition:

xqV ∈ XVm ,∀q ∈ {k, k + 1, . . . , `}, and for some

q ∈ {k, k + 1, . . . , `}, σq ∈ Σ.

If the answer is yes, then L is not NDESWTS codiagnosable with respect to χi,

Dsi, P
′
si

, for i = 1, . . . , Ns, and Σf . Otherwise, L is NDESWTS codiagnosable.

The idea behind Algorithm 4.3 is similar to Algorithm 2.2. In Steps 1 and

2, we compute automata G′i,N and G′i,F that that models the normal and failure

behavior of G′i. In Step 3, we compute automaton G′i,ρ from G′i,N by renaming its
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unobservable events. In Step 4, we compute each verifier automaton V̄i = G′i,ρ‖G′i,F
for i = {1, . . . , Ns}. This verifier has the same idea as the verifier presented in

Algorithm 2.2: it is the parallel composition of the system with faults and the system

without faults, with a synchronization on the observable events, being, in this case,

Σs
oi

. In Step 5, we find the cyclic paths in V̄i with uncertain states (xjiNy
j
iY ) and

events not renamed. In Step 6, we form Vi from V̄i by marking those uncertain states

that belongs to the strongly connected components that the contain cyclic paths

which violate condition (4.24). Finally, in Steps 7 and 8, we compute the verifier

automaton V = V1‖ . . . ‖VNs and we check if some marked cyclic path survives

in automaton V . If the answer is yes, then L is not NDESWTS codiagnosable.

Otherwise, L is NDESWTS codiagnosable.

Lemma 4.2 Let G′i,N and G′i,F be computed according to Steps 1 and 2 of Al-

gorithm 4.3, respectively. Then, Lm(G′i,F ) =
⋃

Σf∈sDsi(χi(s)), and L(G′i,N) =⋃
Σf /∈ωDsi(χi(ω)).

Proof: The proof is straightforward from the construction of G′i, G
′
i,N and G′i,F .

�

Theorem 4.4 Language L is NDESWTS codiagnosable with respect to χi, Dsi,

P ′is, for i = 1, . . . , Ns, and Σf if, and only if, there does not exist a cyclic path

cl = (xkV , σk, x
k+1
V , σk+1, . . . , x

`
V , σ`, x

k
V ), ` ≥ k > 0 in V satisfying the following

condition:

xqV ∈ XVm , ∀q ∈ {k, k + 1, . . . , `}, and for some

q ∈ {k, k + 1, . . . , `}, σq ∈ Σ.
(4.25)

Proof: (⇒) Suppose that language L is not NDESWTS codiagnosable with re-

spect to χi, Dsi , P
′
si

, for i = 1, . . . , Ns, and Σf . Thus, according to Definition

4.4, there exists at least one arbitrarily long length trace st (s ∈ Ψ(Σf ), t ∈ L/s)
and traces ωi, i = 1, . . . , Ns, where Σf /∈ ωi and ωi is not necessarily distinct from

ωj, for j = 1, . . . , Ns and i 6= j, such that P ′si [Dsi(χi(st))] ∩ P ′si [Dsi(χi(ωi))] 6= ∅
for all i ∈ {1, 2, . . . , Ns}. Thus, according to Lemma 4.2 if L is not NDESWTS

codiagnosable, there exist traces siti ∈ Lm(G′i,F ) and siN ∈ L(G′i,N) such that,

P ′si(siti) = P ′si(siN ) for all i ∈ {1, 2, . . . , Ns}. As shown in [47], the existence of
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traces siti and siN such that P ′si(siti) = P ′si(siN ) for all i ∈ {1, 2, . . . , n}, implies in

the existence of a path pi in Vi, that ends with a cyclic path cli that satisfies condition

