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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
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CONTROLE SUAVE POR MODOS DESLIZANTES E BUSCA EXTREMAL
APLICADOS A TURBINAS EÓLICAS

Gabriel Felippe da Cruz Pacheco

Março/2018

Orientador: Alessandro Jacoud Peixoto

Programa: Engenharia Elétrica

Este estudo se direciona à aplicação de controle por busca extremal (ESC) em
uma malha de controle externa a fim de realizar o rastreamento de ponto de máxima
potência (MPPT). Para o caso no qual medições de potência não estão disponíveis,
um mecanismo para estimação de torque ou potência é proposto. Este algoritmo
de otimização não necessita qualquer tipo de medida ou estimação da velocidade do
vento nem de conhecimento prévio acerca da curva de potência da turbina.

Na malha de controle interna, um controlador não linear robusto também é pro-
jetado a fim de garantir rastreamento prático global para a velocidade angular do
rotor da turbina. A parte robusta do controlador, que mantém uma resposta transi-
ente rápida, é baseada em controle por modos deslizantes mas apresenta um sinal de
controle suavizado (SSC), evitando chatttering. Tal controlador fora previamente
projetado para sistemas lineares com grau relativo arbitrário, este trabalho apre-
senta uma primeira generalização para classe de plantas não-lineares representada
pelos sistemas de conversão de energia eólica. Além disso, o algoritmo de controle
não necessita de medidas de fluxos do estator ou de observadores desta variável.
O mesmo é projetado usando uma propriedade de estabilidade inerente à dinâmica
do WECS e demonstrada neste documento, chamada de estabilidade entrada para
estado com relação à velocidade de rotação do rotor da turbina e suas derivadas no
tempo.

A análise de estabilidade em malha fechada para o sistema de conversão de
energia eólica é fornecida considerando a malha interna com SSC e a externa com
uma variação do ESC baseado em perturbações senoidais. A eficácia do esquema de
otimização e controle proposto é evidenciada através de simulações numéricas.
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This study addresses the application of extremum seeking control (ESC) in an
outer loop to perform the maximum power point tracking (MPPT) in wind en-
ergy conversion systems (WECS). For the case when power measurements are not
available, a torque or power estimation scheme is proposed. This optimization al-
gorithm is categorized as a Hill Climb Search (HCS) control and does not require
any measurement or estimation of the wind speed nor previous knowledge about the
turbine’s power-curve.

It is also designed a nonlinear robust controller for the inner loop in order to
achieve global practical tracking of the turbine’s rotor speed. The robust part of the
controller, which maintains fast transient response, is based on sliding mode control
that features a smooth control signal (SSC), free of chattering, previously designed
for linear plants with arbitrary relative degree. In this sense, this work presents a
first generalization of this controller for the class of nonlinear plants representing the
WECS dynamics. Moreover, the proposed robust inner loop control does not require
measurements of the stator flux nor any flux observer. The controller is designed
by using an inherent stability property of the WECS dynamics demonstrated in
this document, named, the input-to-state stable with respect to the turbine angular
velocity and its time derivatives.

The closed-loop stability analysis is provided considering the WECS with an in-
ner loop with SSC and an outer loop with a variation of the ESC based on sinusoidal
perturbations. The effectiveness of the proposed scheme is supported by analysis
and simulation results.
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Chapter 1

Introduction

In the past decades, renewable energy has been a hot topic among both academic
and industrial segments. Over the last 25 to 30 years, studies [4, 7–9] have shown
that the worlsd’s main energetic grid is, undoubtedly, to changed from a fossil fuel
base to some alternative sources for the sake of the planet. The two major actors in
this scenario are: nuclear and renewable energies [10]. Each of them have its benefits
and drawbacks. This chapter aims to provide the reader an introduction on the wind
energy industry segment as well as how the technical details studied on this work
around nonlinear control and optimization are relevant for helping wind electricity
generation to be more efficient and, thus, even more economically attractive. After
that, section 1.2 provides some important notation and terminology remarks used
throughout the text and, finally, an overview of how the document is organized is
presented in section 1.3.

1.1 Wind Energy Electricity Generation

One of the most promising renewable energies sources is the wind power generation.
Although taking benefit from the wind power is somehing that dates thousands of
years back with the first wind mills, its usage for electricity generation has one of the
most important breakthroughs associated to the the oil crisis in 1973, when the USA
government has started being involved with wind energy research and development
of vertical-axis, horizontal-axis and innovative types of wind turbines [11–15]. As
of 2016, Wind Energy Convertion Systems (WECS) have reached 7% of the total
global electricity generation capacity [16].

Among all renewable energy technologies used to generate electricity, wind en-
ergy is the second one in terms of installed capacity, loosing only for hydro power
generation [7], showing that it is a very mature technology. The global installed
capacity has been continuously increased each year as shown in figure 1.1. Figure
1.2 shows the current top ten players on the wind energy generation scenario.
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Figure 1.1: Global Annual (top) and Cummulative (bottom) Installed Wind Ca-
pacity [1]

One might acknowledge that WECS can also have some drawbacks: for instance
some studies [17, 18] have shown the increase on the number of bird and bat mortality
around wind farms, impacting wildlife, and the increase of noise pollution and visual
interference [19]. Although these impacts are extremely important and must be
addressed by both academia and industry, this kind of problems are certainly less
significant than the environmental impacts caused by hydroelectric power plants or
nuclear power plants, which have also the disadvantage of having substantially higher
installations costs and construction times. [10]. In addition, the benefits taken from
WECS on the reduction of water consumption and environmental pollution [19] still
make this type of renewable energy as the most promising one.

Figure 1.2: Top 10 Countries in Global Wind Capacity, 2016 [2]

2



1.1.1 WECS Techonology

There two main categories of wind turbines: horizontal-axis wind turbines (HAWTs)
and vertical-axis wind turbines (VAWTs). However, within these two categories
there are several variations as figure 1.3 depicts. The turbines can also vary on
the number of rotor blades used, on the ideal wind conditions for operation (i.e.
high or low wind speeds), whether or not having a gearbox, generator type (i.e.
synchronous, asynchronous or direct current), etc.

Figure 1.3: Different Types of Wind Turbines [3]

Each type of turbine has different aerodynamics characteristics and has advan-
tages when compared to the others. For instance, for urban electricity generation,
VAWTs like the Darrieus turbine are preferred due to the fact they can extract
more energy from turbulent flows, which is the case around buildings, since they are

3



capable of generating electricity independently of the wind direction [3].
However, the most usual type is the (a): Modern HAWT with three blades

sketched in figure 1.3. This kind of turbine is the most commercially available for
industrial applications due to hiistorical reasons and to its higher efficiency (greatest
power coefficient) for a relatively wide range of the tip speed over wind speed ratio
as shown in figure 1.4.

Figure 1.4: Power Coefficient of Different Wind Turbines Compared to Betz’s Law
[4]

Figure 1.4 also shows the difference between the theoretical limit for the power
coefficient given by the Betz’ law [20, 21] and their values obtained from real tests.
This difference is explained due to aerodynamic, mechanical and electrical losses
in the assembled system. More details about the power coefficient Cp and the
WECS properties are given in Chapter 2. Nevertheless, it is important to mention
here that each wind energy converter has a specific characteristic power curve that
evidences the dependency of the generated output power on the average wind speed.
Although this curve varies from a converter to another, some general operational
characteristics can be pointed out looking at a generic power curve as shown in
figure 1.5.

Figure 1.5 shows that there are four different regions of operation for a wind
energy conversion system:

• Region/Phase I : In this region, the wind speed is lower than the converter
minimum speed needed for start-up. For that reason, this speed threshold is
called the cut-in wind speed. Thus, in this phase, the electric power output is
obviously zero;

• Region/Phase II : This is called the sub-rated region. The wind speed is
higher than cut-in wind speed ( 3-4 m/s), so the converter is running and
generating electric energy, and it is below the rated wind speed ( 12-14m/s).

4



Figure 1.5: Typical HAWT Characteristic Power Curve [4]

The Theoretically useful wind power curve has a cubic dependency on the wind
speed, however, due to losses that are not linear to speed such as aerodynamic
friction ones, the dependency is changed from the theoretic relationship when
it comes to useful electric power at the generator.

• Region/Phase III: This is called the rated region. At the rated wind speed ( 12-
14 m/s), the generator reaches its capacity, hence, for wind speeds above this
value and below the cut-out speed ( 24-26 m/s), the rotor absorbs more power
than the installed nominal generator is designed for, which must be avoided by
some control strategy that transfers at most the installed generator capacity
to the generator.

• Region/Phase IV: In this region, the wind speed is too high (above the cut-
out wind speed) for the installed converter and the WECS structure might be
mechanically damaged if operation continues. In that case, the generator is
shut down the delivered power is obviously zero.

1.1.2 Control of Wind Systems

For phases II and III, i.e wind speeds above the cut-in and below cut-out, adequate
control techniques are necessary so that the all available power on the characteristic
power curve is extracted. As previously explained, phase III requires that the de-
livered power is controlled to avoid rotors deterioration and and to not exceed the
generator’s thermal limitation. However, once the nominal wind speed is reached,
the best thing that can be done is to maintain the generators power constant on its
nominal capacity regardless of the wind speed.

There are two main strategies for power control on the rated region: stall and
pitch controls, but the second one presents smoother phase transitions and shut-
downs [4]. Thus, the most used control strategy is the variable pitch to maintain
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the generator power in its maximum nominal capacity for the rated power region.
Nonetheless, the main focus of the present work is to deal with power optimiza-
tion in the sub-rated region (phase II) because, in this phase, there is an optimal
value for the tip-speed ratio for each wind speed so that the Maximum Power Point
(MPP) can be achieved. Hence, it is not only necessary to control the pitch angle
or the rotor speed but also to make these variables follow a desired set-point that
maximizes mechanical power extraction for each different wind speed.

Thus, the so-called Maximum Power Point Tracking (MPPT) can be achieved in
two steps: solving the control/tracking problem and calculating the optimal/desired
reference signal to the tracking problem. In the following, these two steps are dis-
cussed in more details. To tackle the tracking problem, there are different ways of
manipulating the electric output on a WECS, but, below the rated wind speed, the
most efficient way to maintain the optimum power coefficient is to adapt constantly
the rotor speed [22]. For the second point, design methods of tracking the maxi-
mum power or torque are essential for WECS with variable wind speed [23–25] and
present several advantages, such as: improvement of transient performance [25] and
model uncertainties [24]. There are mainly three categories of MPPT techniques:
tip speed ratio (TSR) control, power signal feedback (PSF) control and hill-climb
search (HCS) control [26, 27]. HCS is considered to be flexible and simple in im-
plementation and no wind speed sensors (or observers) nor prior knowledge of the
wind turbine’s characteristics is required, while TSR and PSF usally rely on both
of these variables.

A new trend regarding the control of wind systems is trying to optimize power
generation for a whole wind farm. The goal in that case is to control numerous wind
turbines simultaneously, taking into account their interaction. An HCS strategy
based on Extremum Seeking Control has been developed in [28].

1.1.3 Dissertation Purpose

The objective of this work is to present a fixed pitch-variable speed hierarchical
control scheme for the sub-rated region (see figure 1.5) in order to achieve MPPT in
WECS. The main idea is to use as an inner loop a Variable Structure Control (VSC)
based controller in order to solve the global tracking problem with fast transient re-
sponse so that the turbine’s angular speed error stays within the vicinity of zero
for all times. For the outer loop, a real-time non model based algorithm relying on
Extremum Seeking Control (ESC) is developed to calculate at each instant the tur-
bine’s rotor speed reference signal that maximizes the power or torque. In that way,
the ESC outer loop provides this variable set-point to the inner loop, maximizing
wind power extraction.
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In the literature, many works such as [29–32] rely on wind measurement or
estimation to perform MPPT via TSR control. However, as in other works like [33–
38], this is an HCS algorithm and has the advantage of not needing any information
about the wind speed nor the turbine’s power curve. In this work, the MPP is
extracted by just knowing that the mechanical power is an unimodal convex function
of both wind and turbine rotor speeds as well as some other turbine’s parameters.
An interesting work is presented in [39], in which the authors, by using the proper
change of variables, transform the nonlinear and not convex optimization problem
into a linear convex one and then apply economical Model Predictive Control (MPC)
to handle both maximization of transferred energy while respecting grid delivered
power gradient and other constraints.

1.2 Notation and Terminology

The following notation and basic concepts are employed: (1) ISS means Input-to-
State-Stable and classes K, K∞ functions are defined as in [40]. (2) The Euclidean
norm of a vector x and the corresponding induced norm of a matrix A are denoted by
|x| and |A|, respectively. (3) The symbol “s” represents either the Laplace variable
or the differential operator “d/dt”, according to the context. (4) As in [41, 42] the
output y of a linear time invariant (LTI) system with transfer function H(s) and
input u is given by y = H(s)u. Convolution operations h(t)∗u(t), with h(t) being the
impulse response from H(s), will be eventually written, for simplicity, as H(s) ∗ u.
(5) As usual in Sliding Mode Control (SMC), Filippov’s definition for solution of
discontinuous differential equations is adopted [43]. (6) π(t) is any exponentially
decreasing signal, i.e., a signal satisfying |π(t)| ≤ Π(t), where Π(t) := Re−λt, ∀t, for
some scalars R, λ > 0.

