

DETECÇÃO DE EXSUDAÇÕES DE ÓLEO NO COMPLEXO DE CANTARELL (GOLFO DO MÉXICO) COM DADOS SAR POLARIMÉTRICOS DO SATÉLITE RADARSAT-2

Sarah Barrón Torres

Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Engenharia Civil, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Engenharia Civil.

Orientadores: Luiz Bevilacqua

Fernando Pellon de Miranda

Rio de Janeiro Dezembro de 2017

DETECÇÃO DE EXSUDAÇÕES DE ÓLEO NO COMPLEXO DE CANTARELL (GOLFO DO MÉXICO) COM DADOS SAR POLARIMÉTRICOS DO SATÉLITE RADARSAT-2

Sarah Barrón Torres

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA CIVIL.

Examinada por:

Prof. Luiz Bevilacqua, Ph.D.

Prof. José Luis Drummond Alves, D.Sc.

Dr. Fábio Furlan Gama, D.Sc.

RIO DE JANEIRO, RJ – BRASIL DEZEMBRO DE 2017 Torres, Sarah Barrón

Detecção de Exsudações de Óleo no Complexo de Cantarell (Golfo do México) com Dados SAR Polarimétricos do Satélite RADARSAT-2 / Sarah Barrón Torres – Rio de Janeiro: UFRJ/COPPE, 2017.

XIV, 128 p. : il.; 29,7 cm.

Orientadores: Luiz Bevilacqua

Fernando Pellon de Miranda

Dissertação (mestrado) – UFRJ/ COPPE/ Programa de Engenharia Civil, 2017.

Referências Bibliográficas: p. 79-83.

 Diagrama H-ā. 2. RADARSAT-2. 3. Exsudação de óleo. 4. Complexo de Cantarell. I. Bevilacqua, Luiz *et al.* II. Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia Civil. III. Título.

Ao meu avô René, que sempre apostou no meu sucesso, para quem anseio dar orgulho, de quem herdei o gosto pela profissão. Ao meu pai Abel, o amor da minha vida, maior admirador e a voz/o riso de alegria que mais gostaria de tornar a ouvir.

AGRADECIMENTOS

A todos que estiveram de alguma forma envolvidos neste projeto. Foram quase três anos de dedicação, de uma empreitada que começou ainda em Brasília/DF – cidade onde nasci e de onde saí pela carreira profissional – e resultou em uma obra de que me orgulho.

Aos orientadores Luiz Bevilacqua e Fernando Pellon de Miranda pela paciência, ensinamentos repassados/contribuição teórica. Pelo apoio e disponibilidade em momentoschave e, principalmente, por compartilharem as informações valiosas que deram início a este trabalho.

À minha família, a quem devo todo o suporte e força de que dispus ao longo desse tempo. Por confiarem e terem sempre palavras de carinho e estímulo, por acreditarem que eu venceria mais esta etapa. Por me impulsionarem, não deixarem esmorecer e por serem a fortaleza para a qual correrei findas as atividades acadêmicas. É deles o meu amor e saudade sem tamanho.

Aos amigos. Responsáveis pela manutenção da sanidade e bom humor. Foram muitos os que torceram e incentivaram, mas tive, em especial, alguns anjos da guarda a quem devo imensa gratidão. Por encorajarem, serem cúmplices no cansaço, estresses, na tensão dos prazos a cumprir; que escutaram tantas vezes que estava acabando (mas acabava nunca!), que estiveram ao meu lado a todo momento, seja física, seja espiritualmente.

Ao LabSAR por fornecer as ferramentas necessárias – softwares, imagens de satélite, acervo bibliográfico – e contar com uma equipe de bons profissionais, atenciosos e altamente solícitos. À instituição, PEC-COPPE/UFRJ, pela estrutura, corpo docente de nível distinto e pelo histórico de incentivo científico.

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

DETECÇÃO DE EXSUDAÇÕES DE ÓLEO NO COMPLEXO DE CANTARELL (GOLFO DO MÉXICO) COM DADOS SAR POLARIMÉTRICOS DO SATÉLITE RADARSAT-2

Sarah Barrón Torres

Dezembro/2017

Orientadores: Luiz Bevilacqua Fernando Pellon de Miranda

Programa: Engenharia Civil

A ocorrência de manchas de óleo na superfície do mar resultantes de exsudação a partir de sistemas petrolíferos ativos, comumente denominadas seepage slicks, vem sendo extensivamente documentada por imageamento utilizando sistemas SAR. O RADARSAT-2 é um satélite que obtém informações úteis para o reconhecimento/descrição desse tipo de feições. A polarimetria está se consolidando na indústria do petróleo como uma técnica sofisticada para o estudo de seeps marinhos. O Complexo de Cantarell é atualmente o local de exsudação natural de óleo mais prolífico do globo terrestre. Este trabalho visou contribuir com a discussão acerca das propriedades físicas de escapes de óleo a partir dos dados quadpol do RADARSAT-2. Ademais, o fato da pesquisa valer-se de duas imagens adquiridas no mesmo local e modo de operação (FQ), mas com intervalo entre as aquisições e diferentes ângulos de incidência (19,0°-22,7° e 33,7°-36,7°), possibilitou avaliar a influência da geometria de imageamento na assinatura dos alvos. Com esse propósito, empregou-se o diagrama de Cloude & Pottier (1997), que define nove zonas para análise do mecanismo de espalhamento. Para tanto, foram geradas amostras de quatro classes (mar, plataforma, óleo e falso alvo), tamanho 3x3 pixels, e extraídos os dados posteriormente relacionados em gráficos e no plano entropia (H) vs. ângulo alfa ($\bar{\alpha}$). Tais elementos permitiram atestar que (i) o mar é uma superfície Bragg independente do ângulo de incidência, (ii) as plataformas têm espalhamento double-bounce, mas baixos ângulos são inadequados para caracterização, (iii) falsos alvos (regiões de baixo vento) são moderadamente aleatórios/quase determinísticos, e (iv) o óleo comporta-se ou como Bragg, ou como uma superfície aleatória/anisotrópica.

