Universidade Federal do Rio de Janeiro

Centro de Tecnologia

Escola Politécnica

Engenharia Naval e Oceânica

"Análise de Frequências Naturais e Modos de Vibração de um Navio Graneleiro Operando em Águas Rasas"

Aluna Eloana Moreira Coutinho DRE: 108041881

Professor Orientador Ulisses Admar Barbosa Vicente Monteiro, D.Sc.

Professor Co-Orientador Ricardo Homero Ramírez Gutiérrez, M.Sc.

> Rio de Janeiro, RJ – Brasil Abril de 2013

ESCOLA POLITÉCNICA ENGENHARIA NAVAL E OCEÂNICA

"Análise de Frequências Naturais e Modos de Vibração de um Navio Graneleiro Operando em Águas Rasas"

Eloana Moreira Coutinho - DRE 108041881

Projeto Final Submetido Ao Corpo Docente Do Departamento De Engenharia Naval E Oceânica Da Escola Politécnica Da Universidade Federal Do Rio De Janeiro Como Parte Dos Requisitos Necessários Para A Obtenção Do Grau De Engenheiro Naval e Oceânico.

Aprovado por:	
	Ulisses Admar Barbosa Vicente Monteiro, D.Sc. (ORIENTADOR)
	Ricardo Homero Ramírez Gutiérrez, M.Sc. (CO-ORIENTADOR)
	Luiz Antonio Vaz Pinto, D.Sc. – COPPE/UFRJ
	Antonio Carlos Ramos Troyman, D.Sc. – COPPE/UFRJ

Rio de Janeiro, RJ – Brasil Abril de 2013

ANÁLISE DE FREQUENCIAS NATURAIS E MODOS DE VIBRAÇÃO DE UM NAVIO GRANELEIRO QUE OPERA EM ÁGUAS RASAS

Eloana Moreira Coutinho Abril/2013

Orientador: Ulisses Admar Barbosa Vicente Monteiro

Co-Orientador: Ricardo Homero Ramírez Gutiérrez

Departamento: Engenharia Naval e Oceânica

Resumo do Trabalho: Nesse trabalho será feita uma análise dos modos de vibração de uma embarcação que navega em fundo raso, e assim, verificar a possibilidade de ocorrência de ressonância na estrutura do navio devido à excitação dos motores, linhas de eixos e propulsores, o que pode levar a falhas estruturais. A influência da massa adicional sobre a frequência natural foi considerada. Será realizada a modelagem tridimensional, em elementos finitos, que contempla os elementos longitudinais da embarcação sob estudo. Os resultados do modelo serão comparados com os resultados de um modelo unidimensional da mesma embarcação.

MOREIRA COUTINHO, Eloana

Análise de Frequências Naturais e Modos de Vibração de um Navio Graneleiro Operando em Águas Rasas - Rio de Janeiro: UFRJ/ Escola Politécnica, 2013.

43 p: VII .;29,7 cm.

Orientador: Ulisses Admar Barbosa Vicente Monteiro

Projeto de Graduação – UFRJ/ Escola Politécnica/ Curso de Engenharia Naval e Oceânica, 2013

Monografia apresentada ao curso de Engenharia Naval e Oceânica da Universidade Federal do Rio de Janeiro

1.Águas Rasas. 2.Vibração. 3.Massa Adicional. 4. Modelação Computacional.

Referências Bibliográficas: p. 27

I. Barbosa Vicente Monteiro, Ulisses Admar. II.Universidade Federal do Rio de Janeiro, EscolaPolitécnica, Curso de Engenharia Naval e Oceânica. III.

Análise de Frequências Naturais e Modos de Vibração de um Navio Graneleiro Operando em Águas Rasas / Eloana Moreira Coutinho – Rio de Janeiro: UFRJ/ Escola Politécnica, 2013.

<u>Dedicatória</u>

A Deus, o alicerce da minha vida

Agradecimentos

Agradeço a minha mãe que sempre esteve ao meu lado, me dando apoio para prosseguir em todos os momentos, principalmente naqueles em que eu pensava em desistir. Ao meu pai que sempre me doou palavras de carinho e incentivo. A minha irmã, Danielle, por ser minha melhor amiga e sempre vibrar com minhas conquistas. E aos meus familiares que me acompanharam nessa jornada, sendo compreensíveis em ocasiões que não pude estar presente devido aos momentos incessantes de estudo. Muito obrigada. Amo vocês demais.

Agradeço imensamente aos professores, pesquisadores e funcionários dos laboratórios LEME e LEDAV por toda a orientação que recebi, principalmente ao meu orientador Ulisses e meu co-orientador Ricardo Homero, pela paciência e presteza com que me acompanharam nesses últimos meses. Agradeço também ao aluno Carlos Ribeiro por ter me doado suas análises para conclusão do meu projeto.

Agradeço a minha segunda família, a família naval, com a qual convivi a maior parte da minha vida nesses cinco anos. Em especial, cito alguns que foram demasiadamente importantes: Diego Athayde, Juan Pablo, Clara Maria, Thayanna Araujo, Gelder Guerreiro, Aline Coelho e Mariana Pinheiro – com vocês meus dias foram mais felizes e minhas tristezas foram amenizadas, amo demais vocês! Oto, Julio e Daniel Debatin – agradeço a disposição e ajuda durante a madrugada quando o problema se encontrava entre o computador e a cadeira. Tatiana Esteves, Bruno Pontes, Gabriel Tancredi, Carolina Bethlem, João Ruiz e Hugo Jordão – obrigada pela paciência e carinho com que tem me tratado todos os dias.

Agradeço ao meu amigo, Marco Alexandre de Sousa, que soube lidar comigo nesses anos todos com paciência, carinho e atenção, me socorrendo em qualquer que fosse o dia ou hora, sendo pra me ouvir, ajudar, ou simplesmente servir de um ombro amigo para me confortar. Você sabe o seu valor.

E mais uma vez, agradeço Aquele que eu não tenho dúvidas que está e sempre estará ao meu lado, em todos os momentos, me mostrando o caminho que devo seguir. A Ele toda a honra, glória e louvor. Obrigada, meu Deus.

Sumário

1. Introdução	1
2. Motivação e Objetivo	2
3. Navegação Fluvial	3
4. Vibração	5
4.1. Vibração Livre para um grau de liberdade:	5
4.2. Vibração Livre para <i>n</i> graus de liberdade:	6
5. Massa Adicional	10
5.1. Coeficientes para o cálculo de massa adicional	10
5.1.1. Águas Profundas	13
5.1.2. Águas Rasas	14
6. Modelo Tridimensional	16
6.1. Método de Elementos Finitos	16
6.2. O Modelo	16
6.3. Massas	20
6.3.1. Massa Adicional	20
6.3.2. Massa Total	21
6.4. Modelo Ansys	21
7. Resultados	23
8. Comparações	25
9. Conclusão	26
10. Referências	27
Anexo I - Modos de Vibração Vertical em Águas Rasas - Modelo Tridimension	al28
Anexo II – Modos de Vibração Vertical em Águas Rasas – Modelo Unidimensio	nal31
Anexo III – Tabela de Massas Adicionais	34
Anexo IV – Desenhos de Referência	40
Anexo V - Modelo do <i>Rhinoceros</i> - Detalhamento	41

Lista de Figuras

Figura 2.1: Navio Trevo Vermelho	2
Figura 3.1: Bacia Hidrográfica do Sul	3
Figura 3.2: Dados de movimento de carga da Bacia do Sul	4
Figura 4.1: Sistema massa-mola	5
Figura 4.2: Modo de vibração da viga-navio	6
Figura 5.1: Movimento Vertical de Seção do Navio e Partícula Fluida	11
Figura 5.2: Cilindro uniforme de raio <i>r</i> movendo-se verticalmente	12
Figura 5.3: Curvas de relação entre K33 e a forma para águas profundas	14
Figura 5.4: Curvas de relação entre K33 e a forma para águas rasas	15
Figura 6.1: Seção Mestra do Trevo Vermelho	17
Figura 6.2: Arranjo Estrutural - Trevo Vermelho	18
Figura 6.3: Trevo Vermelho Completo – Perspectiva	19
Figura 6.4: Aplicação dos Pontos de Massa Adicional	22
Figura 7.1: Frequências dos cinco primeiros modos de vibração para o	modelo
tridimensional	23
Figura 8.1: Comparação entre frequências dos cinco primeiros modos de	vibração
para o modelo unidimensional e tridimensional	25

1. Introdução

O estudo de vibrações em navios é de grande importância para a Engenharia Naval, uma vez que níveis de vibração muito elevados afetam diretamente a estrutura do navio, bem como no bem estar e conforto de tripulantes e passageiros.

A navegação de embarcações mercantes através de rios apresenta problemas devido à baixa profundidade, limitando o calado com que podem operar. Devido à proximidade com o fundo, há o aumento da velocidade de escoamento ao redor do casco, gerando uma região de baixa pressão, fazendo com que a embarcação aumente o seu calado. Essa redução resulta em surgimento de problemas, tais como, a colisão do fundo da embarcação ou de objetos no propulsor, vibração excessiva do sistema propulsivo e da estrutura.

O problema de vibração estrutural está diretamente relacionado com ao aumento da massa adicional quando se navega em baixas profundidades. Esse aumento de massa adicional do casco ocasiona a redução do valor da frequência natural dos modos de vibração do navio. Essa redução pode ocasionar a coincidência das vibrações naturais do navio com a vibração de elementos estruturais do mesmo, ou algum modo de operação do sistema propulsivo, ocasionando fenômeno de ressonância, resultando em vibrações excessivas em toda a estrutura do navio.

Este projeto apresentará um estudo de coeficiente e fórmulas para a determinação da massa adicional em embarcações que operam em águas rasas, para a aplicação em modelos de elementos finitos a fim de analisar os modos de vibração e frequências naturais do movimento vertical da embarcação.

Os resultados obtidos serão comparados à modelação unidimensional de vigasnavio.

2. Motivação e Objetivo

A motivação para o desenvolvimento deste projeto consiste no estudo de caso de uma embarcação fluvial que atua no sul do país, batizado de Trevo Vermelho. Este navio foi projetado para fazer o transporte de granéis sólidos no trecho entre os portos de Estrela e Cachoeira do Sul da Lagoa dos Patos e seus afluentes no estado do Rio Grande do Sul.

Figura 2.1: Navio Trevo Vermelho

Tabela 2.1: Características Principais do Navio Trevo Vermelho

Navio Trevo Vermelho	Tipo: Graneleiro	
Comprimento Total	95,36m	
Comprimento entre Perpendiculares	91,00m	
Boca	15,50m	
Pontal	4,75m	
Calado	4,10m	
TPB	3994 ton	
HP	1050	
Ano de Construção	1989	

Será feito um estudo sobre a influência da massa adicional no cálculo dos modos naturais de vibração da estrutura. Serão analisadas fórmulas e coeficientes para o cálculo da massa adicional para aplicação em modelos de elementos finitos.

3. Navegação Fluvial

Um dos meios mais econômicos para o transporte de cargas no interior dos países e continentes é a navegação fluvial, uma vez que demanda um consumo interno energético muito menor que modais rodoviários e, em alguns casos, ferroviários. A navegação fluvial é utilizada para transportes de grandes volumes de carga de baixo valor agregado como grãos e insumos agrícolas.