1.3 Document’s Organization

This document is organized as follows: First, in order to provide to the reader
the necessary contents for understanding the application of the results obtained
by this study, an overview of Wind Energy Conversion Systems is provided. Both
mechanical and electrical subsystems are presented in details so that a ground basis,
necessary for further chapters, is built.

After that, the optimization and control mathematical problem formulation is
stated along with all the necessary hypothesis so that the following results are valid.
Then, the focus stays on the Smooth Sliding Controller for which new results and
extensions in the context of WECS are presented and discussed. In Chapter 4, other
VSC-based controllers are presented as they were studied as possible replacements
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for the Smooth Sliding Controller. Still in Chapter 4, a variation of the Extremum
Seeking Control Algorithm is discussed and its application on WECS is presented
in details. Also, the proof of the overall closed-loop stability theorem for WECS is
provided.

Once the theoretical foundations are given and the theorems are proven for the
studied case, simulation results are presented and discussed for a specific HAWT,
proving the benefits of the developed Optimization and Control scheme. Finally,
the conclusions about this work are addressed, pointing out the scientific benefits
brought by this study as well as some drawbacks and limitations that could be
addressed on future work.
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Chapter 2

Wind Energy Convertion Systems

This chapter aims to present all WECS’s main elements and components. Techni-
cal details about wind turbines, generators and conncection to the power grid are
provided, followed by an overall scheme for a usual WECS. Finally, the mathemat-
ical modellings related to the aerodynamics and the energy conversion System for
the type of wind turbine studied in this work are presented as well as some im-
portant properties related to electrical and mechanical subsystems. An overview
of other contents presented such as Field Oriented Control (FOC) and Modulation
Techniques is also given.

2.1 Wind Turbines

A simplified scheme of a three blade rotor HAWT is given in figure 2.1. Even though
the concepts of the control strategies developed here are not dependent on the type
of the wind turbine, all theoretical results rely on a specific (but usual) mathematical
formulation for the aerodynamics, the mechanical and electrical subsystems. Thus,
the HAWT shown figure 2.1, which is the most usual in the industry, is the type to
be considered on the present work. As figure 2.1 depicts a wind turbine is consisted
by a high number of complex subsystems. Three main components can be seen in
figure 2.1: the tower, the nacelle and (of course) the rotor blades.

2.1.1 Tower

The tower has the function of absorbing static and dynamic stresses applied to
all suspended elements. Their height, which is usually around 80 meters off the
ground for modern wind turbines [2], is determined from a calculation based on the
rotor blade length (turbine radius). Any length added to this value would be an
economic study on the trade-offs between the increased engineering costs and the
higher average wind speeds (leading to higher power generation) at this new height
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Figure 2.1: Three Blade Rotor HAWT Scheme [4]

[4]. Due to technological progress and history, there are many different tower heights
present in the industry, varying from 20 meters high towers to more than 100 meters
ones [11].

2.1.2 Rotor Blades

In contact with the moving mass, the rotor blades have their shape and size opti-
mized for capturing the greatest possible amount of energy from the wind. However,
to do that, it is necessary that the rotor is aligned with the wind direction, which
is performed by yaw mechanisms that can control it passive or actively depend-
ing on the size of the turbine. This mechanism is usually mounted on top of the
tower where a gear wheel drives the rotor to be aligned with the wind direction
via mechanical, hydraulic or electromechanical elements [11] . When yaw control is
performed actively (most usual case), this mechanism has a dedicated control sys-
tem that handles all relevant wind direction data coming from the sensors mounted
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on the nacelle. In this work, the focus is on the turbine rotor speed control, it is
assumed that the adequate yaw mechanisms are in place and that the rotor is always
facing the winds coming to the turbine.

Rotor blades adjustment mechanisms are also an important topic due to their
impact in power and revolution control on the rated power region, their capability
of putting the blades into feathered (no tangential forces applied) pitch position in
emergency situations and their ability to provide additional breaking to the already
existent brake elements. However, as stated in Chapter 1, the focus of the present
work is MPPT during the sub-rated power region, which is more effectively per-
formed by continuous adaptation of the rotor speed. As yaw mechanisms, blade
adjustments ones will be assumed to be in place so that the focus of the study is
maintained.

2.1.3 Nacelle

The nacelle is a cover housing that enclosures the rotor hube, the braking system,
the gearbox, the generator, the electric switch board and control system unit and
some wind sensors mounted on its shell. Thus, the energy conversion train takes
place inside the nacelle.

Figure 2.2: WECS Energy Conversion Train.

Figure 2.2 describes this process of energy conversion dividing the WECS into
multiple stages. First, the rotor blades take the translational kinetic energy coming
from the winds and make the rotor turn, transforming this energy into rotational
kinetic energy. At this point, the turbine shaft, also called the ”slow” shaft of the
power train, is turning. Although there exists gearless wind turbines, usually, the
angular speeds on the turbine shaft are not high enough to be directly connected
to a generator because its nominal capacity normally require faster speeds. Thus, a
gearbox is responsible for increasing that angular speed by a factor equals to its ratio
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(n) at the generator shaft, also called the ”fast” shaft. Commonly, the gearbox also
serves as the main rotor bearing. On its turn, the generator converts the mechanical
rotation energy into electrical energy. Generators can be synchronous, asynchronous
(induction) or direct current, more details are explored in section 2.2. Finally, the
grid connection can be done directly, using AC/AC, AC-DC/DC-AC or DC/AC
converters depending on the converter’s and generator’s type, or indirectly, when
the generated electric energy is stored somewhere else or sent to a centralized unit
so that it would connect to the power grid in a second moment.

In each part of the energy conversion train, there are losses due to numerous
reasons. Aerodynamic losses are present mainly due to non-optimal blade shape,
mechanical losses are caused by friction and consequently heat generated at shaft
bearings and/or gearboxes and electrical losses might occur at the energy conversion
inside the generator, at the subsequent generator-to-power-grid converters or even
due to grid power losses. This fact leads to the comments presented in Chapter 1
for figures 1.4 and 1.5 regarding the difference the Betz’ law theoretical limits and
the actual maximum power coefficients for different types of wind turbines.

In the following sections, electric generators (section 2.2) and grid connection
technologies (section 2.3) are discussed in more details.

2.2 Electric Generators and Field Oriented Control

As stated in the latest section, electric generators are one of the key components of
the wind energy conversion system. They can be direct current-type, synchronous or
induction generators. However, DC generators are rarely used in WECS due to their
usual inferior nominal capacity when compared to AC ones. Big DC generators are
commonly very expensive and for generating energy to be transmitted to the power
grid, the step of DC/AC by means of inverters would still be necessary. Induction
generators are usually less expensive, require less maintenance and are more robust
than synchronous generators and so they are the preferred type of generator used
in the context of WECS.

Concerning the generator-side control techniques, Field Oriented Control (FOC)
is a widely known method that allows torque and flux control decoupling on 3-phase
electric machines, both synchronous and induction ones. This task is performed
by means of two linear operators: Clark and Park transformations, followed by
modulation techniques - such as Space Vector Pulse Width Modulation (SVPWM)
- to drive the 3-phase AC inverter and control the generator‘s speed, for example.
The idea behind FOC is that it is way easier and intuitive to design control laws
once taking the important variables to the most adequate reference frame. After
this is done, all the complexity that would appear on the initial reference frame will
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be handled exclusively by the transformations themselves.
The Clark direct-transformation is responsible for taking the stator currents from

the 3-phase (A,B,C) space and project them into the 2-phase (α, β) orthogonal
space. The calculations go as follows:

[
Iα

Iβ

]
=

[
1 0 0
1√
3

2√
3

0

]iAiB
iC

 , where iA + iB + iC = 0 (2.1)

After Clark’s transformation, the currents are rotated into the rotating frame of
the generator‘s rotor, which is the 2-phase (d, q) space. This represents Park’s direct
transformation, and the rotation matrix is defined as follows:[

id

iq

]
=

[
cos(θo) sin(θo)

−sin(θo) cos(θo)

]
︸ ︷︷ ︸

Rθo

[
Iα

Iβ

]
(2.2)

where θo is the rotor flux position.
Figure 2.3 shows an schematic representation of Clark and Park transformations

and the reference-frame changes.

Figure 2.3: Clark-Park frame transformations, adapted from [5]

Both Clark and Park transformations have inverses, so the strategy in FOC is to
perform the direct transformations using measurements, apply the control algorithm
(usually PI) in the rotating rotor frame and then apply inverse transformations back
so the appropriate modulation can drive the 3-phase AC inverter. For more details
on FOC, please refer to [44].

For the reasons mentioned above, in this study, a Squirrel-Cage Induction Gen-
erator (SCIG) is considered, as in [33].
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2.3 Power Grid Connection

In the WECS context, there are mainly two types of generator-grid converters if
AC electric generators are being used. The first type represent the most traditional
ones, called back-to-back converters. They rely on rectifier (AC/DC), storage (DC-
link) and inverter (DC/AC) mechanisms in which the storage elements are usually
big capacitors.

Matrix converters (MCs) are semiconductor based circuits that allow bidirec-
tional power flow via specific switches organized in a 3-by-3 matrix (for the case of
3-phase input and 3-phase output power transfer). Also, MCs have the capability
of having a controlled power factor, do not require big storage elements and can be
significantly smaller than usual back-to-back converters. Figure 2.4 shows a typical
MC used on WECS for connecting an Induction Generator IG to the power grid.

Figure 2.4: Matrix Converter usual topology. [6]

A detailed study comparing the various different types of power electronics con-
verters used on wind turbine systems is provided in [45]. In this work, an MC was
chosen due to the advantages pointed out in the last paragraphs. The model of
the used MC can be found at [33]. It is important to highlight, though, that it is
not considered here the modulation techniques to act on the MC. It is considered,
however, that the stator electrical frequency and peak amplitude generated at the
MC’s output are directly available to the controller as it’s going to be presented on
the following subsections.

2.4 WECS Scheme

After this summary about all main technologies used on WECS, a complete diagram
using the most pertinent pieces discussed in the last sections is elaborated for this
case study and presented in figure 2.5.
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Figure 2.5: Detailed WECS scheme

Figure 2.5 shows that a squirrel cage induction generator is used for electricity
generation and that an MC is used for AC/AC direct conversion from the generator
to the power grid side. The next sections cover almost every aspect of the above
diagram with the only exception being the modulation techniques for commuting
the bidirectional switches on the MC. This diagram will be referenced throughout
the text as it groups into a visual representation all the necessary elements for
understanding the modeling, control and optimization parts of the specific WECS
studied in the present work.

2.4.1 The Aerodynamics

The wind power available (Pw) on the blade impact area is defined as:

Pw : =
1

2
ρaSV

3 , (2.3)

where ρa is the air density in kg/m3, S is the cross-sectional area in m2, and V is
the wind speed in m/s.

The fraction of power effectively extracted from the wind (Pw) by a wind turbine
varies with the wind speed V , the rotational speed of the turbine ωt, and turbine
blade parameters, for instance, the angle of attack and pitch angle B, which is
assumed zero without loss of generality. The ratio of the turbine tip speed (Rωt) to
the wind speed (V ), standing for Tip Speed Ratio (TSR), is defined as

λ =
Rωt
V

, (2.4)

where R is the maximum radius (blade length) of the rotating turbine in m and
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ωt is in rad/s.
The actual mechanical power output of the turbine Pm is defined as:

Pm := CpPw (2.5)

where Cp is the coefficient of performance or power coefficient, which is in general
a function of the blade pitch angle (once again, considered zero), the wind speed
V and the rotor speed ωt. Moreover, Pm can be written as a function of λ, by
considering one usual approximation for Cp [46]:

Cp(λ, 0) := C1

[
1

λ
− C2

]
e−(

C3
λ
−C4) , (2.6)

with C1 = 0.45/0.003, C2 = 13.635/151, C3 = 20 and C4 = 0.003. According to
Betz’s law the theoretical limit of the ratio of the turbine power to the wind power
is 0.59, however, in practice, this value varies about 0.20–0.45, [24, 47]. Although
the power coefficient curve can only be completely known by tests performed on the
actual WECS, including all its subsystems, it has been approximated numerically
in several references [24, 46, 47]. Figure 2.6 illustrates the power coefficient Cp in
(2.6) with wind speeds varying from 0 to 14 m/s.

0 2 4 6 8 10 12 14 16

ωt (rad/s)

0

0.1

0.2

0.3

0.4

0.5

0.6

C
p
(λ
,0
)

←

V
=
2m
/s

←

V
=
4m
/s

←

V
=
6m
/s

←

V
=
8m
/s

←

V
=
10
m
/s

←

V
=
12
m
/s

←

V
=
14
m
/s C∗

p

Figure 2.6: The power coefficient (2.6) as a function of the angular velocity ωt for
wind velocity varying in the interval (0, 14].

It is interesting to note that for each wind speed, there is a maximum C∗p given
by the maximizer w∗t . Moreover, taking the definition of Pm given in equation 2.5,
one can rewrite it as:

Pm =
1

2
ρaSV

3Cp(λ) (2.7)
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Figure 2.7: The mechanical power (2.6) as a function of the turbine’s angular
speed ωt for wind speeds varying in the interval (0, 14].

Figure 2.7 shows that for the same set of maximizers w∗t as the ones achieving
C∗p in figure 2.6, the maximum values of power extracted from wind can be found
by polynomial interpolation of the maxima. Thus, a third-order-like curve can be
generated and, theoretically, the MPP evolves along this curve. Hence, MPPT, can
be viewed as the problem of the tracking this unknown unknown function Pm∗ or,
equivalently C∗p .