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the requirements for the degree of Master of Science (M.Sc.)

DETECTION OF SEEPAGE SLICKS IN CANTARELL COMPLEX (GULF OF MEXICO) USING POLARIMETRIC SAR DATA OF RADARSAT-2

Sarah Barrón Torres

December/2017

Advisors: Luiz Bevilacqua Fernando Pellon de Miranda

Department: Civil Engineering

The occurence of oil seeps on the sea surface resulting from exudation of active oil systems, commonly referred as seepage slicks, has been extensively recorded by SAR (Synthetic Aperture Radar) imaging systems. RADARSAT-2 is a Canadian satellite that obtains useful information to reconnaissance/description of this kind of features. Polarimetry is consolidating in the oil industry as a sophisticated technique to study marine seeps. The Cantarell Complex is currently the most prolific natural exudation site of the globe. This project aimed to contribute to the discussion about the physical properties of exudation from RADARSAT-2 complete polarimetric data (quad-pol). In addiction, the fact that the research counts on two images acquired at the same place and both on Fine Quad operational mode, but having some time interval between acquisitions and different incidence angles $(19,0^{\circ}-$ 22,7° and 33,7°–36,7°), made it possible to evaluate the geometry imaging influence on the signature of the targets. For this purpose, the Cloude & Pottier (1997) diagram was applied, which defines nine distinct zones to analyze scattering mechanisms. Therefore, samples of four targets (sea, platform, oil and false target) were generated - size 3x3 pixels - and, individually, extracted the data to relate in graphs and diagram entropy (H) vs. alpha angle $(\bar{\alpha})$. The results showed (i) the sea is a Bragg-type surface independent of the incidence angle, (ii) the platforms have double-bounce scattering, but low angles are inadequate for their characterization, (iii) false targets (associated low wind zones) are moderately random/almost-deterministic surfaces, and (iv) the oil behaves either as Bragg (19,0°-22,7°), or as a random/anisotropic surface $(33,7^{\circ}-36,7^{\circ})$.

CAPÍTULO 1. INTRODUÇÃO	1
1.1 APRESENTAÇÃO	1
1.2 JUSTIFICATIVA	2
1.3 OBJETIVOS	3
CAPÍTULO 2. ÁREA DE ESTUDO	5
2.1 CARACTERÍSTICAS GERAIS	5
2.2 CONTEXTO GEOLÓGICO	7
CAPÍTULO 3. FUNDAMENTAÇÃO TEÓRICA	10
3.1 SENSORIAMENTO REMOTO	
3.1.1 SENSOR RADAR	
3.1.1.1 RADAR DE ABERTURA SINTÉTICA (SAR)	13
3.1.2 RADARSAT-2	15
3.1.3 POLARIMETRIA	
3.2 DADOS METEO-OCEANOGRÁFICOS	27
3.2.1 CONCENTRAÇÃO DE CLOROFILA-A	
3.2.2 TEMPERATURA DA SUPERFÍCIE DO MAR (TSM)	
3.2.3 TEMPERATURA DE TOPO DE NUVEM (TTN)	
3.2.4 CAMPO DE VENTO	
3.2.5 ALTURA SIGNIFICATIVA DE ONDAS	
CAPÍTULO 4. MATERIAIS E MÉTODOS	
CAPÍTULO 5. RESULTADOS	52
5.1 DISCUSSÃO	69
CAPÍTULO 6. CONCLUSÕES	77
REFERÊNCIAS BIBLIOGRÁFICAS	79
ANEXOS	

SUMÁRIO

LISTA DE FIGURAS

FIGURA 2.1 Mapa de localização da área de estudo (imagem superior extraída de POWER
ENGINEERING, 2015; imagem inferior modificada a partir do mapa de localização de
uma das imagens polarimétricas RADARSAT-2)
FIGURA 2.2 Localização dos campos no Complexo de Cantarell (Fonte: CNH, 2013) 7
FIGURA 2.3 Modelo geológico da Sonda de Campeche (Fonte: FLORES IBARRA et al.,
2013)
FIGURA 3.1 Mecanismo de interação entre sensor/alvo do sistema de radar (Modificado de
COIMBRA, 2016) 11
FIGURA 3.2 Elementos geométricos da configuração de imageamento por radar (MENESES
& SANO, 2012). A direção de azimute é perpendicular ao plano da folha deste texto. γ_1
e γ_2 são os ângulos de depressão no <i>near</i> e no <i>far range</i> , respectivamente 12
FIGURA 3.3 Comparação entre imagens do mesmo alvo obtidas pelos dois sistemas
(COIMBRA, 2016)
FIGURA 3.4 Ilustração da órbita do satélite RADARSAT-2 e suas características (Modificada
de CSA, 2007)
FIGURA 3.5 Modos de imageamento do satélite RADARSAT-2, visada à direita (CSA,
2015)
FIGURA 3.6 Elipse de polarização (Fonte: VAN DER SANDEN, 1997, apud SILVA, 2010).
FIGURA 3.7 Respostas polarimétricas padrão dos tipos (A) polarização paralela e (B)
polarização cruzada (SILVA, 2010) 21
FIGURA 3.8 Alvos e suas correspondentes matrizes [S] na base cartesiana $\{h, v\}$: (A) triedro,
esfera e superfície plana, (B) dipolo horizontal, (C) diedro e (D) hélice à direita; e
respostas em polarização paralela e cruzada (LEE & POTTIER, 2009, apud SILVA,
2010)
FIGURA 3.9 Plano de classificação H- $\bar{\alpha}$ com suas nove zonas admissíveis (LEE &
POTTIER, 2009, apud SILVA, 2010)
FIGURA 3.10 Histograma de densidade H-a representando a decomposição de amostras da
(A) superfície do mar, (B) óleo leve, (C) óleo moderadamente viscoso e (D) óleo pesado
(TIAN et al., 2010)