O Brasil tem uma das maiores redes hidrográficas do mundo possuindo oito bacias – Amazônica Ocidental, Amazônica Oriental, do Nordeste, do Paraguia e Paraná, do São Francisco, do Sul, do Tietê Paraná e do Tocantins e Araguaia. Uma análise sobre a Bacia do Sul será realizada no presente projeto, onde a embarcação de estudo costuma operar.

Segundo o site do Ministério dos Transportes, a Bacia do Sul possui uma área de aproximadamente 223688 km², abrange os estados do Rio Grande de Sul e Santa Catarina. Nesta região predominam embarcações em torno de 90 m de comprimento, 15 de boca e capacidade de aproximadamente 3000 toneladas, que transportam milho, farelo, óleo vegetal, areia para o consumo na construção civil e carvão energético para consumo do Polo Petroquímico do Sul.

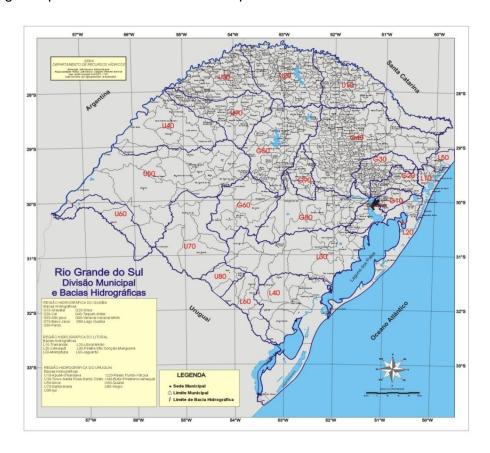


Figura 3.1: Bacia Hidrográfica do Sul

Um dos principais portos presentes nesta Bacia é o Porto de Estrela, inaugurado em 1977 para atender a demanda de transporte de trigo e soja de exportação do Porto de Rio Grande. Este possui acessos para os modais rodoviário, ferroviário e fluvial. O

transporte de carga nas hidrovias de Jacuí, Taquari e Lagoa dos Patos é predominante de granéis sólidos, como podemos ver através dos dados de movimentação de carga do Ministério de Transportes do ano de 2000 mostrados a seguir:

Terminal de Origem	Terminal de Destino	Distância (km)	Quantidade (t)	Produção de Transporte(tku)	Produtos Movimentados	Principais Empresas de Navegação
NO JACUÍ						
Cachoeira do Sul (RS)						
SPH						
CENTRALSUL						
Charqueadas (RS)						
COPELMI	COPESUL	40	207.096	8.283.855	Carvão	Navegação Guarita
RIO TAQUARÍ						
Estrela (RS)						
Porto de Estrela						
GRANÓLEO	Bianchini	444	5.625	2.497.500	Oleo de Soja	Nav. Aliança
Taquari (RS)						
MOTASA						
MITA	Rio Grande (RS)	414	155.267	64.280.608	Lascas de Madeira	Navegação Aliança
Porto de Rio Grande (RS)	Porto de Estrela (RS)		19.822	8.860.434	Milho	Navegação Aliança
TERMASA	Porto de Estreia (KS)	447	19.328	8.639.616	Sorgo	Navegação Aliança
TOTAIS			407.139	92.562.014		•
Fonte: Administração das Hidrovias do Sul - AHSUL						
Observações: Não foram consideradas a movimentação de areia dos leitos dos rios Jacui e Taquari estimada, no corrente ano, em 530 mil toneladas, equivalentes a 58.125 mil tixu						

Figura 3.2: Dados de movimento de carga da Bacia do Sul

Apesar do transporte fluvial se apresentar como um modal econômico eficiente, o mesmo possui problemas devido à baixa profundidade. O calado das embarcações necessita ser limitado, a fim de evitar colisões com o fundo e de objetos com o propulsor. Além disso, a velocidade deve ser reduzida, uma vez que há o aumento de velocidade do escoamento entre o casco e o fundo, diminuindo a pressão nesta região, fazendo com que o calado aumente, podendo causar os problemas mencionados anteriormente, gerando avarias na estrutura.

Outro problema referente à navegação fluvial é de vibração, gerado pela interferência do fundo no escoamento do propulsor e ao redor do casco. Esse problema será abordado como foco deste projeto.

Para evitar esses problemas, é necessário que no projeto sejam levadas em consideração as restrições impostas pelo meio onde a embarcação irá operar. Além disso, podem ser realizadas simulações e análises numéricas que irão representar o modelo real, a fim de procurar meios e soluções para extinção dos problemas.

4. Vibração

Qualquer movimento que se repita após um intervalo de tempo é denominado *vibração* ou *oscilação*. A maioria das atividades humanas envolve vibração, uma vez que qualquer corpo que possua massa e elasticidade é passível de viração.

Um sistema vibratório possui, em geral, um meio para armazenar energia potencial, um meio para armazenar energia cinética e um meio de perda gradual de energia. A vibração de um sistema envolve a transferência alternada de sua energia potencial para energia cinética e vice-versa. Porém, se o sistema for amortecido, certa quantidade de energia é dissipada em cada ciclo de vibração.

Sempre que a frequência de excitação externa coincidir com a natural de vibração de uma máquina ou estrutura, ocorre um fenômeno conhecido como ressonância, que em navios resulta em ruídos, desconforto a tripulação e falhas da estrutura e equipamentos. As forças de excitação externa podem ser originadas no próprio navio, onde se consideram as forças e momentos de desbalanceamento nos motores principal e auxiliares, ou podem ser causadas por agentes externos, por exemplo, forças e momentos causados pelo propulsor e forças causadas pela ação do mar.

4.1. Vibração Livre para um grau de liberdade:

Um sistema sofre vibração livre quando oscila sob uma perturbação inicial, sem a ação de nenhuma força após essa perturbação inicial. O sistema vibratório mais simples é apresentado através de um sistema massa-mola, conforme a figura abaixo:

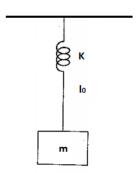


Figura 4.1: Sistema massa-mola

A equação geral do movimento que descreve um sistema vibratório é apresentada a seguir:

$$m\ddot{x} + c\dot{x} + kx = F_{ext}(t)$$
 Eq. [1]

Onde:

- $F_{ext}(t)$ = força de atuação externa
- m =massa do sistema

- c = constante de amortecimento
- k = constante elástica

Como a vibração é livre, $F_{\rm ext}(t)$ é igual a zero. Além disso, pelo mesmo motivo, o sistema não possui o fator referente ao amortecimento, logo, a expressão acima fica reduzida a:

$$m\ddot{x} + kx = 0 \longrightarrow \ddot{x} + \frac{k}{m}x = 0$$
 Eq. [2]

Assumindo a solução da equação geral x(t) como:

 $x(t) = c_1 cos(w_n t - \phi) \rightarrow posição da massa ao longo do tempo$

$$\ddot{x}(t) = -c_1 w_n^2 cos(w_n t - \phi) \rightarrow$$
 aceleração da massa ao longo do tempo

Substituindo as soluções acima na equação do movimento, tem-se:

$$-c_1w_n^2cos(w_nt-\phi)+\frac{k}{m}c_1cos(w_nt-\phi)=0$$

$$-w_n^2+\frac{k}{m}=0 \to w_n=\sqrt{\frac{k}{m}}$$
 Eq. [3]

Através da equação apresentada acima, pode-se perceber que a frequência natural do sistema é uma relação entre a rigidez do corpo e sua massa.

4.2. Vibração Livre para n graus de liberdade:

Um sistema com *n* graus de liberdade, possui n frequências naturais, cada uma associada a sua própria forma modal, conforme mostrado na figura 4.2:

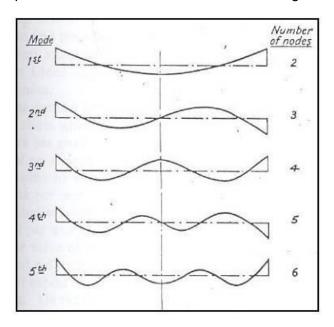


Figura 4.2: Modo de vibração da viga-navio

A solução de um sistema com *n* graus de liberdade é obtida de maneira análoga ao sistema de um grau de liberdade.

A equação geral do movimento é descrita da seguinte forma:

$$m_i \ddot{x} = \sum_i F_{ij}$$
 (para massa m_i)

Onde:

- $\sum_{j} F_{ij}$ designa a soma de todas as forças que agem sobre a massa m_i .
- i = número de graus de liberdade do sistema

Aplicando-se a formula da equação geral do movimento a cada massa do sistema, tem-se:

$$i=1,2,3...,n-1 \rightarrow m_i \ddot{x}_i = -k_i (x_i-x_{i-1}) + k_{i+1} (x_{i+1}-x_i) - c_i (\dot{x}_i-\dot{x}_{i-1}) + c_{i+1} (\dot{x}_{i+1}-\dot{x}_i) + F_i$$
 Eq. [4]

Essa equação pode ser expressa na forma matricial como:

$$[m]\ddot{x} + [c]\dot{x} + [k]x = \vec{F}$$
 Eq. [5]

Onde [m], [c] e [k] são denominadas matrizes de massa, amortecimento e rigidez, respectivamente, e são dadas por:

$$[m] = \begin{bmatrix} m_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & m_2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & m_3 & \cdots & 0 & 0 \\ \vdots & & & & & \\ 0 & 0 & 0 & \cdots & 0 & m_n \end{bmatrix}$$

$$[c] = \begin{bmatrix} (c_1 + c_2) & -c_2 & 0 & \cdots & 0 & 0 \\ -c_2 & (c_2 + c_3) & -c_3 & \cdots & 0 & 0 \\ 0 & -c_3 & (c_3 + c_4) & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -c_n & (c_n + c_{n+1}) \end{bmatrix}$$

$$[k] = \begin{bmatrix} (k_1 + k_2) & -k_2 & 0 & \cdots & 0 & 0 \\ -k_2 & (k_2 + k_3) & -k_3 & \cdots & 0 & 0 \\ 0 & -k_3 & (k_3 + k_4) & \cdots & 0 & 0 \\ \vdots & & & & & & \\ 0 & 0 & 0 & \cdots & -k_n & (k_n + k_{n+1}) \end{bmatrix}$$

E, \vec{x} , $\dot{\vec{x}}$, $\dot{\vec{x}}$ e \vec{F} são os vetores de deslocamento, velocidade, aceleração e força, respectivamente, dados por:

$$\overrightarrow{x} = \left\{ \begin{array}{c} x_1(t) \\ x_2(t) \\ \vdots \\ \vdots \\ x_n(t) \end{array} \right\}, \quad \overrightarrow{\dot{x}} = \left\{ \begin{array}{c} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \vdots \\ \vdots \\ \dot{x}_n(t) \end{array} \right\} \stackrel{\overset{\cdot}{\times}}{\overset{\cdot}{\times}} = \left\{ \begin{array}{c} \dddot{x}_1(t) \\ \dddot{x}_2(t) \\ \vdots \\ \vdots \\ \dddot{x}_n(t) \end{array} \right\}, \quad \overrightarrow{F} = \left\{ \begin{array}{c} F_1(t) \\ F_2(t) \\ \vdots \\ F_n(t) \end{array} \right\}$$