(4.24), whose associated trace vi ∈ L(Vi) satisfies PVii(vi) = siti and PViρ(vi) = siNρ ,

where siNρ = ρi(siN ), PVii : Σ∗Vi → Σ∗i and PViρ : Σ∗Vi → Σ∗iρ . Notice that, if the

states of the cyclic path cli are marked, then vi ∈ Lm(Vi), where Lm(Vi) denotes the

marked language of Vi. Since V = ||ni=1Vi, then Lm(V ) =
⋂n
i=1 P

−1
V Vi

[Lm(Vi)], where

PV Vi : Σ∗V → Σ∗Vi . Thus,
⋂n
i=1 P

−1
V Vi

(vi) ⊆ Lm(V ). Let v ∈ ⋂n
i=1 P

−1
V Vi

(vi). Since

vi ∈ Lm(Vi), PVii(vi) = siti and Pi(siti) = st, for all i ∈ {1, . . . , n}, and the common

events that synchronize the traces vi, for i = 1, . . . , Ns, in
⋂n
i=1 P

−1
V Vi

(vi) are in Σ,

then there will be a cyclic path in V , associated with v with all states marked, with

at least one transition labeled with an event σ ∈ Σ.

(⇐) Suppose that there exists a path p in V that ends with a cyclic path cl

that satisfies condition (4.25), and let v ∈ Lm(V ) be the trace associated with p.

Notice that, since V = ‖ni=1Vi, then Lm(V ) =
⋂Ns
i=1 PV Vi

−1[Lm(Vi)], and PV Vi(v) =

vi ∈ Lm(Vi), for i = 1, 2, . . . , Ns. Notice also that, the common events of traces

vi ∈ Lm(Vi), for i = 1, 2, . . . , Ns, are events σ ∈ Σ. Thus, since condition (4.25) is

verified, then at least one event in the cyclic path cl belongs to Σ, which implies

that all traces vi are associated with a path pi that ends with a cyclic path cli,

formed with marked states, that has an event in Σ. According to Algorithm 4.3,

the states of a cyclic path cli in Vi are marked only if the failure has occurred.

Thus, associated with the cyclic path cl of V there exists one cyclic path cli in each

verifier Vi, for i = 1, . . . , Ns, that satisfies condition (4.24), i.e., there exists a failure

trace siti ∈ L(Gi), with arbitrarily long length, and a normal trace siN ∈ L(Gi),

such that P ′is(siti) = P ′is(siN ), for all i ∈ {1, . . . , Ns}. In order to show that L is

not NDESWTS codiagnosable, notice that, since condition (4.25) is verified, then

there exists an arbitrarily long length failure trace st ∈ Σ∗, such that PV (v) = st,

where PV : Σ∗V → Σ∗. Since the events in Σ are common events of all verifiers Vi

and V = ‖Nsi=1Vi, then PVi(vi) = st, where PVi : Σ∗Vi → Σ∗, which shows that there

exists an arbitrarily long length failure trace st such that siti ∈ Dsi(χi(st)) for i ∈
{1, . . . , Ns}. Thus, according to Definition 4.4, L is not NDESWTS codiagnosable

with respect to χi, Dsi , P
′
is, for i = 1, . . . , Ns, and Σf . �

Example 4.7 Consider again the system of Example 4.6 NDESWTS = (G, tmin, T )
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depicted in Figure 4.18(a) and 4.18(b). We now apply the Algorithm 4.3 to compute

V1 and V2 by using as input automata G′1 and G′2 depicted in Figures 4.21 and 4.22,

respectively. Following Steps 1, 2, and 3 of Algorithm 4.3, automata G′1,ρ and G′1,F

shown in Figures 4.30 and 4.31, respectively and automata G′2,ρ and G′2,F , shown

in Figures 4.32 and 4.33, respectively, are computed. Continuing Algorithm 4.3,

verifiers V1 and V2 are computed. Due to the size of these automata, we show in

Figures 4.34(a) and 4.34(b) only those paths that contain the cyclic paths cl1 =

(ccρ1cs1)
p and cl2 = (ccs2cρ2)

q that satisfy condition (8), where p, q ∈ N, sV1 ∈ L(V1)

and sV2 ∈ L(V2). After the computation of V1 and V2, we compute automaton

V = V1||V2. We show in Figure 4.35 only the path of V that contains a cyclic

path cl = (ccs2cρ2cρ1cs1)
l, where l ∈ N, associated with the cyclic paths cl1 and cl2.