In addition, the aerodynamic torque applied to the rotor by the wind is a variable
that can be estimated from the dynamic system equations presented in the following
subsections. Thus, they can also be used as cost functions to be maximized or as
auxiliary variables for estimating the mechanical power when this kind of informa-
tion is not available via measurements

(
T Va (ωt) = Pm/ωt

)
. One might rewrite the

aerodynamic torque as:

T Va =
1

2
ρaS

V 3

ωt
Cp(λ) =

1

2
ρaSRV

2 Cp(λ)

λ
. (2.8)

Figure 2.8 shows that also how the maximum torque varies with the turbine’s
angular speed. In Chapter 6, it will become clear, however, that maximizing torque
does not imply in maximum power and this happens because these two functions
have different maximizers ω∗t for each wind speed.

Hence, to summarize, according to the instantaneous wind speed, it is possible to
have different operation points. In other words, the optimum rotor speed is variable
for each value of the wind speed. The challenge is how to develop a system capable
of calculating automatically this variable set point always maintaining the desired
operation.
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Figure 2.8: The aerodynamic torque (2.8) as a function of the angular velocity ωt
for wind velocity varying in the interval (0, 14].

2.4.2 Energy Conversion System

From [33], the post Clark transformation (α, β) model equations for the electrical
subsystem considering a SCIG as in 2.5 are given by:

İα = −a0Iα + a1λα + a2ωrλβ + k0 cos(θ0) , (2.9)

İβ = −a0Iβ + a1λβ − a2ωrλα + k0 sin(θ0) , (2.10)

λ̇α = −a4λα + a3Iα − ωrλβ , (2.11)

λ̇β = −a4λβ + a3Iβ + ωrλα , (2.12)

where Iα and Iβ are the measured stator currents, λα and λβ are the rotor flux
linkages (not available for feedback) and θ0 =

∫ t
0
ω0(τ)dτ is the rotor flux position

and the output electrical angle of the matrix converter connecting the IG to the
power grid, with the electrical frequency of the stator ω0 being considered as the
control signal input satisfying:

θ̇0 = ω0 . (2.13)

The electromagnetic torque generated by the IG can be considered as the output
of the electrical subsystem and it is given by:

Te =
3pLm
2Lr

(Iβλα − Iαλβ) , (2.14)

where Lm is the mutual inductance, LsLr is the rotor inductance and p is the number
of pole pairs of the IG.

18



In (2.9) and (2.10), k0 := Vom/(Ls − L2
m/Lr) where the terms Vom cos(θ0) and

Vom sin(θ0) are the stator voltage of the (α, β) model, Vom being the stator constant
peak amplitude voltage obtained through the MC output voltage and Ls being the
stator inductance. In that sense, considering figure 2.5, as Vom is constant, ωo is the
only control signal coming from the MC and going to the IG and it’s role is drive
the wind turbine speed to it’s desired value.

The constants a0, a1, a2, a3 and a4 are calculated based on the system parameters
as follows:

Λ = 1− L2
m

Lr Ls
(2.15)

a0 = a2 a3 +
Rs

ΛLs
a1 = a2 a4

a2 =
Lm

ΛLs Lr

a3 =
LmRr

Lr

a4 =
Rr

Lr

where Rr is the rotor electric resistance and Rs is the stator electric resistance.
The mechanical subsystem (the turbine, the shaft and the gearbox) of the wind

turbine is modeled as a spring-damper with dynamics given as:

ω̇r =
p

J
(Te − TL/n) , (2.16)

˙̃θ = ωt − ωr/(pn) , (2.17)

ω̇t =
1

Jt
(T Va (ωt)− TL) , (2.18)

where ωr/p is the generator rotor angular speed, n is the gearbox ratio, T Va is the
aerodynamic turbine torque evaluated at a fixed wind velocity V , θ̃ is the angle shift
between the wind turbine angular position and the electrical angle of the rotor of
the IG (considering the gearbox), Jt (J) is the turbine (rotor) inertia and

TL = Ksθ̃ +B(ωt − ωr/(pn)) , (2.19)

is the load torque created by the spring-damper model, with Ks being the stiffness
coefficient of the spring and B is the damping ratio.
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2.4.3 WECS Stability Property

The following stability property of the WECS considered in the present work is
demonstrated in the this section considering both the electrical and mechanical
subsystems of figure 2.5.

Property The WECS dynamics (2.9)–(2.12) and (2.16)–(2.18) is ISS with respect
to |ε|, where

ε :=
[
ε1 ε2 ε3 ε4

]T
=
[
ωt ω̇t ω̈t

...
ω t

]T
(2.20)

The notion of Input-to-State Stability was first introduced by Eduardo Sontag in
1989 [48]. This concept has been developed since then [49, 50] and it is an extremely
important tool in the analysis of nonlinear systems.

Being a generalization of Global Asymptotic Stabily (GAS), ISS’s main advan-
tage is that it regroups into a single formulation both Lyapunov Internal Stability
and Input-Output Stability, such as bounded-input, bounded-output stability
(BIBO), notions.

A system is ISS w.r.t an input u if and only if there exist β ∈ KL and γ ∈ K so
that, for all initial states x0 and controls ut, and all t ≥ 0:

|x(t, x0, ut)| ≤ β(|x0| , t) + γ(||ut| |∞) (2.21)

Subsections 2.4.3 and 2.4.3 are used as a two-step proof of the above (2.4.3).

Electrical Subsystem

As usual in FOC, consider the transformation of the flux and the stator currents:[
λd

λq

]
:= Rθ0

[
λα

λβ

]
and

[
id

iq

]
:= Rθ0

[
Iα

Iβ

]
, (2.22)

with Rθ0 given by equation 2.2. Premultiplying the first equation in (2.22) by

M:=

[
0 1

−1 0

]
(2.23)

one can obtain, [
λq

−λd

]
= MRθ0

[
λα

λβ

]
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[
id iq

] [ λq

−λd

]
RT
θ0
MRθ0

[
λα

λβ

]

[
λq

−λd

]
= MRθ0

[
λα

λβ

] [
id iq

] [ λq

−λd

]
=
[
Iα Iβ

]
RT
θ0
MRθ0

[
λα

λβ

]

[
id iq

] [ λq

−λd

]
=
[
Iα Iβ

]
RT
θ0
MRθ0

[
λα

λβ

]
By noting that RT

θ0
MRθ0 = M , one can verify that

ζq := Iβλα − Iαλβ = −(idλq − iqλd) . (2.24)

Taking time derivatives of (2.22) along the solutions of (2.9)–(2.12), in the new
coordinates, the electrical subsystem (2.9)–(2.12) of the WECS is given by

i̇d = −a0id + a1λd + a2ωrλq + iqω0 + k0 , (2.25)

i̇q = −a0iq + a1λq − a2ωrλd − idω0 , (2.26)

λ̇d = −a4λd + a3id − ωrλq + λqω0 , (2.27)

λ̇q = −a4λq + a3iq + ωrλd − λdω0 , (2.28)

or, equivalently,

Ẋ = A(t)X +B0 , A(t) := A0 + ∆(t) , (2.29)

with B0 =
[
k0 0 0 0

]T
,

A0 :=

[
−a0I a1I
a3I −a4I

]
, ∆ =

[
ω0M a2ωrM

0 (ω0 − ωr)M

]
,

where M is in2.23 and I is the identity matrix of order 2, X =
[
X T

1 X T
2

]T
X1 =

[
id iq

]T
and X2 =

[
λd λq

]T
. Hence, by considering the Lyapunov

candidate function

V := X TX

one has that

V̇ = X T (AT0 + A0)X + X T (∆T + ∆)X + 2X TB0
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Due to the skew-symmetric matrices appearing in ∆, one has that

X T (∆T + ∆)X = X T
1 MX2(2a2ωr) = 2a2ωr(idλq − iqλd) = −2a2ζqωr

,
where the last equality comes from (2.24). Moreover, the characteristic polyno-

mial of AT0 + A0 is given by [s2 + (a0 + a4)s + (a0a4 − a1a3)]2 which is a Hurwitz
polynomial. Then, one can further write

V̇ = X T (AT0 + A0)X − 2a2ζqωr , (2.30)

and conclude that the X -dynamics in (2.29), or the (2.25)–(2.28), is ISS w.r.t. ζqωr,
for k0 (or Vom) sufficiently small such that the stability margin of (AT0 + A0) is not
compromised. From (2.22) it is clear that the flux and the stator currents dynamics
(2.9)–(2.12) are also ISS w.r.t. ζqωr.

Mechanical Subsystem

Consider the mechanical subsystem (2.16)–(2.18). Then, from the definition of TL
in (2.19) and the ωt-dynamics in (2.18) one has that

B

Jt
(ε1 −

ωr
pn

) = −ε2 −
Ks

Jt
θ̃ +

T Va (ε1)

Jt
. (2.31)

Now, from (2.17), the θ̃-dynamics can be rewritten as

B

Jt

˙̃θ = −Ks

Jt
θ̃ +

T Va (ε1)

Jt
− ε2 , (2.32)

from which one assure that the θ̃-dynamics is ISS w.r.t. |ε|. Consequently, from
(2.31) one can conclude that the rotor angular velocity ωr is a function of ε and
θ̃. Thus, since the θ̃-dynamics is ISS w.r.t. |ε| one can further conclude that the
ωr-dynamics (2.16) is also ISS w.r.t. |ε|.

From (2.31) and (2.17), one can obtain:

B

Jt
(ε2 −

ω̇r
pn

) = −ε3 −
Ks

Jt
(ε1 −

ωr
pn

) +
Ṫ Va (ε1)

Jt
. (2.33)

Therefore, the time derivative of the rotor angular velocity ω̇r can be obtained as a
function of ε and ωr. Now, from (2.16), the electromagnetic torque Te is given by
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the following function of ω̇r, ε and θ̃:

Te =
J

p
ω̇r +

TL
n

=
J

p
ω̇r +

Ks

n
θ̃ +

B

n
(ε1 −

ωr
pn

) . (2.34)

where the expression of TL in (2.19) was used. From (2.14) one can additionally
conclude that ζq in (2.24) is also a function of ω̇r, ε and θ̃.

Since θ̃-dynamics is ISS w.r.t. |ε| and the flux and the stator currents dynamics
(2.9)–(2.12) are also ISS w.r.t. ζqωr, according to (2.30), one can finally conclude
that all the WESC dynamics is ISS w.r.t. |ε|.
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Chapter 3

Problem Formulation

In this chapter, at first, a generic class of nonlinear plants is studied so that the
further developments on the chapter could be as much generic as possible. Thus,
the global practical tracking and the real-time input-output optimization problems
are formulated in a generic fashion as well as the proposed optimization and control
strategy. Once these problems are formulated and the strategy is defined, their
application into the WECS MPPT problem is addressed since the WECS dynamics
are a particular case of the generic nonlinear plant exposed. Finally, the key ideas
and a scheme of the proposed control strategy are presented so that each individual
control element could be analyzed in Chapter 4.

3.1 Generic Nonlinear Plant Dynamics

Consider the set of SISO nonlinear systems of the form:

ẋ = f(x, t) + g(x, t)us , (3.1)

ys = h(x, t) , (3.2)

y = Φ(ys) (3.3)

where us ∈ IR is the control input (discontinuous), x ∈ IRn is the state, ys ∈ IR is
the measured output, y ∈ IR is a performance function output and the uncertain
functions f(·, ·) : IRn → IRn, g(·, ·) : IRn → IRn, h(·, ·) : IRn → IR and the mapping
Φ(·) : IR → IR are smooth enough to ensure local existence and uniqueness of the
solution through every initial condition (x0, t0). For each solution of (3.1) there
exists a maximal time interval of definition given by [0, tM), where tM may be finite
or infinite. Hence, a priori, finite-time escape can be considered.

Filippov’s definition for discontinuous right-hand side differential equations is
adopted [43] and the extended equivalent control, in which this concept is also valid
during the reaching phase, is used. The equivalent control signal is assumed to be
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piecewise continuous and is denoted by us(t).
In the following, consider us as the plant input and ys as the plant output, where

the underscored s stands for smooth due to the nature of the proposed VSC-based
controller.

3.1.1 Global Practical Tracking Problem

The goal in Global Practical Tracking is to find an output feedback dynamic control
law us to drive the output tracking error, defined as:

e(t) = ys(t)− ym(t) (3.4)

exponentially to zero or to some small neighborhood of zero (practical tracking),
starting from any plant/controller initial conditions and maintaining uniform closed-
loop signal boundedness, in spite of the uncertainties. Usually, The desired trajectory
ym(t) is assumed to be generated by the following reference model:

ς̇m = Amςm +Bn∗kmr , Am = An∗ +Bn∗Km , (3.5)

where
ςm :=[ ym ẏm . . . y

(n∗−1)
m ]T ,

km > 0 is constant, Km ∈ IR1×n∗ is such that Am is Hurwitz and r(t) is assumed
piecewise continuous and UB.

In the case that the desired trajectory is given by an external controller or op-
timization algorithm, ym(t) is assumed to have the same properties as r(t), i.e.
piecewise continuous and uniformly norm bounded.

3.1.2 Real-Time Input-Output Opmization Problem

Consider the SISO uncertain static input-output map Φ : IR → IR given by (3.3),
which is rewritten here for simplicity:

y = Φ(ys) ,

with y ∈ IR being a specific performance function output and ys ∈ IR being the
measured output depending dinamically on both the state x ∈ IRn and the control
input us ∈ IR.