Como dito anteriormente, para vibração livre \vec{F} e c são iguais a zero, logo tem-se:

$$[m]\ddot{x} + [k]x = 0$$
 Eq. [6]

Pode-se encontrar a solução do problema considerando-o como um problema de autovalor:

$$x_i(t) = X_i T(t), i = 1, 2, 3, ..., n$$
 Eq. [7]

Adotando-se a separação de variáveis no domínio do espaço e no domínio do tempo, tem-se:

- ullet X_i vetor de máximas amplitudes dos deslocamentos dos graus de liberdade do sistema
- T(t) função do tempo t

Substituindo-se a solução na equação anterior, pode-se reescreve-la desta forma:

$$[m]\vec{X}\ddot{T}(t) + [k]\vec{X}T(t) = 0$$
 Eq. [8]

Além disso, a equação acima pode ser descrita na forma escalar como n equações separadas:

Da qual podemos obter as relações:

$$-\frac{\ddot{T}(t)}{T(t)} = \frac{\left(\sum_{j=1}^{n} k_{ij} X_{j}\right)}{\left(\sum_{j=1}^{n} m_{ij} X_{j}\right)}, \ i = 1, 2, 3, \dots, n$$
 Eq. [10]

Visto que o lado esquerdo da equação acima é independente do índice *i*, e o lado direito é independente de t, ambos os lados devem ser iguais a uma constante. Considerando a constante como w², pode-se rescrever a equação da seguinte forma:

$$\ddot{T}(t) + w^2 T(t) = 0$$

ou

$$[[k] - w^2[m]]\vec{X} = 0$$

A solução do problema acima pode ser dada por:

$$T(t) = C_1 \cos(\omega t + \phi)$$
 Eq. [11]

Onde:

- C_1 = amplitude
- Φ = ângulo de fase

Além da solução dada acima, tem-se que ω não pode assumir um valor arbitrário. Ele precisa, necessariamente, satisfazer a equação do problema de autovalor: $[[k] - \omega^2[m]]\vec{X} = 0$.

Para uma solução não trivial da equação acima, o determinante da matriz de coeficientes deve ser zero. Isto é:

$$\Delta = \left|k_{ij} - \omega^2 m_{ij}\right| = \left|[k] - \omega^2[m]\right| = 0 \hspace{1cm} \text{Eq. [12]}$$

A equação enunciada acima é conhecida como equação característica, ω^2 é chamado de autovalor e ω é a frequência natural do sistema.

Resolvendo-se o determinante e o igualando a zero, podem-se obter as n's frequências naturais do sistema de vibração de n graus de liberdade.

É de extrema importância estimar as frequências naturais da viga-navio, para evitar que os efeitos de ressonância ocorram e causem danos à estrutura.

Para o projeto em questão, será necessário encontrar as frequências naturais dos 5 primeiros modos de vibração do navio.

5. Massa Adicional

A viga-navio se difere de uma viga simples de estrutura civil por se encontrar parcialmente submersa. Essa consideração envolve diretamente o conceito de massa adicional.

Quando um corpo vibra ou se desloca em movimento acelerado nos seus seis graus de liberdade em um meio fluido, ele gera a movimentação das partículas desse fluido. As reações da movimentação dessas partículas sobre o corpo modificam o comportamento estrutural do mesmo, sendo necessária a consideração de uma massa adicional, que depende da profundidade do meio fluido e do formato do corpo analisado.

O efeito de massa adicional foi inicialmente identificado por Dubua em 1776, a medida que os resultados dos cálculos das forças hidrodinâmicas atuantes em um objeto em movimento num fluído considerado incompressível e não viscoso foram distintos dos resultados experimentais. Contudo, as primeiras expressões matemáticas obtidas para a massa adicional de uma esfera foram desenvolvidas por Green em 1833 e Stokes em 1843. A partir daí vários pesquisadores desenvolveram diferentes expressões e coeficientes para o cálculo da massa adicional de um corpo arbitrário.

Majoritariamente, os cálculos são desenvolvidos usando a analogia com uma seção transversal de um cilindro de seções retangulares, circulares e elípticas, devido à simplicidade de suas formas e considerando o corpo flutuando em um fluído infinito, sem interferências de superfícies próximas. Posteriormente é realizada a correção para a seção do navio através do método da Transformação Conforme, que será abordada mais adiante.

Para o projeto em questão será considerada a seção transversal de um navio. Com o conhecimento do escoamento do fluído ao redor do casco é possível fazer o cálculo da massa virtual, através do cálculo de energia cinética do sistema, considerando o movimento do corpo flutuante e das partículas fluídas.

5.1. Coeficientes para o cálculo de massa adicional

Como dito anteriormente, para determinação dos coeficientes de massa adicional será considerado como objeto de estudo a seção transversal de um navio. Quando esta seção penetra o fluido, o mesmo é deslocado para dar passagem ao navio. Quando o navio se movimenta para fora do fluido, o mesmo retorna ao seu espaço original, preenchendo-o. Com isso, o fluido apresenta um movimento oscilatório cujo efeito é transmitido a todas as partículas do meio.

Conforme a figura a seguir, a energia cinética do sistema é dada por:

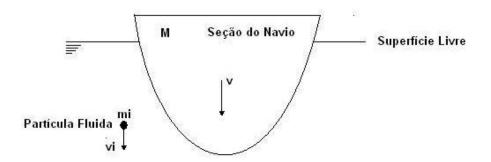


Figura 5.1: Movimento Vertical de Seção do Navio e Partícula Fluida

$$EC = \frac{1}{2}Mv^2 + \frac{1}{2}\sum_{i=1}^{\infty}m_iv_i^2$$
 Eq. [13]

Onde:

- M =massa do corpo
- v = velocidade vertical (movimento de heave)
- m_i = massa da partícula fluida i
- v_i = velocidade da partícula fluida i

A primeira parcela da seção é referente à seção do navio, enquanto a segunda parcela se refere às partículas que se movimentam no meio fluido.

A fórmula acima pode ser simplificada considerando-se a energia cinética das partículas fluidas como sendo metade do produto da massa total (M') e a velocidade vertical v.

$$EC = \frac{1}{2}Mv^2 + \frac{1}{2}M'v^2 = \frac{1}{2}(M + M')v^2$$
 Eq. [14]

O cálculo de M', chamada de massa adicional, varia de acordo com as características da seção (forma, boca e calado) e das propriedades do meio fluido.

Para realização desse cálculo, inicialmente considera-se uma seção circular simples de um cilindro de raio "r", parcialmente submerso em um fluido de densidade p, flutuando com seu centroide coincidindo com a altura da linha d'água. Será assumido que o cilindro oscila verticalmente e que seu movimento possui pequena amplitude.

Figura 5.2: Cilindro uniforme de raio r movendo-se verticalmente

A massa adicional (M') por unidade de comprimento, do movimento de *heave*, para um cilindro totalmente submerso é dada como:

$$M'=
ho\pi.r^2$$
 Eq. [15]

Assim, o valor da massa adicional por unidade de comprimento do cilindro com metade do seu volume submerso vai ser igual à metade da situação em que está totalmente submerso. E levando-se em consideração o comprimento do cilindro, temse o seguinte:

$$M' = \frac{1}{2} \int_{-L/2}^{L/2} \rho \pi . r^2$$
 Eq. [16]

Como se pode perceber através da equação acima, a massa de fluido deslocada é numericamente igual a massa do cilindro. Esse resultado revela a importância do conhecimento de massa adicional, que no caso do cilindro, representa um acréscimo de 100% da sua massa total.

No caso do cálculo da massa adicional para seções do navio não se deve utilizar de forma direta as aproximações obtidas através do cilindro, uma vez que essas seções transversais não possuem formas circulares perfeitas como as de cilindros. Com isso, pesquisadores propuseram o uso do método de Transformação Conforme, onde são determinados os resultados para seções típicas do navio a partir dos resultados de uma seção circular.

Esse método considera o escoamento em torno do cilindro e o transforma para um escoamento em torno de uma seção com outra forma, de modo que a energia cinética do movimento seja obtida e, portanto, determinada a massa adicional da seção considerada. A expressão que representa a massa adicional ocasionada pelo movimento vertical da seção, por unidade de comprimento, é dada por:

$$M' = \lambda_{33} = \rho \frac{\pi B^2}{8} k_{33}$$
 Eq. [17]

Onde:

- ρ = massa específica do fluido [kg/m³]
- B = boca do navio na seção considerada
- K₃₃ = coeficiente de correção de massa adicional vertical, baseado na transformação conforme.

Após encontrar os coeficientes de correção de massa adicional para cada seção, devemos levar em consideração que o escoamento real em torno do casco é tridimensional e não bidimensional, como calculado.

Townsin propôs uma correção através de uma formulação que utiliza o parâmetro J, apresentado a seguir:

$$J_n = 1.02 - 3(1.2 - \frac{1}{n})\frac{B}{L}$$
 Eq. [18]

Onde:

- n = número de nós de cada modo de vibração considerado
- B = boca da seção considerada
- L = comprimento entre perpendiculares da embarcação

Quanto maior o número de nós do modo de vibração (n) menores serão os valores de $\boldsymbol{J}_{\scriptscriptstyle n}$.

Adiante, serão apresentados diferentes métodos para se obter os coeficientes de correção de massa adicional (K_{33}) para cada caso.

5.1.1. Águas Profundas

Para a determinação dos coeficientes para águas profundas (infinitas) são utilizados gráficos e tabelas que tem como parâmetros o coeficiente de área $^{\beta}$:

$$\beta = \frac{S}{BT}$$
 Eq. [19]

Onde:

- S = área submersa da seção.
- B = boca da seção considerada
- T = Calado no qual a seção se encontra submersa

Para o cálculo dos coeficientes de massa adicional vertical para águas profundas serão utilizadas formulações e um gráfico, com base nos mapas conformes de Lewis e nos trabalhos de Landweber. O gráfico abaixo tem como parâmetros a razão entre o calado e a boca na linha d'água, e as curvas de coeficiente de área β , para a obtenção do coeficiente K_{33} :

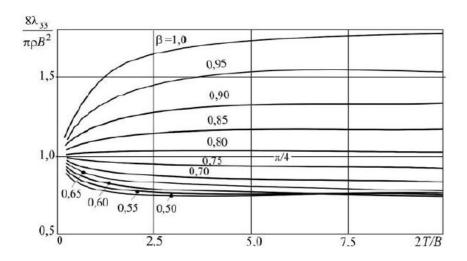


Figura 5.3: Curvas de relação entre K_{33} e a forma para águas profundas

5.1.2. Águas Rasas

Os coeficientes de correção de massa adicional vertical para águas rasas levam em consideração o coeficiente de área β e a razão entre a profundidade, onde está operando a embarcação, e o calado.