Therefore, language L is not NDESWTS codiagnosable with respect to χi, Dsi, P
′
si

,

i = 1, 2, . . . , n and Σf .

x0, 0

x5, b

bρ1

x5, 0 x6, 0 x6, c
b′sρ1 cs1

bs1 aρ1

cρ1

Figure 4.30: Automaton G′1,ρ of Example 4.7.

x0, 0N

x1, 0Y

σf

x2, 0Y
a

x3, cY
c

x4, c0.5bY
b

x3, 0Y
b

x4, bY x4, 0Y

x4, cY

c

x4, c0.5Y

cs1 cs1

cs1

bs1

bs1

cs1

x7, bY x7, 0Y x8, 0Y x8, cY
abs1

cs1

c

b
b′s1

b′s1

b′s1

Figure 4.31: Automaton G′1,F of Example 4.7.
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x0, 0

x5, 0

bρ2

x6, a x6, 0 x6, c
aρ2

cρ2as2

cs2
a′sρ2

Figure 4.32: Automaton G′2,ρ of Example 4.7.

x0, 0N

x1, 0Y x2, aY
a

x2, 0Y
as2

x3, 0Y

c

b

σf

as2

x3, cY

b

x7, 0Y x8, aY

x4, c

x4, 0

x8, 0Y

cs2

a

x8, cY
a′s2

a′s2
ccs2

ccs2

Figure 4.33: Automaton G′2,F of Example 4.7.

(x0, 0N), (x0, 0N)

sV1

cρ1

(x6, 0N), (x4, 0Y )

(x6, 0N), (x4, cY )

(x6, cN), (x4, cY )

c

cs1
cρ2cs2

(x0, 0N), (x0, 0N)

sV2

(x6, cN), (x4, 0Y )

(x6, cN), (x4, cY )

(x6, 0N), (x4, 0Y )

c

(a) (b)

Figure 4.34: Path of V1 with cyclic path cl1 (a) and path of V2 with cyclic path cl2

(b).
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[(x0, 0N), (x0, 0N)], [(x0, 0N), (x0, 0N)]
sV

cρ2

c

cs2

[(x0, 0N), (x4, 0Y )], [(x6, cN), (x4, 0Y )]

[(x6, 0N), (x4, cY )], [(x6, cN), (x4, cY )]

[(x6, cN), (x4, cY )], [(x6, cN), (x4, 0Y )]

[(x6, 0N), (x4, cY )], [(x6, 0N), (x4, 0Y )]

[(x6, cN), (x4, cY )], [(x6, cN), (x4, cY )]

cs1

cρ1

Figure 4.35: Path of V with cycle path cl Example 4.7.

Remark 4.7 (Computational complexity of Algorithm 4.3) The computational com-

plexity of Algorithm 4.3 is based on the computation of automaton V , which is

the parallel composition between each V1, . . ., VNs. The computation of each Vi,

i = 1, 2, . . . , Ns, is similar to Algorithm 2.2 ( [47]). Basically, we need to apply this

algorithm by considering the input as G′i. Table 4.7 shows the maximum number of

states and transitions of all automata that must be computed in order to obtain the

verifier automaton V for Ns local diagnosers according to Algorithm 4.3.

Table 4.3: Computational complexity of Algorithm 4.3.

No. of states No. of transitions

G′i |Xi| |Xi||Σ′i|

AN 1 |Σ′i| − |Σf |

G′N |Xi| |Xi|(|Σ′i| − |Σf |)

A` 2 2|Σf |

G′`i 2|Xi| 2|Xi||Σ′i|

G′i,F 2|Xi| 2|Xi||Σ′i|

G′i,ρ |Xi| |Xi|(|Σ′i| − |Σf |)

Vi 2|Xi|2 2|Xi|2(2|Σ′i| − |Σf |)

V
∏Ns

i=1 2|Xi|2
∏Ns

i=1 2|Xi|2(2|Σ′i| − |Σf |)

Complexity O(
∏Ns

i=1 |Xi|2(|Σ′i| − |Σf |))
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4.4 Concluding Remarks