FIGURA 3.11 Diferença do espalhamento do sinal em uma superfície livre	e da influência de
óleo e em uma superfície amortecida pela presença de óleo (Projeto Gl	obeSAR <i>in</i> Soler,
2000, apud RORIZ, 2006)	
FIGURA 3.12 Cobertura do ASCAT a bordo do satélite MetOp-B para o c	lia 10 de abril de

FIGURA 4.1 Fluxograma de variáveis analisadas, indicando a sequência de trabalho seguida
(Elaborado pela autora)
FIGURA 4.2 Mapa de localização da imagem polarimétrica FQ2W do satélite RADARSAT-2
com ID#01 (LABSAR, 2016). O losango em vermelho indica a posição da exsudação
petrolífera (<i>seepage slick</i>) de Cantarell
FIGURA 4.3 Imagens RADARSAT-2 FQ2W adquiridas em 20/09/2009, às 12:11:34 GMT,
sendo a polarização em (A) do tipo HH e, em (B), VV (Fonte: LABSAR, 2016) 36
FIGURA 4.4 Imagens RADARSAT-2 FQ2W adquiridas em 20/09/2009, às 12:11:34 GMT,
sendo a polarização em (C) do tipo HV e, em (D), VH (Fonte: LABSAR, 2016) 37
FIGURA 4.5 Mapa de localização da imagem polarimétrica FQ2W do satélite RADARSAT-2
com ID#02 (LABSAR, 2016). O losango em vermelho indica a posição da exsudação
petrolífera (<i>seepage slick</i>) de Cantarell
FIGURA 4.6 Imagens RADARSAT-2 FQ2W adquiridas em 20/09/2009, às 12:11:39 GMT,
sendo a polarização em (A) do tipo HH e, em (B), VV (Fonte: LABSAR, 2016) 39
FIGURA 4.7 Imagens RADARSAT-2 FQ2W adquiridas em 20/09/2009, às 12:11:39 GMT,
sendo a polarização em (C) do tipo HV e, em (D), VH (Fonte: LABSAR, 2016) 40
FIGURA 4.8 Mapa de Temperatura da Superfície do Mar (TSM) de 20/09/2009, às 08:05
(GMT), com escala em graus Celsius, mostrando a localização das imagens ID#01 e
ID#02 (Fonte: LABSAR, 2016)
FIGURA 4.9 Mapa de Temperatura de Topo de Nuvem (TTN) de 20/09/2009, às 08:05
(GMT), com escala em graus Celsius, mostrando a localização das imagens ID#01 e
ID#02 (Fonte: LABSAR, 2016)
FIGURA 4.10 Mapa de Campo de Vento de 20/09/2009, às 15:03 (GMT), com escala em
m/s, mostrando a localização das imagens ID#01 e ID#02 (Fonte: LABSAR, 2016) 42

- FIGURA 4.20 Mapa de Campo de Vento de 01/03/2011, às 03:09 (GMT), com escala em m/s, mostrando a localização das imagens ID#03 e ID#04 (Fonte: LABSAR, 2016).
- FIGURA 4.22 Mapa de Altura Significativa de Onda de 01/03/2011, com escala em metros, mostrando a localização das imagens ID#03 e ID#04 (Fonte: LABSAR, 2016)....... 50

- FIGURA 5.8 Gráfico ângulo de incidência *vs.* entropia do mar para a imagem ID#02...... 61 FIGURA 5.9 Gráfico ângulo de incidência *vs.* entropia do mar para a imagem ID#04...... 62
- FIGURA 5.10 Gráfico ângulo de incidência vs. ângulo alfa do mar para a imagem ID#02... 62
 FIGURA 5.11 Gráfico ângulo de incidência vs. ângulo alfa do mar para a imagem ID#04... 62
 FIGURA 5.12 Gráfico ângulo de incidência vs. entropia da plataforma para a imagem ID#02.
- FIGURA 5.13 Gráfico ângulo de incidência vs. entropia da plataforma para a imagem ID#04.