Com base em dados experimentais Prohasky desenvolveu através de análises, considerando pequenas amplitudes de oscilação, curvas do coeficiente K_{33} de acordo com o coeficiente de área de cada seção β e razão entre profundidade (h) e o calado (T). Os dados obtidos foram plotados como podemos ver na figura a seguir:

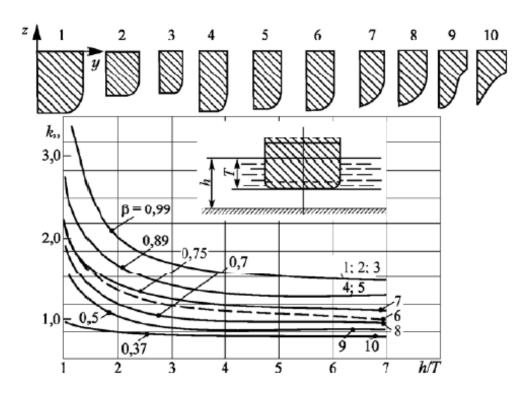


Figura 5.4: Curvas de relação entre K33 e a forma para águas rasas

Como se pode notar, o gráfico apresentado acima possui pontos que relacionam diferentes seções (dispostas na parte superior do gráfico e numeradas de 1 a 10) às curvas dos β correspondentes. Em seções mais retangulares, o valor de β é alto, enquanto nas seções mais afinaladas, β se apresenta com valores menores.

De um modo geral, espera-se que os valores de massa adicional para águas rasas sejam maiores do que em águas profundas, uma vez que os valores de K_{33} dos gráficos diferem. Enquanto no caso em águas profundas eles variam até aproximadamente um valor máximo de 1,5, o K_{33} para águas rasas alcança valores máximo de aproximadamente 3.

O intuito do projeto em questão é a análise da influência das massas adicionais sobre os modos de vibração do navio Trevo Vermelho, que opera em águas rasas. Para tanto, será desenvolvida uma tabela com os valores dos coeficientes em função dos parâmetros utilizados, a fim de se facilitar o processo de determinação desses coeficientes, através de interpolações lineares entre as curvas com base nos parâmetros considerados.

6. Modelo Tridimensional

6.1. Método dos Elementos Finitos

Para definição e análise de estruturas complexas de engenharia os métodos numéricos, principalmente o Método dos Elementos Finitos, são de extrema importância, pois é capaz de gerar resultados mais refinados se comparado a outros métodos.

No método de elementos finitos (*FEM – Finite Element Method*) as estruturas são substituídas por uma série de elementos, que se comportam como um membro estrutural contínuo chamados de elementos finitos, sendo conectados através de nós.

Devido à dificuldade de encontrar um resultado exato para cada elemento, se comparado com o elemento original submetido a cargas e condições de contorno, é obtido um resultado aproximado para cada elemento. Desta forma, ao se considerar os resultados de todos os elementos estes irão de certa forma convergir para uma solução exata com relação ao membro estrutural completo.

Através de simulações, pode-se determinar se uma estrutura em análise atende aos seus requisitos funcionais através da sua resposta ao carregamento dinâmico aplicado. Deste modo, pode ser determinado qual o parâmetro estrutural que mais afeta a resposta dinâmica da estrutura e assim, a estrutura pode ser funcionalmente modificada e melhorada.

6.2. O Modelo

Para se realizar a análise dos modos de vibração e frequências naturais do navio Trevo Vermelho, será utilizado um modelo tridimensional representando a estrutura do casco.

A modelação foi realizada no *Software Rhinoceros 4.0*, sendo complementada com a análise no módulo 'Modal', específico para análise dos modos de vibração de uma estrutura que faz parte do pacote do *Software Ansys Workbench*.

O navio Trevo Vermelho possui um corpo paralelo com quatro porões destinados a granéis, praça de máquinas, região de proa e região de popa. A divisão dos porões é feita através de anteparas corrugadas, e as demais divisões ao longo da embarcação são feitas através de anteparas transversais estanques convencionais.

Ao longo do comprimento da embarcação há um total de 155 cavernas, do espelho de popa (-5) até a proa (150), onde neste valor estão inclusas também anteparas transversais (corrugadas e convencionais) e cavernas gigantes e simples. Para simplificação do projeto, serão modeladas apenas as cavernas gigantes e todas as anteparas como anteparas estangues convencionais.

Para a região do corpo paralelo serão modeladas somente as cavernas gigantes, visto que são levados em consideração somente os elementos longitudinais para o cálculo da área efetiva no cisalhamento.

A seguir são apresentadas duas figuras: seção mestra, representando as cavernas do corpo paralelo e o arranjo estrutural do Trevo Vermelho.

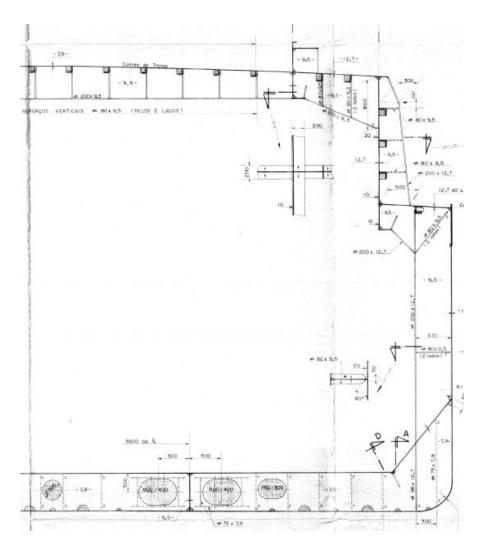


Figura 6.1: Seção Mestra do Trevo Vermelho

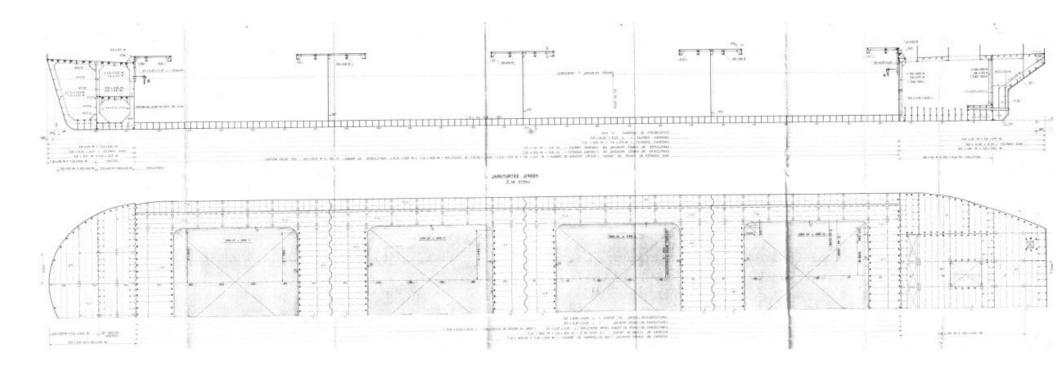


Figura 6.2: Arranjo Estrutural - Trevo Vermelho

Proa e popa foram modeladas integralmente, segundo as figuras apresentadas no Anexo IV – Desenhos de Referência.

A seguir será apresentada a figura referente à modelação completa no *Software Rhinoceros*. As demais figuras apresentando mais detalhadamente o modelo são apresentadas no Anexo V – Modelo do *Rhinoceros* - Detalhamento.

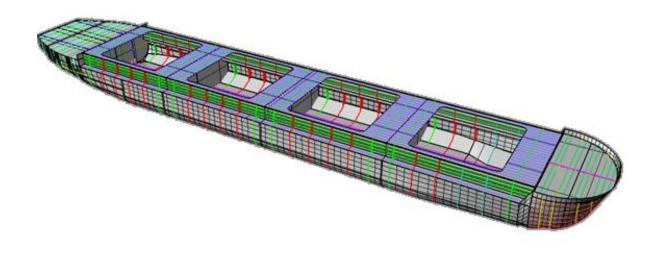


Figura 6.3: Trevo Vermelho Completo – Perspectiva

6.3. Massas

As parcelas referentes às massas distribuídas ao longo do modelo devem ser consideradas a fim de que as análises sejam feitas considerando o deslocamento que o navio apresenta referente à condição de carregamento e também o valor referente à massa adicional.

O peso estrutural já se inclui no modelo, uma vez que cada elemento e chapeamento representados possuem uma espessura definida e massa específica do aço comum equivalente a 7850 kg/m³.

Quando as massas forem devidamente distribuídas ao longo do modelo, serão acrescidos os valores correspondentes ao deslocamento e à massa adicional do mesmo.

6.3.1. Massa Adicional

Os valores que representam a massa adicional presente devido ao movimento de *Heave* foram encontrados através do método explicitado anteriormente – *Método de Prohasky*.

Para facilitação dos cálculos, foi desenvolvida uma planilha que retrata a dependência do coeficiente de massa adicional k_{33} em função do coeficiente de área $\beta (=\frac{s}{BT})$ e da razão entre a profundidade e o calado $(\frac{h}{T})$.

O coeficiente de massa adicional deve ser calculado para cada seção do navio, as quais apresentam diversas variações em seus parâmetros.

Com os planos do Trevo Vermelho em mãos, foi possível representar todas as formas das seções no software Rhinoceros, que são fundamentais para que se possam extrair os valores de área (S), boca(B) e calado(T) de cada uma.

Com os dados já tabelados, desenvolveu-se uma macro capaz de reconhecer os parâmetros de cada seção e através de interpolações lineares entre as curvas de β e, posteriormente entre o calado e a profundidade $(\frac{h}{T})$, os valores dos coeficientes de massa adicional vertical são determinados.

Com base no gráfico apresentado no item 5.1.2, os valores tabelados, e o gráfico plotado com os dados são apresentados no Anexo III – Tabela de Massas Adicionais.

A profundidade adotada para a determinação dos coeficientes é de h=5m. Esse valor foi determinado através de informações sobre as condições reais de navegação do Trevo Vermelho que indicam que o há trechos em que a embarcação navega com uma folga de 0,9m entre o fundo do casco e o leito da lagoa.

Como o calado adotado para o estudo foi o calado de projeto, T=4.1m, ao somar-se a folga, tem-se h=5m.

Os coeficientes de massa adicional são determinados através da expressão a seguir:

$$\lambda_{33} = \rho \frac{\pi B^2}{8} k_{33}$$

Os valores de massa adicional determinados através dos coeficientes k_{33} são por unidade de comprimento [kg/m]. Para se obter o valos da massa adicional distribuída ao longo de todo o modelo, foi feito o produto entre as médias das massas por unidade de comprimento, e a cada três cavernas consecutivas, e a extensão do comprimento entre cada caverna.

Os valores para a massa adicional em águas rasas para cada uma das seções pode ser vista no Anexo III – Tabela de Massas Adicionais.

6.3.2. Massa Total

O valor da massa total do modelo é considerado como a soma entre os valores da massa adicional e o valor referente ao deslocamento, decrescido do valor estrutural da embarcação.

Como dito anteriormente, o calado base para fazer as análises é o calado de projeto equivalente a 4,1 metros. O valor do deslocamento então pode ser obtido nos folhetos referentes à condição de carregamento do Trevo Vermelho de valor igual a 5272 ton.

6.4. Modelo Ansys

Com base no modelo do *Rhinoceros*, foi então exportado em formato .igs para o *Ansys Workbench*, e dentro do programa foram definidas as espessuras de cada chapeamento e reforço, que está apresentado no croqui da seção mestra.