In this chapter, we have introduced an architecture of networked discrete event sys-

tems with timing structure (NDESWTS) subject to delays and losses of observations

of events between the measurement sites (MS) and local diagnosers (LD), and, for

this purpose, we have introduced a new timed model that represents the dynamic

behavior of the plant based on the, a priori, knowledge of the minimal firing time

for each transition of the plant and on the maximal delays in the communication

channels that connect the measurement sites (MS) and local diagnosers (LD). We

converted this timed model in an untimed one, and, based on the untimed model, we

presented necessary and sufficient conditions for NDESWTS codiagnosability and

proposed two tests to its verification: the first one based on diagnosers, and a second

one, based on verifiers.
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Chapter 5

Conclusion

The main goal of this work was to propose the problem of codiagnosability of net-

worked discrete event systems with timing structure (NDESWTS) in the presence

of delays and loss of observations. In this regard, the main contributions of this

work are described below:

• We introduce a new timed model that represents the dynamic behavior of

the plant based on the, a priori, knowledge of the minimal firing time for

each transition of the plant and on the maximal delays in the communication

channels that connect measurement sites and local diagnosers.

• Methodology to construct an equivalent untimed model for NDESWTS. We

provide algorithms for the computation of untimed deterministic finite-state

automata that generate the extended languages associated with the plant and

the diagnoser observation. It is worth noticing that the model for NDESWTS

proposed here allows its application in other NDESWTS problems, for in-

stance, it has also been used to study the supervisory control of NDESWTS

subject to event communication delays and loss of observations [38, 39] or to

deal with malicious attacks/intrusions to cyberphysical systems.

• We propose two tests to verify for codiagnosability of NDESWTS: the first

one based on diagnosers, and and a second one, based on verifiers.

A preliminary version of the results obtained here was published in [82,83]. Other

research topics addressed in this work were:
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1. The introduction of a diagnoser-like Gscc to check the (co)diagnosability whose

the advantages are presented as follows.

• The test proposed here is that the search for indeterminate cycles is

replaced with the search for strongly connected components.

• The usual assumptions on language liveness and nonexistence of unob-

servable cycles of states connected with unobservable events only are no

longer required.

• this automaton test has in its event set both observable and unobservable

events of the plant, hidden cycles are “exposed” in this approach.

• this automaton provides all information to check (co)diagnosability, i.e.,

diagnosers Gd and Gtest do not carry enough information to determine if

an observed cycle of uncertain states is an indeterminate cycle, since it

is necessary to also perform a search for cycles in G.

• Other advantage of the proposed test is diagnosability verification be-

comes a particular case of codiagnosability verification.

• the test can be adapted to deal with codiagnosability of NDESWTS.

2. We proposed the extended verifier, developed to show not only the ambiguous

paths but also those paths that lead to language diagnosis.

3. We applied diagnoser-like automaton Gscc and extend verifier GV T to compute

the maximum time a system takes to diagnose a failure occurrence, so called

τ -codiagnosability, and the maximum number of event occurrences necessary

to diagnose a failure occurrence, so-called K-codiagnosability.

Possible topics of research that can continue this work are listed below:

(i) Different timing structures of networked discrete event systems. In this topic,

the idea is to consider a timing structure, where, instead of assuming minimal

activation times of the plant transitions and maximal communication delays,

we could assume a priori knowledge of the time intervals in which the plant

transitions can occur and the lower and upper bounds on the communication

delays, without relying on automata with guards.
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(ii) Computation of τ - and K-codiagnosability of codiagnosable NDESWTS and a

systematic way to compute the maximal delay in the communication channel

necessary so as to the language becomes not NDESWTS codiagnosable.

(iii) The study of other NDESWTS problems by using the modeling proposed in

this work, for example, opacity, prognosis, detectability, state estimation.

(iv) Application of NDESWTS codiagnosability to real manufacturing systems.

Namely, in the context of manufacturing services [84], we can use the models

proposed here to check the workflow, and thus, we can ensure the production

quality by making the failure diagnosis to each part of manufacturing system

automatically.
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