FIGURA 5.16 Gráfico do ângulo de incidência vs. entropia do óleo para a imagem ID#02. FIGURA 5.17 Gráfico do ângulo de incidência vs. entropia do óleo para a imagem ID#04. FIGURA 5.18 Gráfico do ângulo de incidência vs. ângulo alfa do óleo para a imagem ID#02. FIGURA 5.19 Gráfico do ângulo de incidência vs. ângulo alfa do óleo para a imagem ID#04. FIGURA 5.20 Gráfico do ângulo de incidência vs. entropia do falso alvo para a imagem FIGURA 5.21 Gráfico do ângulo de incidência vs. ângulo alfa do falso alvo para a imagem FIGURA 5.22 Diagramas H-a para cada uma das classes de alvos selecionados na imagem FIGURA 5.23 Diagramas H-a para cada uma das classes de alvos selecionados na imagem FIGURA 5.24 Diagrama H- α comparativo de todos os alvos da imagem ID#02, sendo verde = FIGURA 5.25 Diagrama H- α comparativo de todos os alvos da imagem ID#04, sendo verde = FIGURA 5.26 Gráfico do ângulo de incidência vs. entropia do mar, comparativo das imagens ID#02 e ID#04. FIGURA 5.27 Gráfico do ângulo de incidência vs. ângulo alfa do mar, comparativo das imagens ID#02 e ID#04. 71 FIGURA 5.28 Gráfico do ângulo de incidência vs. entropia da plataforma, comparativo das FIGURA 5.29 Gráfico do ângulo de incidência vs. ângulo alfa da plataforma, comparativo das FIGURA 5.30 Gráfico do ângulo de incidência vs. entropia do óleo, comparativo das imagens ID#02 e ID#04. FIGURA 5.31 Gráfico do ângulo de incidência vs. ângulo alfa do óleo, comparativo das imagens ID#02 e ID#04. 75

LISTA DE TABELAS

TABELA 3.1 Principais bandas dos sensores radar com seus respectivos comprimento de
onda e frequência de operação (MENESES & SANO, 2012) 11
TABELA 3.2 Quadro comparativo entre os satélites da família RADARSAT (CSA, 2007). 16
TABELA 3.3 Opções de polarização, faixa de imageamento e ângulo de incidência dos
diversos modos de imageamento do RADARSAT-2 (MDA, 2016) 17
TABELA 3.4 Estado de polarização da onda em função dos ângulos χ e ψ (LEE & POTTIER,
2009, apud SILVA, 2010)
TABELA 3.5 Comportamento dos alvos 'mar' e 'óleo' sob diferentes ângulos de incidência
de diversos autores segundo as características polarimétricas H e $\bar{\alpha}$ qualitativamente
caracterizadas, e a zona resultante estimada do plano de classificação de Cloude &
Pottier (1997)

TABELA 4.1 Imagens selecionadas e especificações de localização, modo de operação, resolução espacial, tamanho da cena, ângulo de incidência, data e hora de aquisição (LABSAR, 2016).35

TABELA 5.1 Imagens utilizadas e suas especificações (modo de aquisição, data e hora de
aquisição, ângulo de incidência) e total de amostras coletadas por classe (óleo,
plataforma, mar e falso alvo) 56
TABELA 5.2 Medidas de entropia (H) e ângulo alfa (α) médios das classes alvo e seus
respectivos desvios padrão61
TABELA 5.3 Subclasse de amostras com entropia \geq 0,50, ordenadas pelo ângulo de
incidência crescente
TABELA 5.4 Subclasse de amostras com entropia \geq 0,90, ordenadas pelo ângulo de
incidência crescente
TABELA 5.5 Subclasse de amostras com entropia \ge 0,50, ordenadas pelo ângulo alfa médio
crescente

CAPÍTULO 1. INTRODUÇÃO

1.1 APRESENTAÇÃO

A indústria do petróleo se mantém em atividade crescente, visto que ainda hoje fornece a principal fonte de energia primária na maior parte do mundo (IEA, 2015). É de se esperar, portanto, que, ao longo do tempo, tenha sido necessário lidar com condições cada vez mais complexas no que diz respeito ao processo produtivo. O setor de Petróleo e Gás depende diretamente do insumo proveniente de pesquisas que buscam desvendar a totalidade dos aspectos tecnológicos nele envolvidos. Assim, o desenvolvimento científico multidisciplinar promove a redução de riscos exploratórios, diminuindo os custos para empresas e tornando a operação minimamente capaz de assegurar o retorno dos investimentos em longo prazo.

A ocorrência de óleo na superfície do mar pressupõe basicamente duas alternativas, ou escape de sistemas petrolíferos ativos, resultado de feições comumente denominadas *seepage slicks*, ou derramamento (aí estão inclusos acidentes na plataforma, problemas operacionais, entre outros). Segundo Jones & Drozd (1983), não há tecnologia mais antiga para encontrar petróleo que a identificação de *seeps* rasos, podendo estes se apresentar nas formas líquida e gasosa, em ambiente tanto marinho como continental. Os mesmos reiteram ainda, citando Link (1952), que os *macroseeps* têm uma associação regional definida com áreas posteriormente identificadas como produtivas.

A comprovada existência de vertimento natural de óleo no Golfo do México torna a região de grande interesse econômico-ambiental. De um lado, tem-se a procura incessante por novos caminhos de migração para ampliação de reservas e para a confirmação do potencial das já existentes; de outro, é fundamental o monitoramento do fenômeno a fim de se reconhecer sua contribuição do volume de óleo lançado no ambiente marinho e seu possível impacto nas atividades sócio-econômicas desenvolvidas na zona costeira.

O México é o décimo maior exportador de petróleo do mundo (IEA, 2015). O complexo de Cantarell, situado na Baía de Campeche, é, atualmente, o local de exsudação natural de óleo mais prolífico do globo terrestre. Dessa forma, sabendo que a aquisição de dados, bem como as metodologias de processamento e de geração/transformação em informações de interesse, auxilia fortemente a exploração petrolífera, o sensoriamento remoto constitui ferramenta indispensável nesse cenário.