Após inserir todas as espessuras, considerando a massa específica de 7850 t/m^3 , tem-se automaticamente no modelo o peso da estrutura, como dito anteriormente. Então é necessário que sejam aplicados pontos de massa que representem o deslocamento no calado de projeto T=4,1m, e também que se acrescente o valor da massa adicional.

Considerando que a massa adicional varia para cada modo de vibração, foram desenvolvidos 5 diferentes modelos equivalentes aos 5 primeiros modos de vibração vertical em águas rasas.

Para cada meia seção, as massas foram distribuídas em quatro locais diferentes: um ponto de massa no costado e um ponto de massa na hastilha – ambos em cada bordo – como podem ser visto a seguir:

Figura 6.4: Aplicação dos Pontos de Massa Adicional

O valor referente ao deslocamento é o mesmo para cada um dos 5 modelos, variando apenas de seção para seção. Os únicos valores de ponto de massa que mudam de modelo para modelo são os referentes à massa adicional.

Com as espessuras especificadas no modelo e os pontos de massa aplicados em suas posições, para se obter os modos de vibração bem definidos, foram fixadas as rotações em torno dos eixos X e Y, deixando livre a vibração do eixo Z apenas o necessário para que os modos verticais fossem obtidos.

7. Resultados

De posse de todos os parâmetros e considerações necessárias, o modelo pode ser analisado e por fim gerados os resultados através do *Ansys Workbench*.

Para o cálculo dos modos naturais de vibração foi realizada uma varredura de frequências partindo de 0,01Hz (a fim de se evitar os modos de corpo rígido) e dos 20 primeiros autovalores e autovetores de forma a se abranger os 5 modos de vibração.

Para cada modelo foi analisado somente um modo de vibração, como explicado anteriormente. As figuras correspondentes a cada modo de vibração se encontram no Anexo I - Modos de Vibração Vertical em Águas Rasas – Modelo Tridimensional.

A seguir é apresentada uma tabela com os resultados obtidos dos modos de vibração:

r				
Resultados				
Modos de Vibração	Modelo 3D			
1º Modo	0.746 Hz			
2º Modo	1.758 Hz			
3º Modo	2.929 Hz			
4º Modo	4.066 Hz			
5º Modo	5.150 Hz			

Tabela 7.1: Resultado dos modos de vibração vertical

Para melhor visualização, os resultados obtidos para frequências naturais foram plotados em um gráfico, apresentado abaixo:

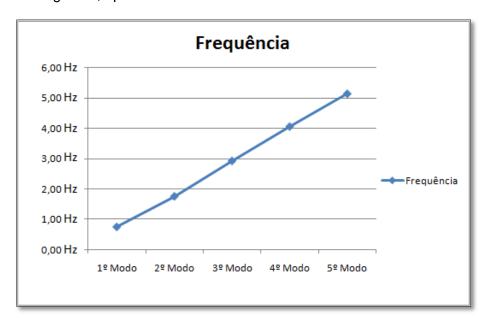


Figura 7.1: Frequências dos cinco primeiros modos de vibração para o modelo tridimensional

As figuras apresentando os modos de vibração podem ser encontradas no Anexo I - Modos de Vibração Vertical em Águas Rasas – Modelo Tridimensional.

8. Comparações

O dado projeto tem como objetivo realizar a comparação entre os resultados obtidos através dos modelos unidimensional e tridimensional, determinando a discrepância entre os resultados e a confiabilidade dos mesmos.

A comparação foi realizada entre o modelo tridimensional do projeto em questão e o modelo unidimensional realizado pelo aluno Carlos Ribeiro.

A seguir é apresentada uma tabela com os resultados obtidos pelos dois modelos:

Tabela 8.1: Tabela de Comparação de Resultados entre os modelos unidimensional e tridimensional

Resultados					
Modos de Vibração	Modelo 1D	Modelo 3D	Diferença		
1º Modo	0.540 Hz	0.746 Hz	27,61%		
2º Modo	1.209 Hz	1.758 Hz	31,23%		
3º Modo	2.277 Hz	2.929 Hz	22,26%		
4º Modo	3.608 Hz	4.066 Hz	11,26%		
5º Modo	5.598 Hz	5.150 Hz	8,70%		

Para melhor visualização e comparação, os resultados obtidos pelos modelos foram plotados no gráfico apresentado abaixo:



Figura 8.1: Comparação entre frequências dos cinco primeiros modos de vibração para o modelo unidimensional e tridimensional

As figuras correspondentes a cada modo de vibração do modelo unidimensional se encontram no Anexo II – Modos de Vibração Vertical em Águas Rasas – Modelo Unidimensional.

9. Conclusão

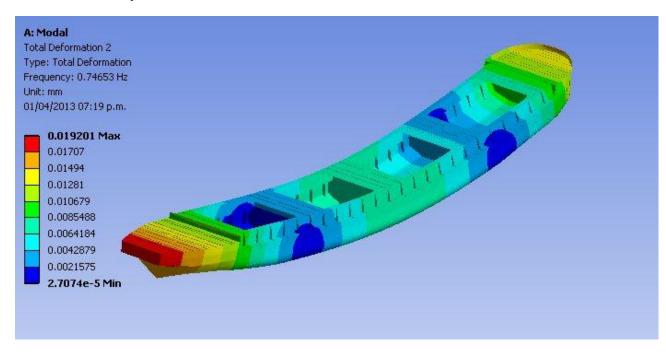
O desenvolvimento deste projeto possibilitou verificar a real influência, quantitativa e qualitativamente, da interferência que o escoamento ao redor do casco provoca na massa adicional, no caso presente a massa adicional vertical, fazendo com que haja uma queda nos valores das frequências naturais dos modos de vibração, podendo ocasionar algum problema maior de ressonância, em que a vibração da estrutural global do casco coincida com a frequência de operação dos motores, e equipamentos em geral.

Este tipo de análise permite que, na fase inicial de projeto, se identifique qual é a faixa de valores de frequência na qual o navio irá vibrar, permitindo então que na escolha de equipamentos selecionados para operação a bordo que atuem em uma faixa de frequência daquelas que coincidem com as condições de ressonância.

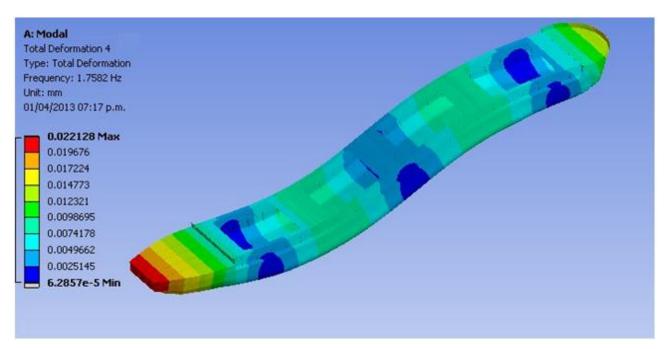
Para que um estudo completo fosse feito, seria necessário que os resultados numéricos encontrados fossem comparados com os resultados experimentais do navio utilizado como estudo de caso. Com isso, poderia comprovar a eficiência do método utilizado para encontrar os valores das massas adicionais, e consequentemente das frequências naturais e correspondentes.

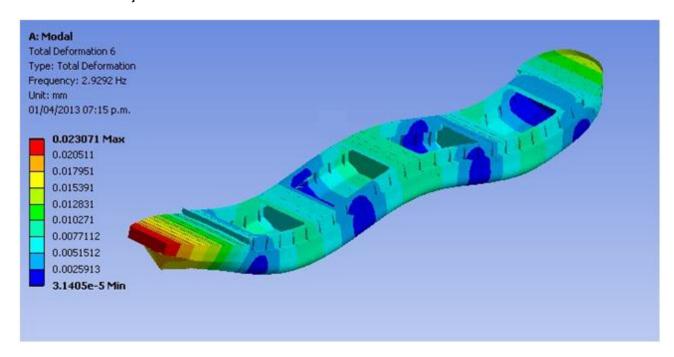
Ao compararem-se os resultados entre os modelos unidimensional e tridimensional encontraram-se valores distanciados de no máximo 31,23%. Essa diferença era esperada, uma vez que a modelação tridimensional se apresenta como uma forma mais fiel da realidade em detrimento da modelação do navio como uma viga. Além disso, o modelo unidimensional foi desenvolvido mantendo-se um formato de caverna para cada trecho. Essa diferença poderia ser diminuída se as cavernas fossem modeladas integralmente ou com repetições de formato em trechos mais curtos, se fosse incluida a modelação do fundo duplo e a consideração das aberturas de convés correspondentes às tampas de escotilha, quebrando sensivelmente a continuidade estrutural longitudinal da viga navio e por fim uma análise mais profunda do tipo de malha utilizada na modelação tridimensional, já que a mesma tem grande influência na determinação dos resultados.

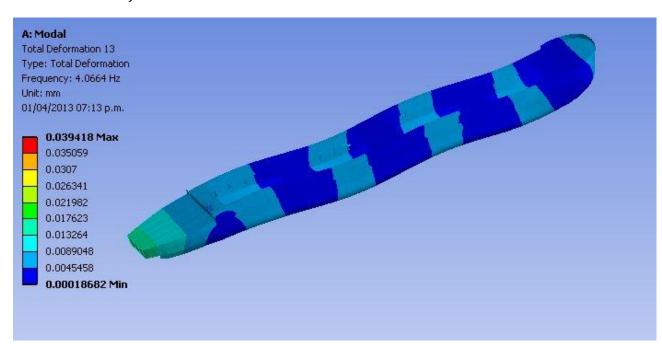
Contudo, a modelação unidimensional, por ser mais simples, ainda se apresenta como a mais indicada para fases de projeto mais iniciais, enquanto a modelação tridimensional permite indicar problemas de ressonância em navio já construídos.

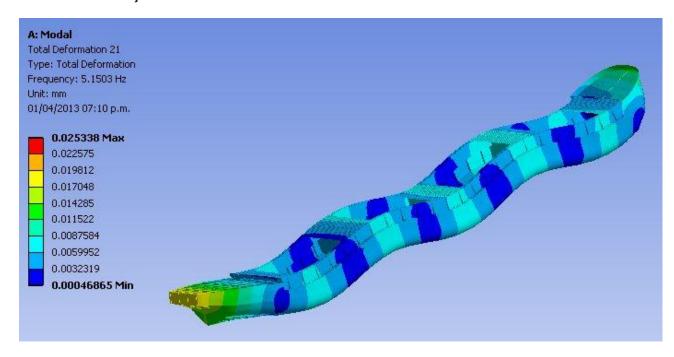

Pode-se concluir, portanto, que o estudo realizado com um modelo tridimensional objetivando a determinação dos modos de vibração se apresenta de maneira satisfatória quanto aos resultados esperados, com relação ao modelo 1D, se mostrando como uma valiosa ferramenta na prevenção de ressonância.