The nonlinear function Φ is assumed locally Lipschitz continuous in ys and suffi-
ciently smooth (all required derivatives are continuous) so that existence and forward
uniqueness of solutions can be assured. It is worth mentioning that for (3.1) and
(3.2) these Lipschitz and smoothness assumptions also hold. As previously stated,
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for each solution of (3.1)–(3.3), there exists a maximal time interval of definition
given by [0, tM), where tM may be finite or infinite.

Without loss of generality, it is possible to deal with real-time optimization
regarding the maximum seeking problem of (3.3) under the dynamical restriction
given in (3.1)–(3.2). All plant parameters are uncertain belonging to a compact set
defined by Ω. Hence, the maximum seeking problem can be stated as follows:

(I) Extremum Points: Suppose that the function Φ define a nonempty set of
maximizers, denoted by

Θ∗ := {θ ∈ IR |Φ(α) ≤ Φ(θ) ,∀α ∈ IR} ,

It is said that y∗ = Φ(y∗s) is an extremum (maximum) of the smooth mapping
Φ(·) when y∗s ∈ Θ∗. Moreover, y∗s is said to be a maximizing point of y(·) when
y∗s is as close as possible of the set Θ∗ and y∗ = Φ(y∗s) is said to be an extremum
(maximum) of the smooth mapping Φ(·) when y∗s ∈ Θ∗. In addition, as the
SISO case is considered, it is supposed to exist a unique maximizing θ†j ∈ IR for
the function y = Φ(ys) such that y† = Φ(θ†) is the extremum (maximum) of
the smooth function Φ : IR→ IR. In other words, in Ω, the mapping function
Φ(·) is unimodal w.r.t. ys, i.e., when ys = θ is a constant, there exists a unique
θ∗ ∈ IR such that:

∂Φ

∂ys

∣∣∣∣
ys=θ∗

= 0 and
∂2Φ

∂y2
s

∣∣∣∣
ys=θ∗

< 0 .

(II) Parametric Uncertainties: Θ∗, y∗s , Φ(·) and its gradient are assumed to be
unknown to the control designer. In Ω, for any given ∆>0 and ys = θ being
a constant, there exists a constant L(∆)>0 such that

L ≤
∣∣∣∣ ∂Φ

∂ys

∣∣∣∣
ys=θ

, ∀θ /∈ D∆j

where D∆j
:= {θ : |θ− θ∗| < ∆

2
} is called ∆-vicinity of θ∗ and ∆ can be made

arbitrary small by allowing a smaller L. .

(III) Optimization Objective: It is necessary to find an output-feedback control
law ym such that, from any initial condition x(0), the state vector x(t) is
positioned, as close as possible, within the set Θ∗ of maximizers. Hence, the
system (3.1)–(3.3) is driven to reach an extremum point and remain close to
it thereafter.
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3.2 Optimization & Control Strategy

Considering the plant dymamics given by (3.1)–(3.3) and Sections 3.1.1 and 3.1.2,
the proposed solution relies on the implementation of two control loops: an inner
loop to deal with the Practical Tracking Problem (section 3.1.1) and an outer loop
to handle the Optimization Problem (section 3.1.2) adjusting the reference signal
provided to the inner control loop.

Inner Control Loop By using a robust controller based on Variable Structure
Control, an inner loop is formed in order to guarantee stability and to assure that
the measured output ys tracks a desired reference signal ym, in the presence of the
uncertainties of f(·), g(·) and h(·). The VSC-based controller will be presented in
details as well as its stability properties in Chapter 4. This will be necessary to
demonstrate the global stability theorem discussed in Chapter 5. Thus, it will be
clear that this robust inner control loop is able to assure that ys is given by

ys = ym + e, with µi := e (3.6)

where e is the tracking error which converges to a residual set. Hence, there
exists ti ≥ 0 such that

ys(t) ≈ ym(t) , ∀t ≥ ti (3.7)

Outer Control Loop Let Φ(ys) be a function also depending on the derivatives
of ys. In some cases, it can be assumed that these derivatives are actually measured.
For instance, if ys represents the shaft position of a DC motor, it is not unusual
having access to both speed and acceleration measurements via tacometers and ac-
celorometers for example. However, supposing that only ys is known, its derivatives
could be calculated using the so called "dirty-derivative". For that purpose, consider
the following example of generic input-output mapping:

y := Φ̂(ys) := (K0 +K1ψ +K2ψ
2 + · · ·+Knψ

n)ys +Kn+1 , (3.8)

ψ(s) :=
s

τos+ 1
, (3.9)

The factors K0, K1, K2, · · · , Kn+1 are assumed to be known but presenting
bounded uncertainties. τo is a positive design constant and (3.9) the transfer func-
tion capable of extracting the "dirty-derivative" of its input. It is clear that, by
considering that all necessary derivatives are measured it is equivalent to set τo = 0,
i.e., ζys = ẏs. In this case, y is exactly given by y = Φ(ys). When τo 6= 0, consider
the estimation errors eko :=

(k)

ys − ψkys, k = 1, 2, · · · , n. Moreover, y is given by
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y = Φ(ys)−
n∑
k=1

Kk e
k
o , with µo := −

n∑
k=1

Kk e
k
o (3.10)

Later on will be clear that each estimation error eko converges to a residual if
the correspondent

(k+1)

ys is uniformly norm bounded (UB), which will be verified.
Therefore, in these circumstances, there exists to ≥ 0 such that

y(t) ≈ Φ(ys) , ∀t ≥ to (3.11)

If the inner loop is designed properly, the robust control strategy assures that the
output ys approximately tracks the reference signal ym as stated in 3.7. In addition,
if the auxiliary output signal y is in fact a suitable estimate for the input-output
mapping Φ as stated in 3.11, then one has that the corresponding auxiliary plant
output approximately given by

y(t) ≈ Φ(ym(t)) ,∀t ≥ max{ti, to} , (3.12)

which can also be written like

y(t) = Φ(ym(t) + µi(t)) + µo(t) , ∀t ≥ 0 , (3.13)

where µo is the output error due the imperfections on the estimation of the output
mapping Φ(·). By recalling (3.4), it is evident that ys = ym+µi, where µi := e is the
tracking error in the inner control loop. Thus, µi is viewed as an input disturbance
and µo as an output disturbance. Finally, considering the assumptions about all
the functions and mappings, equations (3.1)-(3.3) are rewritten here in order to
illustrate the complete class of non-linear SISO plants that are considered in this
work.

ẋ = f(x(t), t) + g(x(t), t)us(t) ,

ys = h(x(t), t) ,

y = Φ(ym(t) + µi(t)) + µo(t) , ∀t ≥ 0 (3.14)

3.3 WECS Problem Formulation

The wind turbine dynamics is given by the class of nonlinear uncertain SISO plant
given by (2.9)–(2.13) and (2.16)–(2.18) with state vector

x :=
[
Iα Iβ λα λβ θ0 ωr θ̃ ωt

]T
, (3.15)
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and control input ω0 in (2.13).
Considering both (α, β) (2.9)–(2.13) and (d, q) (2.25)–(2.28) representations, the

WECS dynamics takes the form of (3.14) with affine control input us = ω0. Partic-
ularly for (2.9)–(2.13), one has that

f =



−a0x1 + a1x3 + a2x6x4 + k0 cos(x5)

a0x2 + a1x4 − a2x6x3 + k0 sin(x5)

−a4x3 + a3x1 − x6x4

−a4x4 + a3x2 + x6x3

0
3p2Lm
2JLr

(x2x3 − x1x4)− Ksp
J
x7 − Bp

Jn

(
x8 − x6

pn

)
x8 − x6

pn
1
Jt

(T Va (x8)− TL)


, g =



0

0

0

0

1

0

0

0


As in FOC, it is assumed that Iα, Iβ, ωr are available for feedback, while the

flux are not available, so that it is not required to install flux sensing coils (or Hall
effect sensors) in the stator nor the usage of state observers. The measured output
is chosen as

ys = [0 0 0 0 0 0 0 1]︸ ︷︷ ︸
h

x = ωt

It is assumed here that the cost function Φ can be either the aerodynamic torque
(T Va ) or the mechanical power (Pm). Hence,

y = Φ(wt) := T Va (ωt) or y = Φ(wt) := Pm(ωt) = ωtT
V
a (ωt) (3.16)

In both cases, in order to assure existence and forward uniqueness of solutions,
it is assumed that the nonlinear functions T Va in (2.8) and Pm in (2.7) are locally
Lipschitz continuous in ωt and sufficiently smooth (all required derivatives are con-
tinuous). For each fixed wind speed V within the sub-rated power region, the
following assumptions are considered:

(Φ.I) Both the aerodynamic torque T Va (·) and the mechanical power Pm(·) are uni-
modal functions with their respective maximizers θV ∗T and θV ∗P .

(Φ.II) There exists a positive constant c̄ such that 0 ≤ |Φ(ωt)| < c̄ and, for any given
c > 0, there exists θ̄c > 0 such that c >

∣∣T Va (ωt)
∣∣ or c > |Pm(ωt)|, for |ωt| ≥ θ̄c.

According to Section 2.4.1, it is clear that assumption (Φ.I) is not restrictive, since
both functions are typically given by selecting one of the most common equations
used for the non-dimensional power coefficient as (2.6).
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The function Φ(ωt) is regarded as an uncertain (unknown) and smooth cost
function. According to first assumption, it is considered that there exists a unique
unknown point θV∗ such that Φ(θV∗ ) is the maximum of Φ, whose gradient is unknown
for the control designer.

The control objective is real-time optimization, i.e., maximization1 of Φ(·) under
(2.9)–(2.12), (2.13) and (2.16)–(2.18). The goal is to find an output-feedback control
law ym = ω∗t so that, for any initial conditions, the system is steered to reach the
extremum point and remain on such point thereafter, as close as possible.

From f one can see that this system is non-linear on its state x and affine
on its control input u. Although it is not a highly non-linear system, there are
multiplicative interaction between states and sinusoidal interactions on the control
signal’s integral x5 = θ0. Thus, even if the open loop system is ISS w.r.t the wind
turbine speed and its derivatives, classical control strategies might not be enough
to guarantee a fast transient while chasing maximum power point tracking and a
non-linear control strategy will be considered.

3.4 Key Ideas

As proposed in section 3.2 the solution relies on the implementation of two nested
control loops.

On the inner loop a robust sliding mode control (SMC) which produces smooth
control action, named Smooth Sliding Control (SSC) is used in order to assure global
practical tracking. The MC electrical frequency of the stator is given by ω0 = us,
where us is the SSC law that assures that ys = ωt = ym + e, where the tracking
error e is the input disturbance µi and , as will be proved later on, converges to a
residual set. Hence, equation (3.7) hols.

ωt(t) ≈ ym(t) , ∀t ≥ ti .

For the outer loop, first, an Auxiliary Output is defined for Estimating the Cost
Function Φ(wt). From (2.18), one has that T Va (ωt) = Jtω̇t + TL, with TL in (2.19).
By assuming Jt, Ks, B, p and n as known (but uncertain) constants and ωt, ωr are
available for feedback, then one can define the following auxiliary output as one
possible estimate for the aerodynamic torque:

y := T̂ Va := Jtζ + TL , (3.17)

ζ :=
s

τos+ 1
ω, (3.18)

1Without loss of generality, only the maximum seeking problem is addressed.
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where τo is a positive design constant as stated on the previous section. It is clear
that, by considering that an accelerometer is available one can set τo = 0, i.e., ζ = ω̇t.
In this case, y is exactly given by y = T Va (ωt). When τo 6= 0, consider the estimation
error eo := ω̇t − ζ. Moreover, y is given by y = T Va (ωt) − Jteo. If the mechanical
power is estimated through Pm := ωtT

V
a using the aerodynamic torque estimate in

3.17, one has that y := Pm(wt)−ωt (Jteo). Thus, the output error µo is given either
by µo = −Jteo or µo = −ωtJteo.

Later on will be clear that this estimation error eo converges to a residual set
since it will be verified that ω̈t is uniformly norm bounded. As it will be clear that ωt
is also UB, both choices of Φ(·) would imply into limited output errors eo. Therefore,
equation (3.13) holds and

y(t) ≈ T Va (ωt(t)) or y(t) ≈ Pm(ωt(t)) , ∀t ≥ to , (3.19)

for τo sufficiently small. If the inner loop is designed properly, the SSC strategy
assures that the rotor angular velocity approximately tracks the reference signal ym
and if the auxiliary output signal is in fact a suitable estimate for the aerodynamic
torque or mechanical power, then one has that the corresponding auxiliary plant
output is approximately given by

y(t) ≈ Φ(ym(t)) := T Va (ym(t)) or Pm(ym(t)) ,∀t ≥ max{ti, to} , (3.20)

Hence, by using an ESC scheme it is possible to drive ym, consequently the turbine
speed ωt, to the maximizer, for any wind velocity V , with ym being the ESC signal
[51].

Thus, the actual input-output relationship is given by (3.13), where ym is the
ESC law, Φ(·) is the static input-output mapping, µi := e stands for the input
disturbance due to the inner control loop tracking error while µo := −Jte0 or µo :=

−ωtJte0 stands for the output disturbance due to the “dirty derivative” estimation
error.