Os sistemas orbitais com radar de abertura sintética ou SAR (*Synthetic Aperture Radar*) têm se destacado no levantamento e monitoramento de recursos naturais em virtude da

disponibilidade crescente de dados por eles obtidos visando ao recobrimento do planeta. Entre seus atributos mais importantes, estão a independência de fonte solar, a pouca influência da atmosfera durante o imageamento e a detecção de respostas indicativas das propriedades elétricas e geométricas dos alvos (PARADELLA *et al.*, 2015); eles agregam valor de modo complementar aos sensores ópticos, cujas respostas são controladas por características físico-químicas.

Em contraste com os radares convencionais, os sistemas SAR polarimétricos permitem uma completa caracterização da onda eletromagnética resultante da interação com o alvo e que retorna à antena. É registrada, assim, a assinatura de espalhamento do objeto na superfície, guardando as medidas de amplitude e de fase coletadas na recepção (SILVA, 2010).

Embora seja uma abordagem em desenvolvimento, a polarimetria vem se consolidando para ampliação do uso desse tipo de imagens. Assim, pretende-se empregar esta técnica, com dados do satélite RADARSAT-2, na detecção de exsudações de óleo na região oceânica do Golfo do México, de modo a contribuir com a discussão acerca da aplicabilidade do método na indústria do petróleo.

1.2 JUSTIFICATIVA

Os dados polarimétricos tornaram-se relativamente mais acessíveis somente após o lançamento dos sensores SAR orbitais como o ALOS/PALSAR, em 2004, e RADARSAT-2, em 2007. Tal fato, aliado à maior dificuldade de processamento, ainda reduz suas possibilidades de aplicação (SILVA, 2010). Esta pesquisa vem, então, colaborar com a utilização das imagens polarimétricas do RADARSAT-2 no reconhecimento e caracterização de manchas de óleo na superfície do mar.

Partindo dos preceitos da literatura, encontra-se uma análise fundamentada na classificação de Cloude & Pottier (1997), consoante sua teoria de decomposição de mecanismos de espalhamento, que confronta, em um diagrama bastante simples dividido em nove zonas distintas, os parâmetros entropia (H) – mede a aleatoriedade dos mecanismos de espalhamento – e ângulo alfa ($\bar{\alpha}$) – caracteriza o mecanismo de espalhamento.

A esse respeito, inicialmente, Tian *et al.* (2010) notaram que as imagens SAR polarimétricas são, de fato, capazes de auxiliar no processo de identificação/classificação de manchas de óleo. Com efeito, empregando-se os parâmetros H e $\bar{\alpha}$, acrescidos de um terceiro,

2

a anisotropia (A), pôde-se discriminar entre superfície do mar, derrame biogênico e óleo antropogênico.

Similarmente, Zhang *et al.* (2011) observaram que, para a superfície do mar livre de óleo, H e $\bar{\alpha}$ são baixos e a correlação entre os canais de co-polarização (horizontais e verticais) é alta, ao passo que, em áreas cobertas por óleo, H e $\bar{\alpha}$ são mais altos e a correlação entre os canais de co-polarização é baixa. Estes autores destacaram que, embora o algoritmo polarimétrico funcione bem para identificar manchas de óleo, em termos da sua capacidade de diferenciar outros fenômenos físicos que igualmente produzam baixo espalhamento, ele apresenta as mesmas limitações dos sistemas SAR comuns.

Para Staples & Touzi (2014), por sua vez, os resultados encontrados sugerem que a entropia fornece uma medida qualitativa das características do óleo, sendo o mais espesso (devido à presença de emulsão, por exemplo) correspondente a valores de H próximos de 1. Skrunes *et al.* (2014), por fim, concluiram que é possível distinguir alguns tipos de óleo cru, como a mistura de Balder e Oseberg, de ocorrências de manchas naturais monomoleculares (óleo biogênico) no Mar do Norte em condições de verão e baixo vento.

Esta pesquisa tem o intuito de ampliar o potencial de uso de dados polarimétricos na banda C, visto que se trata da faixa de frequência de operação do satélite RADARSAT-2, para aplicações na indústria do petróleo; nesse caso, especificamente, em exsudações de óleo no Complexo de Cantarell, de onde se espera comparar os resultados da análise com as informações disponíveis até o presente momento seguindo a perspectiva apresentada pelos autores supracitados.

1.3 OBJETIVOS

O objetivo geral deste trabalho é utilizar a informação de amplitude e fase disponível nos dados polarimétricos do satélite RADARSAT-2 obtidos pelo sensor SAR, de forma a caracterizar as propriedades físicas de exsudações de óleo na superfície marinha para distingui-las do meio circundante.

Como objetivos específicos serão considerados:

(i) Avaliar o desempenho da técnica de classificação polarimétrica baseada na teoria de decomposição de mecanismos de espalhamento de Cloude & Pottier (1997);

(ii) Comparar os resultados com valores já existentes na bibliografia para aumentar a confiabilidade e selecionar os parâmetros que melhor descrevam os alvos de interesse;

(iii) Analisar a influência da geometria de imageamento (variação no ângulo de incidência e azimute de visada) na assinatura polarimétrica de espalhamento das manchas de óleo na superfície do mar.

CAPÍTULO 2. ÁREA DE ESTUDO

2.1 CARACTERÍSTICAS GERAIS

A área de estudo corresponde ao Complexo de Cantarell, localizado a uma distância aproximada de 80 km a noroeste de Ciudad del Carmen, na Baía de Campeche, inserido na porção mexicana do Golfo do México (Figura 2.1). Trata-se de uma região petrolífera de 134 km² composta por diversos campos, Akal, Chac, Ixtoc, Kambesah, Kutz, Nohoch, Sihil, Takín (Figura 2.2) (CNH, 2013).