10. Referências


- [1] Brasil, R.S. "Efeitos da Massa Adicional em Águas Rasas na Análise de Vibração de Embarcações"
- [2] Mello, T.S. "Comparação Numérico-Experimental da Vibração de Navios que Operam em Águas Rasas"
- [3] NCPC Normas e Procedimentos para Capitania dos Portos www.mar.mil.br
- [4] Troyman, Antonio Carlos R.; Lopes, Tiago Alberto P. "Apostila de Vibrações do Navio" Laboratório de Estruturas Navais, COPPE/UFRJ.
- [5] Birkhoff, G.: Hydrodynamics. Princeton Univ. Press, Princeton, 1960
- [6] Korotkin, A. I., "Added Mass for Ship Structures", ed. Springer, 2007
- [7] American Bureau of Shipping ABS, Guindance Notes on Ship Vibrations, 2006
- [8] Inman, D.J, "Engineering Vibration", 2 ed New Jersey, 2001
- [9] Rao, S., "Vibrações Mecânicas", 4 ed São Paulo, 2008


Anexo I - Modos de Vibração Vertical em Águas Rasas - Modelo Tridimensional

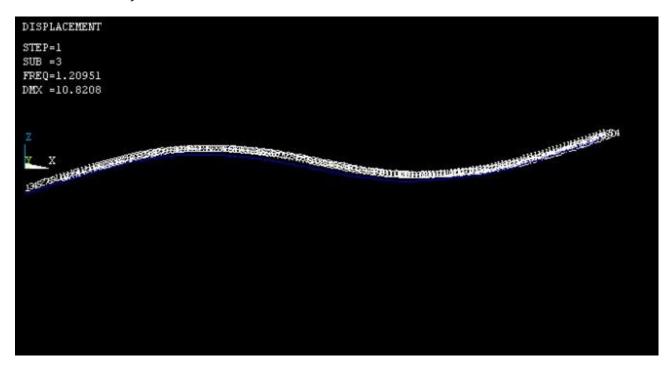

1º Modo de Vibração Vertical

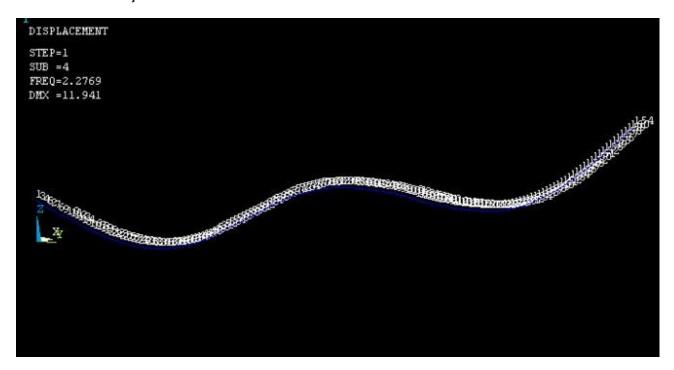


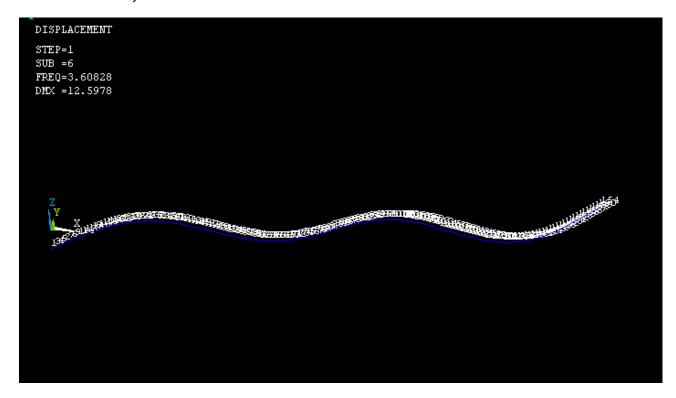
2º Modo de Vibração Vertical

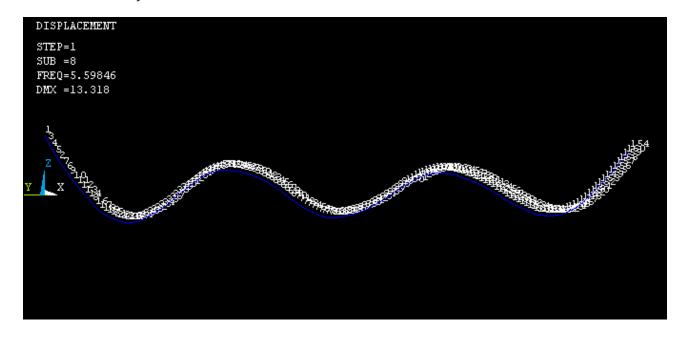
Anexo II – Modos de Vibração Vertical em Águas Rasas – Modelo Unidimensional

1º Modo de Vibração Vertical


```
DISPLACEMENT


STEP=1


SUB =4


FREQ=.540343

DMX =9.96907
```


Anexo III - Tabela de Massas Adicionais

Seção	Sep. Cav. (mm)	Posição (mm)	Area/2 (mm2)	T (mm)	B/2 (mm)	β	h/T	К33	%	λ33 (tn/m)	Mass. Ad. (tn)	M.A/Cav. (tn)
Espelho	0	0	-		-	-	-	-	-	-	-	-
C -5	600	600	-	-	-	-	-	-	-	-	-	-
C -4	600	1200	-	-	-	-	-	-	-	-	-	-
C -3	600	1800	-	-	-	-	-	-	-	-	-	-
C -2	600	2400	-	-	-	-	-	-	-	-	-	-
C -1	600	3000	-	-	-	-	-	-	-	-	-	-
C 0	600	3600	-	-	-	-	-	-	-	-	-	-
C 1	600	4200	2332766,000	4100	4111,76	0,1384	1,2195	0,3573	0,09%	9,489	6,178	19,636
C 2	600	4800	4685569,000	4100	4447,99	0,2569	1,2195	0,3573	0,09%	11,104	6,333	19,636
С3	600	5400	4685569,000	4100	4771,7	0,2395	1,2195	0,2798	0,07%	10,007	11,839	15,377
C 4	600	6000	7080276,000	4100	5087,51	0,3394	1,2195	0,7245	0,18%	29,456	24,399	39,815
C 5	600	6600	9543450,000	4100	5399,51	0,4311	1,2195	1,1327	0,27%	51,873	38,538	62,248
C 6	600	7200	12020689,000	4100	5811,76	0,5045	1,2195	1,4435	0,35%	76,586	49,980	79,328
C 7	600	7800	14482835,000	4100	6167,54	0,5727	1,2195	1,5065	0,36%	90,015	57,747	82,790
C 8	600	8400	16662011,000	4100	6472,0086	0,6279	1,2195	1,5575	0,38%	102,477	64,791	85,593
C 9	600	9000	18554088,000	4100	6721,22	0,6733	1,2195	1,5994	0,39%	113,494	71,869	87,896
C 10	600	9600	20174417,000	4100	6923,16	0,7107	1,2195	1,6745	0,41%	126,071	80,945	92,023
C 11	600	10200	21559792,000	4100	7089,54	0,7417	1,2195	1,8207	0,44%	143,746	90,524	100,057
C 12	600	10800	22746693,000	4100	7224,14	0,7680	1,2195	1,9274	0,47%	158,003	98,346	105,921
C 13	600	11400	23765874,000	4100	7323,71	0,7915	1,2195	2,0156	0,49%	169,819	104,986	110,768
C 14	600	12000	24646772,000	4100	7401,57	0,8122	1,2195	2,0933	0,51%	180,135	110,763	115,038
C 15	600	12600	25407633,000	4100	7461,55	0,8305	1,2195	2,1620	0,52%	189,075	117,087	118,814
C 16	600	13200	26065237,000	4100	7810	0,8140	1,2195	2,1001	0,51%	201,216	122,650	115,412
C 17	600	13800	26636407,000	4100	7810	0,8318	1,2195	2,1669	0,52%	207,616	126,265	119,083
C 18	600	14400	27136914,000	4100	7810	0,8475	1,2195	2,2259	0,54%	213,269	129,462	122,325
C 19	600	15000	27581819,000	4100	7810	0,8614	1,2195	2,2781	0,55%	218,270	132,299	125,194
C 20	600	15600	27978619,000	4100	7810	0,8738	1,2195	2,3246	0,56%	222,726	134,834	127,749

J1	J2	J3	J4	J5	M.T M1 (tn)	M.T M2 (tn)	M.T M3 (tn)	M.T M4 (tn)	M.T M5 (tn)	Seção
_	-	-	-	-	-	-	-	-	-	Espelho
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
-	-	1	-	-	-	-	-	-	-	
_	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	
0,856	0,817	0,797	0,785	0,778	19,402	18,634	18,250	18,020	17,866	C 1
0,842	0,800	0,779	0,766	0,758	21,759	20,928	20,513	20,264	20,098	C 2
0,829	0,784	0,761	0,748	0,739	17,973	17,275	16,926	16,717	16,577	C 3
0,817	0,768	0,744	0,730	0,720	40,407	38,481	37,517	36,939	36,554	C 4
0,804	0,753	0,727	0,712	0,702	60,698	57,501	55,903	54,944	54,304	C 5
0,788	0,733	0,705	0,688	0,677	75,889	71,504	69,311	67,996	67,119	C 6
0,774	0,715	0,686	0,668	0,656	80,183	75,326	72,898	71,441	70,470	C 7
0,761	0,700	0,669	0,651	0,638	83,737	78,469	75,834	74,254	73,200	C 8
0,752	0,688	0,656	0,636	0,624	86,724	81,105	78,295	76,610	75,486	С9
0,743	0,678	0,645	0,625	0,612	90,888	84,828	81,799	79,981	78,769	C 10
0,737	0,669	0,636	0,615	0,602	97,739	90,993	87,619	85,595	84,246	C 11
0,731	0,663	0,628	0,608	0,594	102,812	95,535	91,896	89,712	88,257	C 12
0,727	0,658	0,623	0,602	0,588	107,052	99,337	95,479	93,164	91,621	C 13
0,724	0,654	0,619	0,598	0,584	110,782	102,684	98,635	96,205	94,585	C 14
0,722	0,651	0,615	0,594	0,580	114,080	105,648	101,432	98,902	97,216	C 15
0,708	0,634	0,597	0,574	0,559	110,750	102,177	97,890	95,319	93,604	C 16
0,708	0,634	0,597	0,574	0,559	113,985	105,140	100,717	98,063	96,294	C 17
0,708	0,634	0,597	0,574	0,559	116,839	107,752	103,209	100,483	98,666	C 18
0,708	0,634	0,597	0,574	0,559	119,365	110,066	105,416	102,626	100,766	C 19
0,708	0,634	0,597	0,574	0,559	121,617	112,127	107,382	104,536	102,638	C 20