One could also think about choosing directly Φ(.) = Cp(λ), however, differently
from torque and power which can both be estimated by means of the dynamic
equations 2.10-2.19, Cp can only estimated from 2.6. Thus, this implies both the
knowledge of the parameters Ci, i ∈ [1, 4] and a measurement or estimate of the
wind speed, which is not the focus of the present HCS control strategy.

It is usual to consider, though, that the turbine pass thought several aerodynamic
tests from which Jt, B and Ks can be obtained. The inertia Jt is obtained during the
mechanical design while B is usually obtained by computing the difference between
the mechanical power and the electrical power [47]. However, uncertainties in Ks
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(and B) can be incorporated in the output disturbance µo and can be made small
since θ̃ tends to zero, as shown in Chapter 4.
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Figure 3.1: Control Scheme for WECS’ MPPT.

On the other hand, this estimation approach encompasses the case when there
is access to turbine power measurements, so that the turbine power and the aero-
dynamic torque are available for feedback. Thus, in this case, one can set µo := 0

in (3.13) and choose:

y := Pm(ωt) or y := T Va (ωt) =
Pm(ωt)

ωt

Hence, y := Φ(ym(t) + µi(t)) with Φ(·) = Pm(·) or Φ(·) = T Va (·).

Finally, after presenting all these scenarios, assumptions and implications, the
overall control scheme with the two nested control loops is given in figure 3.1. This
control scheme summarizes the role of each part of the proposed strategy (inner loop,
outer loop and estimation algorithm) and also shows how wind speed affects both the
dynamics and, consequently, the cost function Φ(·). Along with the WECS scheme
(figure 2.5), these two schematics provide a visual representation of the control and
optimization strategy developed for the WECS considered in this work.
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Chapter 4

Control and Optimization

In this chapter, both the global practical tracking problem for the inner loop of
the WECS dynamics and the real-time input-output optimization problem for the
outer loop of the proposed scheme are addressed. First, the usage of a Smooth
Slide Controller based on Variable Structure Control at the inner loop is analyzed
and some important properties and results are demonstrated. Finally, a Extremum
Seeking Control algorithm is studied to accomplish Maximum Power Point Tracking
of the WECS and its properties and important results are also highlighted and
demonstrated.

4.1 Smooth Sliding Control

In this section, a smooth sliding control (SSC) based on variable structure control
(VSC) is considered [52]. In contrast to conventional VSC, this strategy has a
smooth control signal.

The challenge of this technique is to overcome the implementation difficulties
regarding VSC. Variable structure controllers have a well-known undesirable phe-
nomenon, named chattering, induced by non-idealities like small delays or unmodeled
plant dynamics. The SSC is a version of the Variable Structure Model Reference
Control (VS-MRAC) based on the framework of the conventional Model Reference
Adaptive Control (MRAC).

4.1.1 SSC and the WECS Tracking Problem

Consider the class of SISO non-linear plants provided on (3.1)–(3.2):

ẋ = f(x, t) + g(x, t)us

ys = h(x, t)

33



The SSC in [52] was generalized for linear plants with arbitrary relative degree
in [53, 54]. However, as bibliography research indicated, the present study appears
to be the first work which considers the applicability of the SSC to the class of
non-linear plants considered here.

The main idea in sliding mode control is to close the loop of the sliding variable
(usually the tracking error) with a relay, having an appropriate modulation function.
If the relative degree of the sliding variable (σ̃) is unitary1, an ideal sliding loop is
formed around the switching function and, consequently, the sliding variable tends
exponentially or in finite time to zero.

1

τav s + 1
Σ

unom

Plant

Reference
Model

Σ Lf(s) Σ −% . sgn( · )

%

Σ
κm

s +am

r

uav0 − us ys
−
ym

e +σ̂ σ̃ u0

−

σ̄
+uav0

−

u0

Figure 4.1: Topology of the Smooth Sliding Control (SSC) for an arbritary relative
degree (n∗ ≥ 1).

Recalling the output tracking error defined in 3.4

e(t) := ys(t)− ym(t) ,

where ym is the reference signal, which is a uniformly bounded signal by construction.
Let n∗ be the relative degree from the SSC signal us to the output tracking error e.
When n∗ = 1, the output tracking error can be directly used to define the sliding
variable. However, when n∗ > 1, it is considered a linear (non-causal) operator
L(s) = sn

∗−1 + l1s
n∗−2 + . . .+ ln∗−1 (Hurwitz polynomial), such that the ideal output

variable defined as

σ(t) := L(s)e(t) , (4.1)

has relative degree one from us. However, it is clear that the signal σ is not mea-
sured and cannot be directly applied to design the sliding variable. One possible
approximation is given by

σ̂(t) = Lf (s)e(t) :=
L(s)

F (τfs)
e(t) , (4.2)

where the approximation filter F−1(τfs) is a low pass filter with F (τfs) being a
1It means that the relative degree is one around the relay, i.e., from the sliding variable (relay

input) to the relay output.
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Hurwitz polynomial in τfs with order n∗ − 1 and unit DC gain given by F (τfs) :=

(τfs+ 1)n
∗−1.

Therefore the sliding variable σ̃ is defined as,

σ̃ := σ̂ − σ̄ , (4.3)

where σ̄ is the output of the prediction error loop and satisfies:

˙̄σ = −amσ̄ − κm(u0 − uav0 ) , (4.4)

where am, κm > 0 are design constants. The control law is given by

us = unom − uav0 , (4.5)

τavu̇
av
0 = −uav0 + u0 , (4.6)

u0 = −%(t)sgn(σ̃) , (4.7)

where unom is the nominal control law, initially designed with the knowledge of the
nominal parameters of the plant (which could be set to zero, i.e. unom ≡ 0), % is
the modulation function, σ̃ is the sliding variable and uav0 is the filtered signal of the
switching control u0. It is worth to mention that, for a sufficient small time constant
τav, uav0 is an approximation of the extended equivalent control (u0)eq, when an ideal
sliding mode occurs [55].

4.1.2 Prediction Error and the ISS Property

The following lemma can be stated.

Lemma 4.1 (ISS property from uav0 to σ̄). Consider the σ̄-dynamics (4.4) with
u0 := −%(t)sgn(σ̃) and averaging control uav0 in (4.6). Then, (4.4) is ISS with
respect to uav0 and the following inequality holds

|σ̄(t)| ≤ kσ̄κmτav|uav0 (t)|+ πσ̄ , (4.8)

where πσ̄ := βσ̄(|σ̄(0)|)e−λσ̄t, βσ̄ ∈ K∞, 0 < λσ̄ < am and kσ̄ > 0 are appropriate
constants.

Proof: From (4.6), one has that u0 − uav0 = τavu̇
av
0 , then the prediction error

dynamics can be rewritten as ˙̄σ = −amσ̄−κmτavu̇av0 . By defining the auxiliary signal
σa := κmτavu

av
0 + σ̄, one also has that σ̇a = −amσa +amκmτavu

av
0 . Consequently, the

σa-dynamics is ISS w.r.t. uav, with a small gain κmτav, and (4.8) holds.
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4.1.3 Existence of Ideal Sliding Mode

The realization of the ideal sliding modes are important to ensure that chattering is
avoided. In SSC, an ideal sliding surface is given by σ̃(t) ≡ 0.

Now, from (4.3) and (4.4) the sliding variable dynamics is given by:

˙̃σ = −amσ̃ − κmuav0 + κm(u0 + de) , (4.9)

where de := (amσ̂ + ˙̂σ)/κm. By defining

x̃ :=
[
σ̃ uav0

]T
, (4.10)

and from (4.6) and (4.9), one can write:

˙̃x = Aσx̃+Bσu0 +Bdde , σ̃ = Cσx̃ , (4.11)

where Aσ :=

[
−am −κm

0 −1/τav

]
, Bσ :=

[
κm 1/τav

]T
, Bd :=

[
κm 0

]T
and

Cσ :=
[

1 0
]
. The system (Aσ, Bσ, Cσ) is ASPR (Almost Strictly Positive

Real) [56]. Indeed, since CσBσ = κm 6= 0, then (Aσ, Bσ, Cσ) has relative degree
one. Moreover, by using the Rosenbrock system matrix, the triple (Aσ, Bσ, Cσ) is
minimum phase and can be easily shown [57]. Now, by adding and subtracting
Bσk0σ̃ = BσCσk0x̃, one can write

˙̃x = (Aσ +BσCσk0)x̃+Bσu0 −Bσk0σ̃ +Bdde , (4.12)

where k0 is the constant such that (Aσ+BσCσk0, Bσ, Cσ) is SPR. The existence of k0

is assured by [56]. Indeed, for k0 sufficiently large one has that (Aσ+BσCσk0, Bσ, Cσ)

is SPR. Now, define Gσ(s) := Cσ(sI−(Aσ+BσCσk0))−1Bσ,Wde(s) := Cσ(sI−(Aσ+

BσCσk0))−1Bd andWσ̃(s) := −Cσ(sI−(Aσ+BσCσk0))−1Bσk0. Then, one can write
σ̃ = Gσ(s) ∗ u0 +Wde(s) ∗ de +Wσ̃(s) ∗ σ̃ + π, where π is an exponentially decaying
term depending on the initial condition x̃(0). Therefore, by defining the vanishing
term πσ := G−1

σ (s) ∗ π one can further write

σ̃ = Gσ(s) ∗ (u0 + deq + πσ) , (4.13)

where the equivalent disturbance

deq := G−1
σ (s)Wde(s) ∗ de +G−1

σ (s)Wσ̃(s) ∗ σ̃ , (4.14)

is such that G−1
σ (s)Wde(s) and G−1

σ (s)Wσ̃(s) are strictly stable and proper trans-
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fer functions.

Lemma 4.2. Consider the input/output relationship (4.13) where Gσ(s) is SPR
and deq(t) is given by (4.14). Let xσ̃ be the state of a stable, possibly nonminimal,
realization of Gσ(s). If u0 := −%(t)sgn(σ̃), where

|%(t)| ≥ |deq(t)|+ δ , (4.15)

with δ > 0 been an arbitrary constant, then the inequality

|σ̃(t)| and |xσ̃(t)| ≤ πσ̃ , (4.16)

holds ∀t≥ 0, where πσ̃ := βσ̃(|xσ̃(0)|)e−λσ̃t, βσ̃ ∈ K∞, 0 < λσ̃ < λmin(Gσ(s)) and
kσ̃ > 0 is an appropriate constant. Moreover, there exists some finite time te ≥ 0

such that σ̃(t) becomes identically zero ∀t ≥ te.

Proof: The proof follows the steps in [58, 59].

It must be highlighted that the plant nonlinearities affect the equivalent input
disturbance deq. Moreover, despite of a filtered version of the VSC law be in fact
applied to the plant input, it is guaranteed that no VSC robustness is lost, similarly
to the Integral Sliding Mode control scheme proposed by [55]. The robustness
is regarded w.r.t. the sliding mode which occurs in the sliding surface σ̃ ≡ 0,
corresponding to an internal control loop (the prediction error loop).

4.1.4 SSC Modulation Function Design

From the definition of TL in (2.19) and the ωt-dynamics in (2.18) one can write

ω̇t = −B
Jt

(ωt −
ωr
pn

)− Ks

Jt
θ̃ +

T Va (ωt)

Jt
. (4.17)

Since, as usual in WECS applications, the flux of the IG stator is not available
for feedback while the other state variables can be measured without significant
difficulties. So, by considering that ωt, ωr and θ̃ are available and assuming that the
uncertain plant parameters are bounded by now constants, then one can obtain the
available norm bound for the first time derivative of the turbine angular velocity:

|ω̇t| ≤ ¯̇ωt := kρ1

∣∣∣∣ωt − ωr
pn

∣∣∣∣+ kρ2|θ̃|+ kρ3 , (4.18)

where kρ1 > |B/Jt|, kρ2 > Ks/Jt and kρ3 > c̄/Jt with c̄ from assumption ((Φ.II)).
The modulation function is designed to satisfy (4.15), with deq in (4.14), and

de := (amσ̂ + ˙̂σ)/κm. Therefore, a norm bound for deq mst be obtained. First, note
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that the disturbance de satisfies

|de| ≤
am
κm
|σ̂|+ am

κm
| ˙̂σ| ≤ am

κm

bρ1

s+ aρ1

|e|+ am
κm

bρ2

s+ aρ2

|ė| ,

where the last inequality comes from (4.2) by noting that one can obtain positive
constants aρ1, aρ2, bρ1 and bρ2 such that

∣∣∣ L(s)
F (τf s)

e
∣∣∣ ≤ bρ1

s+aρ1
|e| and

∣∣∣ L(s)
F (τf s)

ė
∣∣∣ ≤ bρ2

s+aρ2
|ė|,

modulo exponentially decaying terms.
Moreover, since G−1

σ (s)Wde(s) and G−1
σ (s)Wσ̃(s) in (4.14) are strictly stable

proper transfer functions, there exists positive constants ce, ae such that the equiv-
alent disturbance deq satisfies

|deq(t)| ≤
ce

s+ ae
∗ (Kρ1|e|+Kρ2|ė|+Kρ3|σ̃|) , (4.19)

Hence, by using the upper bound (4.18) and reminding that ė = ω̇t − u̇ one can
design the modulation function in the form

% =
bρ

s+ aρ
∗ (Kρ1|e|+Kρ2(|ẏm|+ ¯̇ωt) +Kρ3|σ̃|) + δ , (4.20)

where δ > 0 is an arbitrary constant.