O Golfo do México é uma bacia oceânica localizada entre os litorais do México, Estados Unidos e Cuba, com saída para o Oceano Atlântico, a leste, e separada do Mar do Caribe, também a leste, pela Península de Yucatán. Os três países possuem entre si acordos para delimitação dos espaços marítimos de cada território, em virtude do estabelecimento das suas zonas econômicas exclusivas.

Cantarell foi descoberto em 1976 e sua exploração foi conduzida até recentemente como monopólio da estatal PEMEX (*Petróleos Mexicanos*). Até o final de 2005, já haviam sido produzidos 11,492 milhões de barris de óleo e 4.691 bilhões de pés cúbicos de gás natural, sendo 190 poços perfurados e estimativa de reserva provada remanescente, aferida no início do mesmo ano, de cerca de 7 bilhões de barris de petróleo equivalente. O volume de produção de Cantarell chegou a representar 59% do total nacional (PEMEX, 2005) em 2004, quando o México alcançou recorde de produção. A partir daí, teve início o declínio do complexo.

Em 2013, a Comissão Nacional de Hidrocarbonetos (*Comisión Nacional de Hidrocarburos* – CNH) mexicana elaborou documento relacionado ao projeto de explotação de Cantarell para o período de 2013-2027, a partir da informações de ofícios originalmente publicados pela PEMEX. O objetivo é alcançar, ao final, produção acumulada de 1592,8 milhões de barris de óleo e 938,4 bilhões de pés cúbicos de gás; o que é notadamente inferior ao desempenho produtivo dos anos iniciais de operações do campo.

Para incrementar produção e reduzir a rápida perda de pressão dos poços (*drawdown*), foram adotados métodos de elevação artificial, como a injeção de nitrogênio (PEMEX, 2005), além de manobras comuns e até mesmo esperadas para poços com tantos anos de operação, de grande vazão e alta viscosidade. De qualquer maneira, Cantarell permanece como uma das grandes províncias petrolíferas mundiais, e a manutenção da surgência natural desse óleo atrai interesse não somente econômico, mas igualmente científico.

Figura 2.1. Mapa de localização da área de estudo (imagem superior extraída de POWER ENGINEERING, 2015; imagem inferior modificada a partir do mapa de localização de uma das imagens polarimétricas RADARSAT-2).

Figura 2.2. Localização dos campos no Complexo de Cantarell (Fonte: CNH, 2013).

2.2 CONTEXTO GEOLÓGICO

A estratigrafia da Sonda de Campeche, na Baía de Campeche, região onde ocorre o Complexo de Cantarell, conta essencialmente com carbonatos e terrígenos, que cobrem sequências evaporíticas mais antigas. O óleo fica armazenado principalmente em uma brecha carbonática no limite Cretáceo-Terciário (K/T), em trapeamento estrutural com espessura de até 300 m. A rocha reservatório é pouco saturada em água, bastante permeável e a porosidade secundária é alta, proveniente de dolomitização e fraturamento. As rochas geradoras são de fácies argilo-carbonáticas, com destaque para as de idade Titoniana (IBARRA, 2009). A densidade do óleo, essencialmente pesado, varia de 10 a 25 °API; acredita-se que seja devido à expulsão prematura da rocha fonte e não à biodegradação.

A evolução tectônica (Figura 2.3) compreende três grandes eventos, que definem quatro estilos estruturais, sendo, do mais antigo para o mais recente, originado por (i) esforços extensionais – falhas normais orientadas N-S que, em conjunto, formam horsts e grábens, (ii) esforços compressionais – falhas inversas e blocos basculados, (iii) esforços transpressivos – deformações intensas de direção NW-SE com domos, diápiros, falhas normais e blocos fraturados e (iv) evento extensional tardio – relaxamento da cobertura sedimentar e consequente aparecimento de falhas normais, lístricas e de crescimento, gerando bacias de depósito (FLORES IBARRA *et al.*, 2013).

Figura 2.3. Modelo geológico da Sonda de Campeche (Fonte: FLORES IBARRA et al., 2013).

Miller (2006) sustenta que bacias sedimentares com tectônica salífera em geral constituem locais favoráveis para a ocorrência de exsudações de hidrocarbonetos. E ilustra a situação de bacias de margem passiva com intensa atividade halocinética e deposicional (taxa de sedimentação elevada), que apresentam ampla distribuição de *seeps* marinhos, como o Golfo do México.

Roberts & Carney (1997) propuseram uma classificação para as exsudações submarinas no Golfo do México, revista mais tarde por Roberts *et al.* (2006), que observaram a ocorrência de sobreposição das classes no norte dessa região, no sentido de definir melhor os limites para as taxas de expulsão de hidrocarbonetos e sua influência nas respostas geológico-biológicas do fundo do mar, propondo um modelo. São três os domínios por eles reconhecidos: fluxo rápido, intermediário e lento.

O primeiro, *rapid flux*, está associado a sedimentos moles (geralmente contém bolhas de gás) e à criação de vulcões ou fluxos de lama; o processo de expulsão de fluido/gás é episódico e as rotas de migração frequentemente são formadas por segmentos de falhas profundas (calor e fluidos de alta salinidade podem acompanhar os produtos). Suportam comunidades quimiossintéticas localizadas e óleo pouco ou não biodegradado (ROBERTS *et al.*, 2006).