Seção	Sep. Cav. (mm)	Posição (mm)	Area/2 (mm2)	T (mm)	B/2 (mm)	β	h/T	К33	%	λ33 (tn/m)	Mass. Ad. (tn)	M.A/Cav. (tn)
C 21	600	16200	28336931,000	4100	7810	0,8849	1,2195	2,3663	0,57%	226,721	137,734	130,041
C 22	600	16800	28662246,000	4100	7810	0,8951	1,2195	2,4255	0,59%	232,393	141,534	133,294
C 23	600	17400	28959110,000	4100	7810	0,9044	1,2195	2,4985	0,61%	239,387	145,553	137,306
C 24	600	18000	29231326,000	4100	7810	0,9129	1,2195	2,5653	0,62%	245,788	149,232	140,977
C 25	600	18600	29482100,000	4100	7810	0,9207	1,2195	2,6265	0,64%	251,651	152,641	144,340
C 26	600	19200	29714162,000	4100	7810	0,9280	1,2195	2,6839	0,65%	257,151	155,803	147,495
C 27	600	19800	29929855,000	4100	7810	0,9347	1,2195	2,7365	0,66%	262,191	158,737	150,385
C 28	600	20400	30131205,000	4100	7810	0,9410	1,2195	2,7860	0,67%	266,933	161,514	153,106
C 29	600	21000	30322713,000	4100	7810	0,9470	1,2195	2,8331	0,69%	271,446	164,086	155,694
C 30	600	21600	30497042,000	4100	7810	0,9524	1,2195	2,8755	0,70%	275,509	166,478	158,024
C 31	600	22200	30664659,000	4100	7810	0,9576	1,2195	2,9163	0,71%	279,418	168,780	160,266
C 32	600	22800	30823992,000	4100	7810	0,9626	1,2195	2,9556	0,72%	283,183	170,971	162,426
C 33	600	23400	30972366,000	4100	7810	0,9673	1,2195	2,9925	0,72%	286,719	173,069	164,454
C 34	600	24000	31121830,000	4100	7810	0,9719	1,2195	3,0286	0,73%	290,178	175,101	166,438
C 35	600	24600	31262384,000	4100	7810	0,9763	1,2195	3,0632	0,74%	293,493	177,064	168,339
C 36	600	25200	31398805,000	4100	7810	0,9806	1,2195	3,0969	0,75%	296,722	178,958	170,191
C 37	600	25800	31531844,000	4100	7810	0,9847	1,2195	3,1291	0,76%	299,807	180,810	171,961
C 38	600	26400	31662314,000	4100	7810	0,9888	1,2195	3,1613	0,77%	302,892	182,638	173,730
C 39	600	27000	31791218,000	4100	7810	0,9928	1,2195	3,1927	0,77%	305,900	184,446	175,456
C 40	600	27600	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 41	600	28200	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 42	600	28800	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 43	600	29400	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 44	600	30000	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 45	600	30600	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 46	600	31200	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187

J1	J2	J3	J4	J5	M.T M1 (tn)	M.T M2 (tn)	M.T M3 (tn)	M.T M4 (tn)	M.T M5 (tn)	Seção
0,708	0,634	0,597	0,574	0,559	123,638	113,979	109,149	106,251	104,319	C 21
0,708	0,634	0,597	0,574	0,559	126,304	116,403	111,452	108,482	106,501	C 22
0,708	0,634	0,597	0,574	0,559	129,475	119,276	114,176	111,116	109,077	C 23
0,708	0,634	0,597	0,574	0,559	132,378	121,906	116,670	113,528	111,434	C 24
0,708	0,634	0,597	0,574	0,559	135,038	124,316	118,955	115,739	113,594	C 25
0,708	0,634	0,597	0,574	0,559	137,530	126,574	121,096	117,809	115,618	C 26
0,708	0,634	0,597	0,574	0,559	139,817	128,646	123,061	119,709	117,475	C 27
0,708	0,634	0,597	0,574	0,559	141,967	130,594	124,908	121,496	119,221	C 28
0,708	0,634	0,597	0,574	0,559	144,013	132,448	126,665	123,196	120,883	C 29
0,708	0,634	0,597	0,574	0,559	145,857	134,119	128,250	124,728	122,381	C 30
0,708	0,634	0,597	0,574	0,559	147,631	135,727	129,774	126,203	123,822	C 31
0,708	0,634	0,597	0,574	0,559	149,338	137,273	131,240	127,621	125,207	C 32
0,708	0,634	0,597	0,574	0,559	150,939	138,723	132,615	128,950	126,507	C 33
0,708	0,634	0,597	0,574	0,559	152,510	140,147	133,965	130,256	127,784	C 34
0,708	0,634	0,597	0,574	0,559	154,013	141,509	135,256	131,505	129,004	C 35
0,708	0,634	0,597	0,574	0,559	155,476	142,834	136,513	132,721	130,192	C 36
0,708	0,634	0,597	0,574	0,559	156,877	144,104	137,717	133,885	131,330	C 37
0,708	0,634	0,597	0,574	0,559	158,276	145,371	138,918	135,047	132,466	C 38
0,708	0,634	0,597	0,574	0,559	159,641	146,608	140,091	136,181	133,575	C 39
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 40
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 41
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 42
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 43
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 44
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 45
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 46

Seção	Sep. Cav. (mm)	Posição (mm)	Area/2 (mm2)	T (mm)	B/2 (mm)	β	h/T	К33	%	λ33 (tn/m)	Mass. Ad. (tn)	M.A/Cav. (tn)
C 47	600	31800	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 48	600	32400	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 49	600	33000	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 50	600	33600	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 51	600	34200	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 52	600	34800	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 53	600	35400	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 54	600	36000	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 55	600	36600	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 56	600	37200	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 57	600	37800	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 58	600	38400	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 59	600	39000	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 60	600	39600	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 61	600	40200	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 62	600	40800	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 63	600	41400	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 64	600	42000	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 65	600	42600	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 66	600	43200	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 67	600	43800	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 68	600	44400	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 69	600	45000	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 70	600	45600	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 71	600	46200	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 72	600	46800	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 73	600	47400	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187

J1	J2	J3	J4	J5	M.T M1 (tn)	M.T M2 (tn)	M.T M3 (tn)	M.T M4 (tn)	M.T M5 (tn)	Seção
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 47
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 48
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 49
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 50
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 51
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 52
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 53
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 54
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 55
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 56
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 57
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 58
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 59
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 60
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 61
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 62
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 63
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 64
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 65
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 66
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 67
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 68
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 69
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 70
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 71
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 72
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 73

Seção	Sep. Cav. (mm)	Posição (mm)	Area/2 (mm2)	T (mm)	B/2 (mm)	β	h/T	К33	%	λ33 (tn/m)	Mass. Ad. (tn)	M.A/Cav. (tn)
C 74	600	48000	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 75	600	48600	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 76	600	49200	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 77	600	49800	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 78	600	50400	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 79	600	51000	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 80	600	51600	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 81	600	52200	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 82	600	52800	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 83	600	53400	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 84	600	54000	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 85	600	54600	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 86	600	55200	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 87	600	55800	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 88	600	56400	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 89	600	57000	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 90	600	57600	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 91	600	58200	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 92	600	58800	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 93	600	59400	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 94	600	60000	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 95	600	60600	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 96	600	61200	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 97	600	61800	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 98	600	62400	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 99	600	63000	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187

J1	J2	J3	J4	J5	M.T M1 (tn)	M.T M2 (tn)	M.T M3 (tn)	M.T M4 (tn)	M.T M5 (tn)	Seção
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 74
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 75
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 76
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 77
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 78
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 79
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 80
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 81
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 82
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 83
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 84
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 85
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 86
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 87
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 88
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 89
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 90
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 91
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 92
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 93
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 94
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 95
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 96
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 97
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 98
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 99

Seção	Sep. Cav. (mm)	Posição (mm)	Area/2 (mm2)	T (mm)	B/2 (mm)	β	h/T	К33	%	λ33 (tn/m)	Mass. Ad. (tn)	M.A/Cav. (tn)
C 100	600	63600	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 101	600	64200	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 102	600	64800	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 103	600	65400	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 104	600	66000	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 105	600	66600	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 106	600	67200	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 107	600	67800	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 108	600	68400	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 109	600	69000	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 110	600	69600	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 111	600	70200	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 112	600	70800	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 113	600	71400	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 114	600	72000	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 115	600	72600	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	185,351	177,187
C 116	600	73200	31919292,000	4100	7810	0,9968	1,2195	3,2242	0,78%	308,919	183,431	177,187
C 117	600	73800	31645799,000	4100	7810	0,9883	1,2195	3,1574	0,76%	302,518	179,571	173,516
C 118	600	74400	31371526,000	4100	7810	0,9797	1,2195	3,0899	0,75%	296,051	175,575	169,807
C 119	600	75000	31079512,000	4100	7810	0,9706	1,2195	3,0184	0,73%	289,200	171,669	165,877
C 120	600	75600	30817510,000	4100	7810	0,9624	1,2195	2,9540	0,72%	283,030	167,832	162,338
C 121	600	76200	30536157,000	4100	7810	0,9536	1,2195	2,8849	0,70%	276,409	163,836	158,541
C 122	600	76800	30250787,000	4100	7810	0,9447	1,2195	2,8150	0,68%	269,712	159,795	154,699
C 123	600	77400	29960511,000	4100	7810	0,9357	1,2195	2,7443	0,66%	262,938	155,665	150,814
C 124	600	78000	29664387,000	4100	7810	0,9264	1,2195	2,6713	0,65%	255,944	151,422	146,802
C 125	600	78600	29361412,000	4100	7810	0,9169	1,2195	2,5967	0,63%	248,796	147,087	142,703

J1	J2	J3	J4	J5	M.T M1 (tn)	M.T M2 (tn)	M.T M3 (tn)	M.T M4 (tn)	M.T M5 (tn)	Seção
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 100
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 101
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 102
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 103
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 104
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 105
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 106
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 107
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 108
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 109
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 110
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 111
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 112
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 113
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 114
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 115
0,708	0,634	0,597	0,574	0,559	161,009	147,848	141,267	137,318	134,686	C 116
0,708	0,634	0,597	0,574	0,559	158,106	145,216	138,772	134,905	132,327	C 117
0,708	0,634	0,597	0,574	0,559	155,174	142,560	136,253	132,469	129,946	C 118
0,708	0,634	0,597	0,574	0,559	152,066	139,745	133,584	129,887	127,423	C 119
0,708	0,634	0,597	0,574	0,559	149,269	137,210	131,180	127,563	125,151	C 120
0,708	0,634	0,597	0,574	0,559	146,267	134,490	128,602	125,069	122,713	C 121
0,708	0,634	0,597	0,574	0,559	143,229	131,738	125,992	122,544	120,246	C 122
0,708	0,634	0,597	0,574	0,559	140,155	128,952	123,351	119,990	117,749	C 123
0,708	0,634	0,597	0,574	0,559	136,984	126,080	120,627	117,356	115,175	C 124
0,708	0,634	0,597	0,574	0,559	133,744	123,144	117,844	114,664	112,544	C 125