4.2 Extremum Seeking Control

In this section, the optimization problem is addressed once the inner control loop
strategy has already tackled the global practical tracking problem. Thus, this section
provides an HCS control algorithm based on Extremum Seeking Control so that
MPPT is achieved for the WECS dynamics, which belongs to the class of plants
presented in Chapter 3. The strategy considered in this work is a perturbation-
based version of ESC, such as in [60], but presents some variations when compared
to this technique.

Although other ESC techniques do exist, such as periodic switching functions
based ones, as provided in [61, 62], and Newton-based approaches for estimating
the map Hessian , as presented in [63, 64], their usage is justified once the system‘s
high frequency gain direction is uncertain or when the map presents big time delays,
respectively. As it is not the case for this specific application, in this work, the usual
perturbation-based ESC scheme as in [60, 65] and presented in figure 4.2 is used
with an output-feedback variation considering the gradient estimate saturation on
its formulation.
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Figure 4.2: Extremum Seeking Control Topology.

4.2.1 ESC and the WECS Optimization Problem

Consider the input-output mapping previously stated on 3.3 and the assumptions
made so that equation (3.14) could be written. The equations are rewritten here for
the sake of the reader’s better understanding.

y = Φ(ys(t)) = Φ(ue(t) + µi(t)) + µo(t) , ∀t ≥ 0

where ue is the ESC control signal and ue := ym, meaning that the ESC control
signal is the reference for the inner control loop to be tracked by the designed non
linear robust controller. As a necessary condition for the results presented on this
chapter to be valid, the tracking error on the inner loop µi needs to be limited to a
residual set in neighborhood of zero as proved in Chapter 4.

Considering the static input-output mapping described in (3.3), the static map-
ping properties highlighted in (3.1.2) and assumptions (Φ.I) and (Φ.II), the Ex-
tremum Seeking Control strategy is presented.

4.2.2 Estimator Implementation

In state space form, the “dirty derivative” appearing in the auxiliary output, defined
in (3.18), used for estimating the aerodynamic torque can be implemented as:

ẋf = − 1

τo
xf +

1

τo
ωt , ζ = − 1

τo
xf +

1

τo
ωt . (4.21)

It is clear, from (4.21), that ζ satisfies the following dynamics:

ζ̇ = − 1

τo
ζ +

1

τo
ω̇t

Hence, the error signal eo = ω̇t − ζ satisfies the dynamics:
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ėo = − 1

τo
eo + ω̈t

since ζ̇ = − 1
τo
ζ + 1

τo
ω̇t = 1

τo
eo.

Thus, if the aerodynamic torque is chosen as the auxiliary output y, one can
further write:

y = Jtζ + TL = Jtω̇t + TL − Jeo = Φ(ωt)− Jeo, (4.22)

In the case that mechanical power is being used as the auxiliary output, the
equations above turn into:

y = ωt (Jtζ + TL) = Jtω̇tωt + TLωt − Jtωteo = Φ(ωt)− Jtωteo, (4.23)

Since the signal ω̈t is norm bounded then |eo| converges to a residual set of order
O(τo), which will be verified later on the text.

4.2.3 ESC Law

In the conventional ESC method [60] the control signal is composed by an estimated
θ̂ for the maximizer θ∗ added to a sinusoidal perturbation, i.e., θ̂+a sin(ωt). Consider
the perturbation-based extremum seeking control method described in [60, 65], but
including an anti-windup control scheme around the ESC integrator, similar to [66].
while the outer loop is a version of the ESC approach of implemented with an anti-
windup scheme. Here, it is considered a saturated version similar to [66] for the
ESC law, named:

ue(t) := sat (θ̂(t)) + a sin(ωt) , (4.24)

where

sat (ϑ) :=


uMe , if σ ≥ uMe ,

ue , if ume ≤ ϑ ≤ uMe ,

ume , if ϑ ≤ ume ,

(4.25)

and ume , uMe are the constant lower and upper limits, respectively. The purpose of
considering such a scheme (with saturation) is to avoid high absolute values on the
gradient’s estimate and introducing that peak back to the system’s input. However,
as previously stated and shown in 4.29 an anti-windup control strategy is necessary.
Here, the auxiliary signal y is then given by:

y(t) := Φ(sat (θ̂(t)) + a sin(ωt) + µi) + µo . (4.26)
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As in the conventional ESC method [60], the gradient of the function Φ evaluated
at θ̂ is estimated by using the signal ξ, obtained via demodulation of the (washout)
filtered version η of the output y, according to:

η̇ = −ωhη + ωhy , (4.27)

ξ̇ = −ωlξ + ωl(y − η)a sin(ωt) , (4.28)

where ωl, ωh are design positive constants. An interesting alternative that could be
tested in future work would be to consider an amplitude of 2

a
on the demodulation

that has been proven to improve the convergence rate of the ESC algorithm when
compared to the classical approach. In [60], the estimate θ̂ is given by ˙̂

θ = kξ ≈
ka2Φ

′
(θ̂), resulting in a dynamics having an asymptotically stable equilibrium point

given by the maximizer θ̂ = θ∗. Here, as in [66], the estimate θ̂ is given by:

˙̂
θ = k[ξ + ξaw] , ξaw := ks[sat (θ̂(t))− θ̂(t)] , (4.29)

where ks > 0 is the anti-windup gain and ξaw is the anti-windup error signal.

Simulation results are presented in Chapter 6, but before presenting them, an
overall closed loop stability proof is given in Chapter 5.
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Chapter 5

Closed Loop Stability Analysis

In this chapter, a complete analysis of the closed loop stability is performed consid-
ering the proposed strategy for the WECS. Some of the properties and assumptions
detailed in Chapters 2, 3 and 4 are necessary to comples the proofs. By the end of
this chapter, the main stability result is presented considering the WECS dynamics
and the proposed ESC+SSC control scheme.

5.1 Tracking Error Convergence

The following lemma states the tracking error convergence property considering the
inner control loop.

Lemma 5.1. Assume that the reference signal ym and its derivative ẏm are UB
and that the unimodality assumption of Φ(·) holds. Consider the plant (2.9)–(2.12),
(2.13) and (2.16)–(2.18) with state vector (3.15), output tracking error (3.4), SSC
control law (4.5), (4.6), (4.7) with sliding variable σ̃ in (4.3), prediction error (4.4)
and modulation function % in (4.7) satisfying (4.15). Then, for sufficiently small
time constants of the linear lead filter (τf) in (4.2) and the smooth filter (τav) in
(4.6), the tracking error e converges to a small residual set of order O(τav + τf ) and
the following inequality holds

|e(t)| ≤ O(τav + τf ) + πe , (5.1)

where πe is an exponential decaying term depending on the initial conditions. In
addition, all closed-loop signals remain uniformly bounded.

Proof: From Lemma 4.1, the prediction error dynamics is ISS w.r.t. uav0 with
ISS gain τavκm, according to (4.8). Thus, from (4.3), the surrogate σ̂ for the ideal
variable σ in (4.1) satisfies

|σ̂(t)| ≤ kσ̄κmτav|uav0 (t)|+ πσ̂ , (5.2)
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where πσ̂ := πσ̄ + πσ̃. Moreover, from (4.1) and (4.2) one can further write

σ − σ̂ = L(s)e− L(s)

F (τfs)
e =

(1− F (τfs))

sF (τfs)
σ̇.

Then, reminding that
F (τfs) := (τfs+ 1)n

∗−1,

one can conclude that (1−F (τf s))

sF (τf s)
is a transfer function of orderO(τf ) and the following

inequality holds
|σ − σ̂| ≤ kfτf |σ̇|+ πf , (5.3)

where πf is an exponential decaying term depending on the lead filter initial condi-
tion.

In the present case, the wind turbine dynamics (2.9)–(2.12), (2.13) and (2.16)–
(2.18) with state vector (3.15) has relative degree n∗ = 4 from the control input
us = ω0 in (2.13) to the output ωt. Moreover, the σ-dynamics can be written as

σ̇ = kp(x, t)us + d(x, t) , (5.4)

where kp is the plant HFG and d is regarded as an input disturbance. However,
from Property (2.4.3), one can conclude that the WECS dynamics is ISS w.r.t. the
ideal variable norm (|σ|). Indeed, from Property (2.4.3), the WECS dynamics is ISS
w.r.t. the vector |ε| which contains the time derivatives of the turbine velocity ωt
up to the third order.

From (4.1), the ideal variable σ can be viewed as the input of the system described
by differential equation

...
e + l1ë+ l2ė+ l3e = σ.

Since L(s) is a Hurwitz polynomial by design, then the e-dynamics is ISS w.r.t. σ.
Moreover, one can subsequently write:

e =
1

L(s)
σ, ė =

s

L(s)
σ, ë =

s2

L(s)
σ and ...

e =
s3

L(s)
σ.

Hence, the tracking error e and its time derivatives ė, ë and ...
e are driven by σ.

Now, reminding that e := ωt − ym and that ym in uniformly bounded by con-
struction, then ωt is driven by σ, modulo some constant. In addition, from (4.27),
(4.28) one can verify that the η-dynamics and the ξ-dynamics are ISS w.r.t. ωt.
Consequently, from (4.29), the first time derivative of the ESC law (4.24) is driven
by ωt and, thus, ω̇t = ẏm− ė is driven by σ, modulo some constant. The second and
third time derivatives of the ESC law also satisfy similar properties. Indeed, from
(4.27), (4.28) and (4.29), the second time derivative of te ESC law is driven by ωt.
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So, ω̈t = ÿm− ë is driven by σ. Finally, from (4.27), (4.28) and (4.29), one can verify
that the third time derivative of the ESC law is driven by ωt and ω̇t, consequently,
driven by σ.

Therefore, since from Property (2.4.3) the WECS dynamics is ISS w.r.t. |ε|, then
the complete WECS state (3.15) norm is driven by σ. Then one can conclude that,
given R > 0, there exists a positive constant kR such that |σ̇| ≤ kR|σ| + kR|uav0 | +
kR + πx, ∀|x(0)| < R, where πx is an vanishing term depending on the plant initial
condition x(0). Hence, from (5.3) one has

|σ − σ̂| ≤ kfkRτf |σ|+ kfkRτf |uav0 |+ kfτfkR + πf + kfτfπx . (5.5)

Consequently, since |σ| ≤ |σ̂| + |σ − σ̂| and from (5.2), the following inequality is
valid

(1− kfkRτf )|σ| ≤ kτ (τav + τf )|uav0 (t)|+ πσ +O(τf ) , (5.6)

provided τf < 1/(kfkR), where πσ := πσ̂+πf+kfτfπx. By reminding e = 1
L(s)

σ, then
one can conclude that the tracking error e, the upper bound for the turbine velocity
¯̇ωt in (4.18), the time derivative of the ESC law ẏm are all driven by σ. Hence, since
the averaging control (uav0 ) dynamics is ISS w.r.t. the modulation function ρ(t) in
(4.7) satisfying (4.15), then one can finally conclude that uav0 and σ are uniformly
norm bounded and, consequently, inequality (5.1) holds. In addition, since from
Property (2.4.3) the WECS dynamics is ISS w.r.t. |ε| then, the the WECS state is
uniformly norm bounded.

Hence, the input disturbance µi satisfies

|µi(t)| ≤ πi(t) + εiνi(t),

with πi being an exponentially decaying term depending on the initial conditions, νi
an uniformly norm bounded function and εi > 0 (τav +τf ) a small design parameter,
see Lemma 5.1.

5.2 Estimation Error

Lemma 5.2. Under the conditions stated on Lemma 5.1, the estimate ζ for the
acceleration ω̇t is such that the estimation error eo = ω̇t − ζ converges to a small
residual set of order O(τo) not depend on the initial conditions and the following
inequality holds

|eo(t)| ≤ O(τo) + πo , (5.7)

for a sufficiently small time constant τo of the “dirty derivative” filter (4.21), where
πo := βo(|xf (0)|+ |TL(0)|)e−λot, βo ∈ K∞ and 0 < λo < 1.

44



Proof: Indeed, from (2.18) one has that

Jtω̈t = −ṪL +
d

dωt
T Va (ωt)ω̇t.

Thus, by the uniformly norm bound property in Lemma 5.1 one can conclude that
ω̈t is also uniformly norm bounded. Then, reminding that µ̇o = − 1

τo
µo − ω̈t/Jt one

can write
µ̇o = − 1

τo
µo − ω̈t/Jt

and note that the µo-dynamics is ISS w.r.t. ω̈t with ISS gain τo, completing the
proof.

Therefore, from Lemma 5.2, the output disturbance µo satisfies

µo(t) ≤ πo(t) + εoνo(t),

with πo being an exponentially decaying term depending on the initial conditions,
νo an uniformly norm bounded function and εo > 0 (τo) a small design parameter.

Finally, one can verify that there exists a finite time t0 > 0, such that |πi(t)| ≤ εi

and |πo(t)| ≤ εo, ∀t ≥ t0. Consequently, one can write that

µi(t) = εiµ̄i(t) , µo(t) = εoµ̄o(t) , ∀t ≥ t0 , (5.8)

where µ̄i ≤ πi/εi + νi and µ̄o ≤ πo/εo + νo satisfy |µ̄i(t)|, |µ̄o(t)| ≤ O(1), ∀t ≥ t0,
respectively.

5.3 Main Result

The following theorem states the overall stability analysis including both inner and
outer control loops and the proposed estimation scheme.