No *moderate flux*, as condições são ótimas para a formação de hidratos de gás, acumulados no fundo do mar, ou perto dele, em subsuperfície, como também para o desenvolvimento de comunidades quimiossintéticas diversas e bem populadas. O

fornecimento de gás é contínuo nesses sítios. Apresentam afloramentos localizados de carbonato autigênico e o óleo é moderadamente biodegradado (ROBERTS *et al.*, 2006).

No *slow flux*, ocorre a infiltração de hidrocarbonetos e a cimentação/litificação de sedimentos superficiais é bastante difundida; prevalecem precipitados minerais – principalmente carbonato autigênico na forma de nódulos, lajes, pavimentos e chaminés. Esses produtos se localizam comumente em rotas de migração curtas associadas a massas rasas de sal, possuem raras comunidades quimiossintéticas e o óleo é muito biodegradado (ROBERTS *et al.*, 2006).

CAPÍTULO 3. FUNDAMENTAÇÃO TEÓRICA

3.1 SENSORIAMENTO REMOTO

Sensoriamento Remoto (SR) é uma técnica de coleta de dados na superfície terrestre sem contato direto com os alvos, na qual os sensores se localizam distantes dos objetos de investigação. Seu uso tem sido aprimorado com o avanço tecnológico de equipamentos eletrônicos, aeronaves e satélites. As aplicações vão desde a cartografia e mapeamento temático até a monitoração ambiental, levantamento de recursos naturais e detecção de desmatamentos florestais. A resolução espacial das imagens, em muitos casos, é superior a 1 metro, a resolução espectral pode ultrapassar centenas de bandas (MENESES, 2012) e a resolução temporal pode ser de algumas horas, caso a aquisição se faça por meio de constelações de satélites.

Insere-se no contexto do presente trabalho com o objetivo de embasar noções preliminares da área de estudo, permitindo a caracterização dos alvos, além de sustentar as interpretações meteorológica, oceanográfica e petrolífera, entre outras. Em uma abordagem geológica mais ampla, possibilita a extração de informações litológico-estruturais, além de viabilizar a visualização de acessos, localidades, padrões de drenagem e relevo. Seu emprego mostra-se fundamental para a constante evolução de conhecimento geológico, pois permite ao intérprete ampliar sua capacidade de monitorar os fenômenos dinâmicos e as mudanças das feições globais.

A combinação entre sensores imageadores e satélites artificiais é uma das grandes tecnologias em desenvolvimento a serviço do levantamento dos recursos naturais terrestres (MENESES, 2012). O comprimento de onda da radiação detectada pelo sistema no espectro eletromagnético classifica os sensores imageadores, basicamente, em faixa óptica, faixa termal e região de microondas, esta última correspondente à faixa de operação dos radares de abertura sintética (SAR), objeto deste estudo.

3.1.1 SENSOR RADAR

Radar é um termo derivado do acrônimo inglês *Radio Detection and Ranging* (Detecção de Ondas de Rádio e Posição), em que os sensores imageadores de tal tipo atuam na região das microondas (Tabela 3.1), utilizando uma fonte própria de radiação eletromagnética, sendo por isso denominado de sensor ativo (MENESES & SANO, 2012). Algumas de suas principais vantagens em relação aos sensores ópticos e termais residem na

sua capacidade de adquirir imagens mesmo na presença de nuvens, fumaça e chuva – que pode atenuar a energia retroespalhada nas maiores frequências –, além de serem autônomos no que se refere às condições de iluminação (COIMBRA, 2016).

Banda	Comprimento de onda (cm)	Frequência (GHz)
Х	2,4-3,8	12,5-8
C	3,8-7,5	8 - 4
S	7,5 – 15	4 - 2
L	15 - 30	2 - 1
Р	30 - 100	1 - 0,3

Tabela 3.1. Principais bandas dos sensores radar com seus respectivos comprimento de onda e frequência de operação (MENESES & SANO, 2012).

O sistema de radar funciona a partir do envio de sucessivos pulsos eletromagnéticos de alta potência, de curto período e de feixe muito estreito, os quais se retroespalham ao atingir o alvo no terreno por meio de uma antena de visada lateral. A energia retorna, então, como um eco, para a mesma antena, que atua também como receptora, onde é feito o registro da medida do tempo de retorno, de intensidade e de fase do sinal (Figura 3.1). Comparando-se o sinal de retorno com aquele transmitido e calculando-se o tempo decorrido, determina-se a posição do objeto no terreno com uma equação simples – visto que a radiação se propaga à velocidade da luz independente do seu comprimento de onda (MENESES & SANO, 2012).

Figura 3.1. Mecanismo de interação entre sensor/alvo do sistema de radar (Modificado de COIMBRA, 2016).

A informação contida em uma imagem de radar não é a mesma encontrada em uma imagem óptica, pois, enquanto nessa a energia solar incidente interage com o alvo de acordo com as propriedades químicas dos materiais, dada sua ocorrência a níveis moleculares, naquela o retroespalhamento se dá em um nível estrutural macroscópico, consoante as propriedades elétricas da superfície do planeta (COIMBRA, 2016).

As características da imagem são definidas por um conjunto de parâmetros importantes, quais sejam, (i) direção de azimute, é a direção de vôo da plataforma, (ii) direção de visada, é a direção de iluminação ao longo da qual o pulso de radar se propaga, na qual as áreas mais próxima e mais distante da antena são denominadas *near range* e *far range*, nessa ordem, (iii) ângulo de depressão, (iv) ângulo de visada e (v) ângulo de incidência local (estabelecido entre o pulso do radar e a normal à superfície do terreno) (MENESES & SANO, 2012). Com a definição das direções azimutal e de visada, a Figura 3.2 ilustra a geometria de imageamento e as variáveis descritas.