Seção	Sep. Cav. (mm)	Posição (mm)	Area/2 (mm2)	T (mm)	B/2 (mm)	β	h/T	К33	%	λ33 (tn/m)	Mass. Ad. (tn)	M.A/Cav. (tn)
C 126	600	79200	29050506,000	4100	7810	0,9072	1,2195	2,5205	0,61%	241,495	142,641	138,515
C 127	600	79800	28730500,000	4100	7810	0,8972	1,2195	2,4420	0,59%	233,974	138,424	134,201
C 128	600	80400	28399886,000	4100	7810	0,8869	1,2195	2,3738	0,58%	227,440	135,308	130,453
C 129	600	81000	28057327,000	4100	7810	0,8762	1,2195	2,3336	0,57%	223,588	132,957	128,244
C 130	600	81600	27701257,000	4100	7810	0,8651	1,2195	2,2920	0,56%	219,602	130,508	125,958
C 131	600	82200	27329893,000	4100	7810	0,8535	1,2195	2,2484	0,54%	215,425	127,950	123,562
C 132	600	82800	26941232,000	4100	7810	0,8414	1,2195	2,2030	0,53%	211,075	125,262	121,067
C 133	600	83400	26532586,000	4100	7810	0,8286	1,2195	2,1549	0,52%	206,466	120,400	118,423
C 134	600	84000	26100602,000	4100	7352,86	0,8658	1,2195	2,2946	0,56%	194,868	115,238	126,101
C 135	600	84600	25642942,000	4100	7300,89	0,8567	1,2195	2,2604	0,55%	189,259	111,741	124,221
C 136	600	85200	25154200,000	4100	7237,57	0,8477	1,2195	2,2266	0,54%	183,209	107,976	122,364
C 137	600	85800	24630376,000	4100	7161,33	0,8389	1,2195	2,1936	0,53%	176,711	103,901	120,550
C 138	600	86400	24063283,000	4100	7069,15	0,8302	1,2195	2,1609	0,52%	169,625	99,472	118,753
C 139	600	87000	23445735,000	4100	6957,57	0,8219	1,2195	2,1298	0,52%	161,947	94,642	117,044
C 140	600	87600	22765652,000	4100	6823,29	0,8138	1,2195	2,0993	0,51%	153,526	89,334	115,368
C 141	600	88200	22007711,000	4100	6663,11	0,8056	1,2195	2,0685	0,50%	144,254	83,475	113,675
C 142	600	88800	21147896,000	4100	6473,68	0,7968	1,2195	2,0355	0,49%	133,996	76,997	111,862
C 143	600	89400	20167957,000	4100	6250,51	0,7870	1,2195	1,9987	0,48%	122,659	69,853	109,839
C 144	600	90000	19045553,000	4100	5987,43	0,7758	1,2195	1,9567	0,47%	110,186	62,056	107,531
C 145	600	90600	17766457,000	4100	5675,55	0,7635	1,2195	1,9105	0,46%	96,668	53,476	104,992
C 146	600	91200	16247861,000	4100	5301,5	0,7475	1,2195	1,8480	0,45%	81,587	43,979	101,558
C 147	600	91800	14490095,000	4100	4843,56	0,7297	1,2195	1,7641	0,43%	65,009	33,869	96,947
C 148	600	92400	12433484,000	4100	4262,08	0,7115	1,2195	1,6783	0,41%	47,889	23,351	92,232
C 149	600	93000	8057493,000	3075	3497,64	0,7492	1,6260	1,5585	0,38%	29,949	11,380	85,648
C 150	600	93600	3032534,460	2050	2025	0,7305	2,4390	1,2395	0,30%	7,984	3,548	68,117
C 151	600	94200	1153057,481	1025	1625	0,6923	4,8780	0,9268	0,22%	3,844	-	50,933
C 152	600	94800	1153057,481	-	-	-	-	-	-	-	-	-

J1	J2	J3	J4	J5	M.T M1 (tn)	M.T M2 (tn)	M.T M3 (tn)	M.T M4 (tn)	M.T M5 (tn)	Seção
0,708	0,634	0,597	0,574	0,559	130,433	120,144	114,999	111,913	109,855	C 126
0,708	0,634	0,597	0,574	0,559	127,022	117,053	112,069	109,078	107,085	C 127
0,708	0,634	0,597	0,574	0,559	124,000	114,310	109,465	106,558	104,620	C 128
0,708	0,634	0,597	0,574	0,559	122,054	112,528	107,765	104,907	103,002	C 129
0,708	0,634	0,597	0,574	0,559	120,039	110,683	106,005	103,198	101,326	C 130
0,708	0,634	0,597	0,574	0,559	117,929	108,751	104,161	101,408	99,572	C 131
0,708	0,634	0,597	0,574	0,559	115,730	106,737	102,240	99,542	97,743	C 132
0,708	0,634	0,597	0,574	0,559	113,403	104,606	100,208	97,569	95,809	C 133
0,726	0,656	0,621	0,600	0,586	120,660	111,841	107,432	104,786	103,023	C 134
0,728	0,659	0,624	0,603	0,589	119,043	110,417	106,104	103,516	101,791	C 135
0,731	0,662	0,628	0,607	0,593	117,455	109,032	104,820	102,293	100,609	C 136
0,734	0,666	0,632	0,611	0,598	115,913	107,702	103,597	101,134	99,491	C 137
0,738	0,670	0,637	0,617	0,603	114,400	106,416	102,423	100,028	98,431	C 138
0,742	0,676	0,643	0,623	0,610	112,973	105,228	101,355	99,031	97,482	C 139
0,747	0,683	0,650	0,631	0,618	111,590	104,103	100,360	98,114	96,616	C 140
0,754	0,690	0,659	0,640	0,627	110,208	103,004	99,402	97,241	95,800	C 141
0,761	0,700	0,669	0,651	0,638	108,730	101,842	98,399	96,332	94,955	C 142
0,770	0,711	0,681	0,663	0,651	107,078	100,548	97,283	95,324	94,018	C 143
0,781	0,724	0,695	0,678	0,667	105,179	99,056	95,994	94,157	92,932	C 144
0,793	0,739	0,712	0,696	0,685	103,080	97,412	94,579	92,878	91,745	C 145
0,808	0,758	0,733	0,717	0,707	100,181	95,060	92,500	90,964	89,939	C 146
0,827	0,780	0,757	0,744	0,734	96,270	91,804	89,571	88,231	87,338	C 147
0,850	0,809	0,789	0,777	0,769	92,224	88,485	86,616	85,494	84,746	C 148
0,880	0,847	0,830	0,820	0,814	84,370	81,521	80,096	79,242	78,672	C 149
0,939	0,920	0,910	0,904	0,901	67,348	66,036	65,380	64,986	64,724	C 150
0,955	0,940	0,932	0,927	0,924	49,930	49,142	48,749	48,513	48,355	C 151
-	-	-	-	-		-	-	-	-	-

Anexo IV - Desenhos de Referência

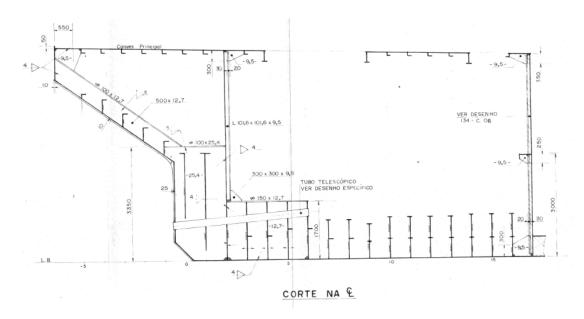


Figura 1: Região da Ré do Trevo Vermelho - Corte na Linha Central

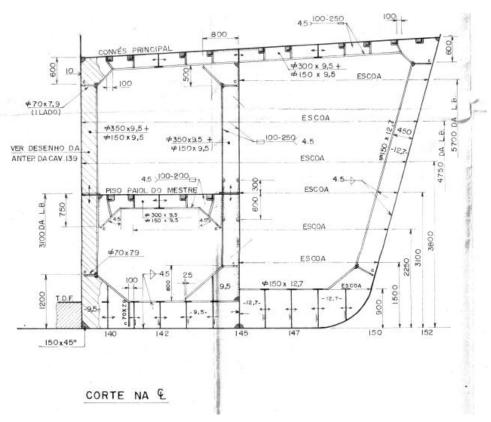


Figura 2: Região de Proa do Trevo Vermelho - Corte na Linha Central

Anexo V - Modelo do Rhinoceros - Detalhamento



Figura 3: Trevo Vermelho Completo – Topo

Figura 4: Trevo Vermelho Completo – Lateral

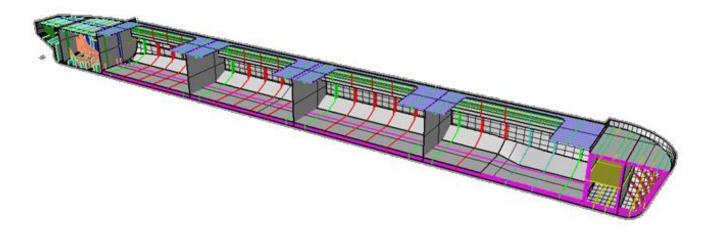


Figura 5: Trevo Vermelho - Bombordo - Perspectiva

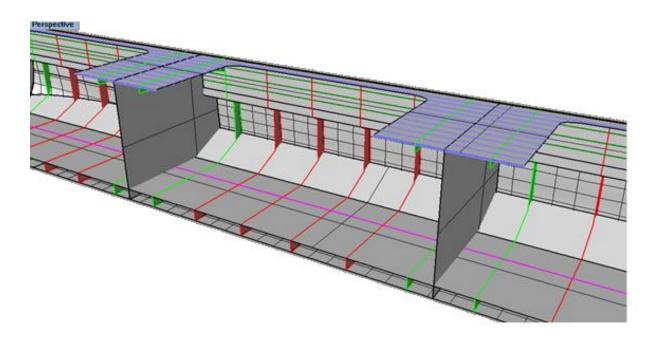


Figura 6: Região do Corpo Paralelo - Zoom

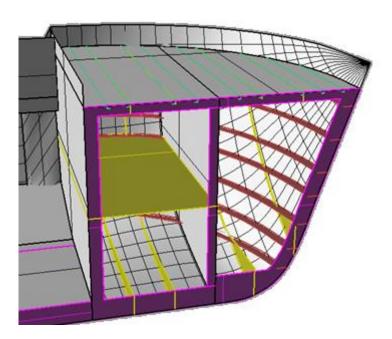


Figura 7: Trevo Vermelho – Proa – Zoom

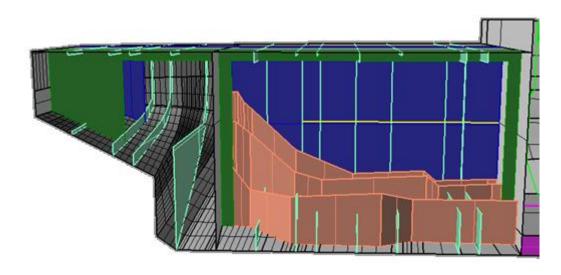


Figura 8: Trevo Vermelho - Popa - Zoom

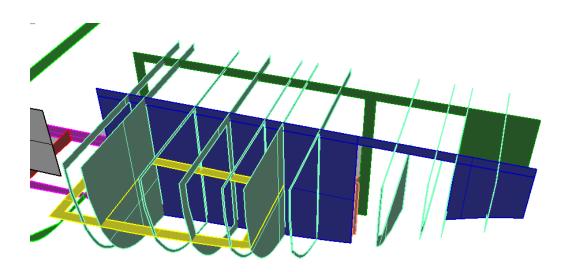


Figura 9: Trevo Vermelho - Reforços da Popa - Zoom