Theorem 5.1. Consider the auxiliary output y in (3.18) and the input-output map-
ping Φ(·) in (3.13) with input disturbance µi = e satisfying (5.1) and output µo
satisfying (5.7). The ESC law (4.24), (4.27), (4.28) and (4.29) is implemented with
operating frequency ω, k = ωεk

′, ks = ωεk
′
s, ωl = ωεω

′

l and ωh = ωεω
′

h, where ε
is a positive design constant and k′ , k′s, ω

′

l , ω
′

h are positive constants of order O(1).
The SSC law of the inner loop is implemented with averaging filter time constant
τav = ωε and the “dirty derivative” time constant τo = ωε. Then, there exist ε∗ and
a∗ such that for all ε ∈ (0, ε∗) and a ∈ (0, a∗), the vicinity of the maximizer of the
input-output mapping (3.13) is attractive and the oscillations around the maximum
can be made sufficiently small of order O(a) +O(ε), with a given in (4.24).
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Proof: The proof is carried out by applying the Averaging Theorem [40]. It
is well known that the resulting system needs to be be periodic w.r.t. to the time
variable and that can be obtained by setting the small parameter to zero. The
proof here considers aperiodic time varying signals. However, these signals appears
multiplied by the small parameter in the averaging analysis. So, when this small
parameter vanishes, only time-varying periodic signals remain, allowing the usage
of the Averaging Theorem [40]. The complete proof follows:

Introducing the error variables θ̃ := θ̂ − θ∗ and η̃ := η − Φ(θ∗), one can obtain
from (4.27), (4.28) and (4.29) the Error System defined as:

˙̃η = −ωhη̃ + ωh(y − Φ(θ∗)) , (5.9)

ξ̇ = −ωlξ + ωl(y − η̃ − Φ(θ∗))a sin(ωt) , (5.10)
˙̃θ = kξ + kks[sat (θ̃ + θ∗)− θ̃ − θ∗] , (5.11)

with y in (4.26). By applying Taylor series expansion for function Φ at sat(θ̂), the
auxiliary output y in (4.26) can be rewritten as

y(t) = Φ(sat(θ̂(t))+Φ
′
(sat(θ̂(t))(a sin(ωt)+µi)+

1

2
Φ
′′
(sat(θ̂(t))(a sin(ωt)+µi(t))

2+. . .+µo(t),

which can be rewritten as (∀t ≥ 0):

y(t) = Φ(sat(θ̂(t)) + Φ
′
(sat (θ̂(t))a sin(ωt) + (5.12)

+ a2pi(sat (θ̂(t)), a, t) + µiqi(sat (θ̂(t)), a, t) + µo ,

where qi is a norm bounded function collecting all the terms that contain µi while pi
is a norm bounded function T -periodic in t which incorporates all terms independent
of µi.

Now, let k = ωεk
′ , ks = ωεk

′
s, ωl = ωεω

′

l and ωh = ωεω
′

h, where ε is a positive
design constant and k′ , k′s, ω

′

l , ω
′

h are positive constants of order O(1). In addition,
let t0 ≥ 0 be such that (5.8) holds with constants εi = ωε and εo = ωε.

Hence, ∀t ≥ t0, the auxiliary output y(t) satisfies

y(t) = Φ(sat (θ̂)) + Φ
′
(sat (θ̂))a sin(ωt) + a2pi + εω(µ̄iqi + µ̄o),

where some functions arguments were omitted to simplify the notation. Thus, the

46



error system composed by (5.9), (5.10) and (5.11), with state vector1

X :=
[
η̃ ξ θ̃

]T
, (5.13)

is given by Ẋ = εωf(X , t, εω) with X (t0) = X0 and

f =

 −ω′hη̃ + ω
′

h(y − Φ(θ∗))

−ω′lξ + ω
′

l(y − η̃ − Φ(θ∗))a sin(ωt)

k
′
ξ + εωk

′
k
′
s[sat (θ̃ + θ∗)− θ̃ − θ∗]

 . (5.14)

Note that f(X , t, 0) is a T-periodic function in t. The Average System [40] for
the system Ẋ = εωf(X , t, εω) is defined as the autonomous system

Ẋa = εωfa(Xa) := εω

∫ t0+T

t0

f(Xa, t, 0)dt,

with Xa(t0) = X0, Xa :=
[
η̃a ξa θ̃a

]T
and T = 2π/ω.

In order to prepare for obtaining the Average System, first multiply by a sin(ωt).
Now, using the identity 2 sin2(ωt) = 1− cos(2ωt), one has that

y(t)a sin(ωt) = Φa sin(ωt) + Φ
′ a2

2
(1− cos(2ωt)) + (a3pi + εωa(µ̄iqi + µ̄o)) sin(ωt)

which holds, ∀t ≥ t0, where once again some functions arguments were omitted to
simplify the notation.

Therefore, considering εω = 0, the following relationships can be obtained∫ t0+T

t0

y(t)dt = Φ(sat (θ̂)) + a2pai (sat (θ̂))∫ t0+T

t0

y(t)a sin(ωt)dt = Φ
′
(sat (θ̂))

a2

2
+ a3p̄ai (sat (θ̂)),

where the evaluation of θ̂, ξ and η in the integrals were considered fixed and

pai (θ̂) :=

∫ t0+T

t0

pi(sat (θ̂(t)), a, t)dt

p̄ai (sat (θ̂)) :=

∫ t0+T

t0

pi(sat (θ̂(t)), a, t) sin(ωt)dt,

are uniformly norm bounded continuous functions of θ̂. Now, from (5.14) one can
1Here, the error state vector is not considering inner loop variables, their effect are taken into

account by both input and output disturbances, µi and µo, respectively. A proof for Global
Stability would require a Singular Perturbation Analysis of the complete space-state error system.
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obtain the Average System with:

fa =

 −ω
′

hη̃a + ω
′

h(Φ(·)− Φ(θ∗) + a2pai (·))
−ω′lξa + ω

′

l(Φ
′
(·)a2

2
+ a3p̄ai (·))

k
′
ξa

 , (5.15)

where θ̂a = θ̃a + θ∗ and the argument sat (θ̂a) were omitted to simplify the notation.

The Average System has an equilibrium point at X e
a :=

[
η̃ea ξea θ̃ea

]T
. Indeed,

from (5.15), X e
a must satisfy

ξea = 0,

ω
′

l(Φ
′
(sat (θ̂ea))

a2

2
+ a3p̄ai (sat (θ̂ea))) = 0

−ω′hη̃ea + ω
′

h(Φ(sat (θ̂ea))− Φ(θ∗) + a2pai (sat (θ̂ea))) = 0,

where θ̂ea = θ̃ea+ θ∗. Thus, θ̂ea is the solution of the following equation (Φ
′
(sat (θ̂ea)) =

−2ap̄ai (sat (θ̂ea))). This equation always has a solution for sufficiently small a. In
fact, since θ∗ is the maximizer of Φ(·), then

Φ
′
(sat (θ∗)) = Φ

′
(θ∗) = 0

and Φ
′
(·) changes sign around θ∗. Moreover, since p̄ai is a bounded and continuous

function a |p̄ai | ≤ O(a) in the vicinity of θ∗. Therefore, there exists θ̂ea in the vicinity
of θ∗ such that the curves Φ

′
(sat (θ̂ea)) and −2ap̄ai (sat (θ̂ea))) intercept each other.

Hence,
θ̃ea = O(a).

Finally,

η̃ea = (Φ(O(a) + θ∗)− Φ(θ∗) + a2pai (O(a) + θ∗)) = O(a)

and the equilibrium point is

X e
a :=

[
O(a) 0 O(a)

]T
.

By noting that the Jacobian of Average System at X e
a is block-triangular one can

verify that the condition

(Φ
′′
(sat (θ̂a))

a2

2
+ a3(p̄ai )

′
(sat (θ̂a))) = 0

assures that the Jacobian is Hurwitz. This condition holds for a sufficiently small.
Hence, the Average System has an exponentially stable equilibrium point. This
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guarantees that θ̂ converges to a vicinity of the maximizer by applying the Averaging
Theorem [40].

Remark. Uniform Signal Boundedness From (3.13) and (5.8) one can verify
that y(t) is an UB signal since Φ(·) is a continuous function with UB input. Hence,
from (4.27) and (4.28) is is clear that η and ξ are also UB. Finally, from (4.29),
one can write ˙̂

θ = −kksθ̂ + kξ + kkssat (θ̂). Thus, since ξ is a UB signal it implies
that θ̂ is also UB.

Finally, considering the estimator implementation in section 4.2.2, one might use
the calculated ‘’dirt derivative” of ωt, the known, but possibly uncertain, values of
Jt, Ks, B, p, n and the values ωt, ωr which are available for feedback, to reconstruct
both the aerodynamic torque T Va and the mechanical power Pm. Once estimated,
the cost function Φ̂(ωt) is fed to the ESC algorithm so that, as per Lemma 5.2
and Theorem 5.1, the maximizer ω∗t is calculated and given as set-point to the SSC
control loop as shown in figure 3.1.
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Chapter 6

Numerical Simulations

In this chapter, the results obtained via numerical simulations using MAT-
LAB/Simulink are presented and discussed. In the first section, the WECS con-
sidering the proposed optimization and control scheme with a SSC inner loop and
a ESC outer loop is simulated in different scenarios and the results are discussed in
details.

Table 6.1: Simulation Parameters of the WECS Dynamics
Element Value Unit
ρa 1.225 kg/m3

R 10 m
S πR2 m2

Jt 100 kg.m2

Ks 2× 106 N.m/rad
B 5× 105 N.m.s/rad
J 11.06 kg.m2

n 20 Dimensionless
p 2 Dimensionless
Lm 143.36 mH
Lls 3.20 mH
Ls Lm + Lls mH
Llr 3.20 mH
Lr Lm + Llr mH
a0 70.1557 Ω/H
a1 0.2038 Ω/H2

a2 156.2483 H−1

a3 0.1870 Ω
a4 0.0013 Ω/H

In order to illustrate the proposed control strategy, consider the electrical subsys-
tem (2.9)–(2.12) and the mechanical subsystem (2.16)–(2.18) of the WECS dynam-
ics. The used numerical values are given in Table 6.1 and were extracted from [33].
For more details on the description of each element, please refer to the acronyms
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section in the beginning of this document. The ai, i ∈ [0, 4] parameters are obtained
using equations (2.16).

6.1 Piecewise Constant Wind Speed

At first, in order to illustrate the results obtained and proved in Chapters 4 and 5 a
piece-wise continuous wind speed is considered, whose profile is shown in figure 6.1.
The goal is to provide a first result showing that the purposed control scheme is able
to achieve MPPT for a constant wind speed, putting in evidence how the system
adapts itself due to wind changes. For numerical reasons, in certain situations
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Figure 6.1: Piecewise Constant Wind Speed

SSC requires a very small simulation step to achieve a high commutation frequency
necessary to ”eliminate” the relative degree on the lead filter.

Thus, the two-layered controller tuning has been deliberated chosen slow so that
simulation would not take much long. Tables 6.2 and 6.3 show the parameters used
on both SSC and ESC controllers, respectively.

Table 6.2: SSC Parameters and Initial Conditions
Parameter Value
τav 0.0960
xav(0) 0
unom 0
am 1
κm 1
xm(0) 0
L(s) (s+ 1)4

τf 0.01
xf (0) 0
% 150
σ(0) 0
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Table 6.3: ESC Parameters and Initial Conditions
Parameter Value
ω 0.1π
ωl ω/10
ξ(0) 0
ωh ω/2
η(0) 0
a 0.4
k 1
ks 1
uM 80
um 10
τo(0) 0
xo(0) 0

θ̂(0) 20

6.1.1 Inner Loop (SSC) and State Variables

First, figure 6.2 shows that the sliding variable remains on the manifold and, by
consequence, σ̂ remains in the neighborhood of zero while σ̄ tracks the desired
reference. Pictures on the right represent a time zoom so that more details can
be checked.
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Figure 6.2: Sliding Surface

In figure 6.3 one might note the smooth control and commuted control signals,
showing how the controller adapts due to initial conditions and/or wind changes.

In the next figures, the complete state’s evolution over time - as described in
Chapter 3 - is presented. In figure 6.4, one can see that the generator rotor speed
ωr/(pn) tracks the wind turbine angular speed ωt as expected implying in a small θ̃.
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Figure 6.4: Rotor and Turbine speeds

The rotor angle θ0 always increase due to the fact that ω0 is its time-derivative
and the control input, see figure 6.5. This does not represent an issue because θ0 in
terms of ISS because θ0 enters into sines and cosines, hence limited, factors within
the WECS dynamics.

Finally, considering the electrical part of the state vector, graphs in figure 6.6
show how flux and current are continuously adapted in order to maintain control.

6.1.2 Outer Loop (ESC) and MPPT

Now, the outer loop is considered. In figure 6.7, the ESC signals show how the
Extremum Seeking Algorithm works, in terms of estimating the cost-function gra-
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Figure 6.5: Rotor angle and stator frequency
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Figure 6.6: Currents and Flux

dient and then integrating it to find the optimal parameter that maximizes Φ(·).
Thus, from figure 6.7, it becomes clear that the ESC is performing as it is sup-
posed to in both removing the DC-level via the high-pass filter and in estimating
the outputs‘gradient after demodulation.

Finally, figure 6.8 shows the optimal value for the maximizer ω∗t obtained through
polynomial interpolation of the Cp-curve maxima, the ESC-calculated inner-loop
setpoint ym and the actual ωt value. As shown in the figure, the wind turbine speed
remains in a bounded neighborhood close to the maximizer ω∗t and consequently,
the power remains also close to its maximum once the dynamic response settles (see
figure 6.9). The order of this error is given by the results presented in Chapter 5.
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Figure 6.9: Mechanical Power
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6.2 Variable Wind Signal

Also, real wind data was collected from [67]. The data collected represents more than
three months (from 2010-11-10 to 2011-02-20) of real wind speeds measurements
at each second. Smoother variations on the wind are considered in [68] and on
the precious section, the goal here is to push the proposed scheme to its limits
considering a more real scenario even though the lemmas and theorem presented in
previous chapters were based on the hypothesis that the ESC cost-function was not
time-varying.

In order to be able to achieve MPPT in the presence of this other type of wind
speed profile, the ESC needs some new-tuning (given in table 6.4). Besides that,
some of the electrical parameters have been slightly relaxed so that a higher simula-
tion step could be achieved without causing numerical problems. Despite that slight
change, the concepts remain the same and following results are extremely important:

Table 6.4: ESC Parameters and Initial Conditions
Parameter Value
ω 100π
ωl ω/10
ξ(0) 0
ωh ω/2
η(0) 0
a 0.4
k 8
ks 1
uM 80
um 10
τo(0) 0
xo(0) 0

θ̂(0) 20

For simulation purposes, the whole dataset would be is too much, so, a hundred-
minutes time window with enough wind variation to capture wind gusts and other
abrupt speed changes was chosen. This data is represented in figure 6.10 and will
be considered on the simulation results of the following sections.

The validation of the inner control loop’s performance is straightforward. The
desired set-point ym is given by the ESC law and the signal ys = ωt is available
for feedback, so it is only necessary to evaluate the tracking error response over
time and the control signal calculated by the SSC algorithm. However, in order
to guarantee that the maximum of the (unknown-by-the-controller) Φ(.) function is
being tracked, the reference signal has been generated by polynomial interpolation
of the maxima as obtained in figures 2.8, 2.7, 2.6. Here, two cases are considered. In
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Figure 6.10: Real wind speed data during 1 hour and 40 minutes (left) and zoomed
on the 200 first seconds

the first one, the estimated aerodynamic torque (T Va ) is used as the static-mapping
Φ(.). In the second one, estimated mechanical power (Pm) is used on the torque’s
place. The estimation error (in percentage) defined in equation 6.1 is also analyzed
to prove that the estimation of Φ stays close to the its real value and then can be
used as ESC’s input signal.

Φ̃% = 100× | Φ− Φ̂ |
Φ

(6.1)

As explained in Chapter 3 choosing Φ(.) = Cp(λ) would require the knowledge of
the Ci parameters in equation 2.6 and also a measurement or estimate of the wind
speed, which is not the purpose of this study. The results and implications of using
both torque and power as choices for Φ(.) are discussed in the following sections.

6.3 MPPT via Torque (T Va ) Maximization

In this case, the aerodynamic torque is to be maximized by the proposed control
strategy.

Tracking Problem First, analyzing the inner loop performance in figure 6.11,
one can see on the up left corner, as proved in Chapter 4, that the tracking error
e := ys − ym = µi stays in a bounded region for all times since the sliding surface is
reached.

On the up right corner, the same simulation is zoomed in the time interval
t ∈ [0, 200] seconds so that it can be viewed that the controller takes approximately
30 seconds to drive the wind turbine angular speed from its initial condition to the
desired set-point given by the ESC law. The control effort us is shown in the bottom
of figure 6.11, pointing that the modulation function design was adequate since the
controller is not saturating and the sliding is maintained for all times once the sliding
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Figure 6.11: Turbine’s angular speed tracking error e and control signal us for
Torque Maximization.

surface is reached.

Optimization Problem Regarding the outer loop, its task is to provide to the
inner loop, the maximizer w∗t that makes Φ achieves each maximum for every wind
speed within the sub-rated region. The first thing that must be analyzed is if the
estimate Φ̂ is really providing a good approximation of Φ. Figure 6.13 shows the
estimate error given by 6.1. The left image covers an error spectrum from 0-100%,
but to better visualize that this error is not greater than 6%, the right image zooms
into Φ̃% ∈ [0, 20]%.
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Figure 6.12: Error between on Φ and Φ̂ expressed in percentage of Φ.
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Once the estimate can be trusted, the aerodynamic torque is provided as input
signal to the ESC algorithm which calculates the adequate w∗t that would maximize
T Va . Figure 6.13 presents Φ’s maximum point (in that case torque) tracking showing
what would be the optimal trajectory to always have maximum torque no matter
the wind speed. It can be seen from 6.13 that the ESC algorithm is really efficient
on bringing the turbine’s angular speed to close to the optimal one so that almost
at all times the maximum torque is extracted. As before, the right side of figure
6.13 zooms into the first 200 seconds to provide more details about the tracking.

0 1000 2000 3000 4000 5000 6000

Time (seconds)

0

20

40

60

80

100

120

A
er
o
d
y
n
am

ic
T
or
q
u
e,

T
V a
(N

.m
)

T
V
a

T
V ∗

a

0 20 40 60 80 100 120 140 160 180 200

Time (seconds)

15

20

25

30

35

40

45

50

55

60

65

A
er
o
d
y
n
a
m
ic

T
o
rq
u
e,

T
V a
(N

.m
)

T
V
a

T
V ∗

a

Figure 6.13: Tracking maximum aerodynamic torque.

One might note that all reference trajectories presented from this moment on
will always be above the actual Φ since they represent the theoretical limit imposed
by the system as explained in Chapter 2.

Although the objective of tracking maximum torque has been achieved, the goal
here is to capture as much power as possible from the wind’s kinetic energy. As
explained in Chapters 2 and 3, this is achieved by exploiting the maximum power
coefficient (Cp) and consequently achieving the highest mechanical power (Pm) pos-
sible. At a first glance, figures 2.8, 2.7, 2.6 seem to imply that maximum torque
(T V ∗a ) yields to maximum power (P ∗m). However, analyzing in more details the poly-
nomial fitting for the maxima in these two different cases, one can see that these
maxima occur with different maximizers (w∗t ).

Thus, as can be seen in figures 6.14 and 6.15, using the maximizers calculated
for torque maximization yield to suboptimal performance on MPPT.

Fortunately, the proposed control scheme and the theorems presented here are
also valid considering the mechanical power as the static mapping to be maximized
(Φ = Pm). These results are discussed in the next section.
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Figure 6.14: Implication on power tracking.
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Figure 6.15: Implication on the power coefficient.

6.4 MPPT via Power (Pm) Maximization

Tracking Problem Once again the analysis starts on the inner loop performance.
As the SSC controller remains the same and the same nature of reference signal is
being applied to the inner loop, very similar behavior is evidenced in figure 6.16.
Thus, the same comments from previous section apply here.

Optimization Problem Now, it is not expected that the torque actually follows
its desired maximum trajectory and figure 6.17 does prove that. However, in this
case, both profiles for Pm and Cp follow their correspondent maximum trajectories
and that happens because P ∗m(t)⇔ C∗p(t) for the same set of maximizers w∗t (t), ∀t.
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Figure 6.16: Turbine’s angular speed tracking error e and control signal us for
Power Maximization.
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Figure 6.17: Not-tracking the maximum aerodynamic torque.
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Figure 6.18: Tracking maximum mechanical power.

Figures 6.18 and 6.19 show that the maximum power point is tracked almost
perfectly during the whole duration of the simulation scenario. Once more, the
right images give more detailed visual information about the tracking.
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Figure 6.19: Achieving maximum power coefficient.

6.5 Robustness Analysis

In order to test the robustness of the proposed scheme, it is necessary to introduce
some inaccuracies into the model so that both the inner and outer loop are tested
in uncertain situations. The results presented on the following have been obtained
by increasing 12% of Jt, decreasing 8% of B, increasing 10% of K and increasing
17% of R. The same SSC and ESC controllers were used.

Regarding the tracking error, figure 6.20 there is still good performance on keep-
ing ωt at the desired variable set-point. However, one might note that, in some
moments, the control signal is saturated, achieving the maximum defined by the
modulation value. In these exact moments, naturally, the tracking error increases
but the controller can still bring it down because it doesn’t spend too much time
in this scenario. However, a better solution would be to increase a little the modu-
lation function value so that the controller could overcome all disturbances due to
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Figure 6.20: Robustness analysis: Turbine’s angular speed tracking error e and
control signal us for Power Maximization.

uncertainties at all times. For a better tuning of the modulation function value, it
would be necessary a more detailed study on the magnitude of all disturbances.
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Figure 6.21: Robustness analysis: Mechanical power tracking

Considering maximum power tracking, one can see in figure 6.21 that the ESC
algorithm is still capable of maintaining Cp close to its optimum. However, from both
graphs in figures 6.21, there are more variability around the optimum introduced by
the non-idealities. This shows that the proposed scheme is robust enough to still
accomplish its task providing good results even in uncertain scenarios, but it has
certainly a better performance once the errors on the estimates of Jt, B, Ks and R
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are minimized.
To conclude, as per all the results presented, it is clear that the control signal

remains on a limited region, taking acceptable values and having a coherent profile
to track the changes on the inner control loop reference (the ESC signal). Regarding
the aerodynamic torque or power estimation, it can be seen that, even considering
noise on the measurement of the angular velocity, the estimation is acceptable. This
implies that ωt tracks almost perfectly ym and that the ESC can practically consider
a static I/O mapping Φ(ym) as y = T Va (ωt) or Pm(ωt) ≈ Φ(ym). These signals are all
bounded and confirm that the SSC is tracking the reference signal as well as that
the estimation error is bounded within the vicinity of zero.
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Chapter 7

Conclusion

This chapter summarizes the work presented on the document while also pointing
out its scientific contribution. The limitations of the present work are also discussed
and, finally, a list of possible future works in order to continue and improve this
study is presented.

7.1 Summary

In this study, the control of a wind energy conversion system (WECS) to extract its
maximum power or torque was considered. The optimization and control strategy
was performed by applying extremum seeking control (ESC) in an outer control loop
to perform the optimization and a nonlinear robust controller in an inner control
loop to guarantee global practical tracking rotor speed tracking. It was proved
that the WECS is input-to-state stable w.r.t. the turbine angular velocity and its
time derivatives. For power or torque maximization, the key idea of the method is
to maximize an auxiliary output which is an estimate of the mechanical power or
aerodynamic torque, with a real-time control to handle wind speeds varying from
the cut-in wind speed to the rated wind speed (i.e. Phase II in figure 1.5).

A smooth sliding control (SSC), based on variable structure control (VSC) but
applying a smooth control effort was implemented in the inner loop, resulting in a
chattering free control law, without the need for stator flux measurements of the
induction generator nor for wind speed measurement/estimation. The overall closed-
loop stability analysis including the ESC employed in the outer loop and the SSC
in the inner loop was provided.

Numerical simulations illustrated the performance of the proposed scheme. The
WECS considered was a horizontal axis variable speed and fixed pitch wind turbine
with a three blade rotor, which is the most usual type of wind turbine in the mar-
ket. However, as explained throughout the text, the developed optimization and
control strategy can be used for many different types of wind turbines, such as the
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Darrieus turbines for the urban electricity generation for example, as long as the
the same kind of mechanical transmission is considered, the generator is a Squirrel
Cage Induction Generator (SCIG) and the power grid control side is performed by
a Matrix Converter (MC).

7.2 Contributions

This study provides a useful method for maximum power point tracking in wind en-
ergy converting systems focusing on both theoretical aspects of the used controllers
and their stability and robustness analysis and the practical application of the dis-
cussed techniques considering the whole mechatronic system. More specifically, this
work contributes with a generalization of the SSC for the class of nonlinear plants
considered here and the open loop stability (ISS) property obtained for this class
of WECS, the overall closed loop stability analysis including the SSC and the ESC
variation with anti-windup and the proposed scheme to estimate the mechanical
power and/or aerodynamic torque. On the overall closed loop stability analysis, a
different approach exploiting the ISS properties, considering calculated boundaries
and controller limitations such as saturation and anti-windup has been taken into
account for lemmas and theorem‘s ‘proofs in Chapter 5.

Additionally, the proposed scheme has two advantages when compared to other
hill-climb search (HCS) controls on SCIGs such as [33–35]: The first is that the
rotor flux is not necessary for feedback, avoiding hall-effect sensors or observers and
the second is that one can use an estimate of the mechanical power or aerodynamic
torque by means of the turbine’s rotor speed only to feed the optimization portion
of the algorithm, making it more flexible to conditions where the power signal is not
available for feedback.

Some of the work presented on this text has been accepted and will be presented
on the American Control Conference (ACC) taking place in Milwaukee - June, 2018
[68].

7.3 Future Work

Possible future topics of research are closely associated to limitations that are still
present in this study. For instance, extending the stability results obtained to the
general class of nonlinear plants presented in Chapter 3, formally establishing the
parallel between other SMC-based controllers with SSC, extending the stability the-
orem using these controllers as inner loops and performing experiments with a pro-
totype or real wind turbine to validate the simulations results obtained and test its
real-time capabilities.
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Finally, other improvements that would enrich this study would be dealing with
the power grid-side controls and modulation algorithms notably for the MCs, simu-
lating and verifying the proposed scheme performance for other type of wind turbines
and simulating the whole system, with a state machine for handling operation modes
and developing dedicated controllers for each power curve phase (cut-in, sub-rated,
rated and cut-out).
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