Figura 3.2. Elementos geométricos da configuração de imageamento por radar (MENESES & SANO, 2012). A direção de azimute é perpendicular ao plano da folha deste texto. $\gamma_1 e \gamma_2$ são os ângulos de depressão no *near* e no *far range*, respectivamente.

A imagem de radar é representada em tons de cinza proporcionais à amplitude do sinal de retorno, em que, superfícies lisas refletem especularmente o pulso incidente, sendo, portanto, mais escuras; a relação inversa vale para superfícies rugosas. Relevante lembrar que esse sinal de retorno é a soma resultante da contribuição direta de cada um dos elementos difusores (solo, vegetação, construções, etc.) (COIMBRA, 2016) presentes na área correspondente ao elemento do resolução de sensor.

No radar, o sinal emitido pode ser polarizado, isto é, o vetor do campo elétrico do pulso eletromagnético emitido pela antena é transmitido no plano horizontal (H) ou vertical (V), em relação ao eixo da antena. Plano-polarizados e plano-paralelos são definidos quando

os pulsos de emissão e de retorno do sinal ocorrem na mesma direção, HH e VV, respectivamente. Polarização cruzada é aquela em que emissão e retorno são de diferentes direções, podendo ser do tipo HV ou VH; isso ocorre em virtude da despolarização que acontece quando o pulso atinge o alvo. As imagens multipolarizadas tornam mais fácil a discriminação dos materiais em função das variações de rugosidade da superfície (MENESES & SANO, 2012) ou da estrutura dos alvos, no caso da vegetação.

Existem ainda sistemas de polarização plena (quad-pol), em que o pulso do radar é transmitido utilizando todas as possibilidades de polarização e de fase e onde o retroespalhamento oriundo do alvo é recebido da mesma forma.

3.1.1.1 RADAR DE ABERTURA SINTÉTICA (SAR)

Os feixes de onda produzidos pela antena se espalham pelo terreno na forma de um lóbulo; a largura desses feixes é definida ou pelo tamanho físico da antena, nos chamados sistemas de radar de abertura real (RAR), ou pela sintetização do tamanho efetivo da antena, nos radares de abertura sintética (SAR). O grande benefício do SAR comparativamente ao RAR é a melhor resolução espacial das imagens na direção de azimute (MENESES & SANO, 2012) (Figura 3.3), já que uma pequena antena pode obter sinteticamente a mesma informação que somente seria possível com antenas muito longas e impraticáveis operacionalmente em plataformas orbitais.

Imagem SAR

Figura 3.3. Comparação entre imagens do mesmo alvo obtidas pelos dois sistemas (COIMBRA, 2016).

A antena sintética do SAR é, em verdade, uma matriz de antenas, matematicamente unidas para detectar o alvo utilizando o efeito *Doppler*. Durante o movimento da plataforma ao longo da linha de vôo (direção de azimute), tal antena é mostrada em diversas posições sucessivas, fazendo com que a superfície seja vista várias vezes, isto é, divide a abertura sintética em visadas (*looks*). Interessante ressaltar que um objeto posicionado em *near range* é visto proporcionalmente por menores números de elementos de antena, ao passo que, na posição *far range*, é visto por maiores números de elementos de antena (MENESES & SANO, 2012). A imagem final é composta pela média das imagens em cada *look*, geradas separadamente. O processamento dos dados é, inevitavelmente, mais dispendioso.

Distorções são habituais em imagens de um sensor remoto; nos sistemas de radar, as alterações mais comuns são as geométricas e radiométricas. No primeiro caso, tem-se principalmente as inerentes à geometria de imageamento (*slant range*) e as relativas ao movimento da plataforma e às dimensões/orientação dos objetos na superfície – encurtamento (*foreshortening*), superposição (*layover*) e sombreamento (*shadowing*). Quanto às distorções radiométricas, tem-se as causadas pelo padrão de radiação da antena e pelo ruído *speckle*.

Conforme as definições apresentadas por Freitas (2007), explicam-se os termos acima,

- foreshortening se o tempo de retorno do pulso ao iluminar uma vertente for menor no aclive do que no declive, o eco do sinal daquele será mais curto, aparecendo, assim, comprimido no espaço em relação à sua extensão real;
- *layover* inversão do alvo provocada quando o topo de uma feição alta reflete energia antes da sua base; é um caso extremo de *foreshortening*;
- shadowing aparecimento de áreas bem escuras ocasionado pela ausência de sinal de retorno de superfícies não iluminadas pelo radar, como nas partes posteriores/declives de feições topográficas proeminentes em relação à direção de iluminação do radar;
- ruído *speckle* aparência granular das imagens pela mudança brusca de nível de cinza de um *pixel* para outro, indissociável dos sistemas de radar em razão de interferências construtivas/destrutivas que ocorrem ao acaso nos meios difusores em um elemento de resolução do sensor.

Na maioria das vezes, são necessárias correções para atenuar os efeitos das distorções (geométricas e/ou radiométricas), com o uso de modelos matemáticos e outras operações. O objetivo desses procedimentos, que compreendem a etapa de pré-processamento, é melhorar o aspecto das imagens para facilitar o processo de extração da informação por meio de algoritmos computacionais.

Os satélites que levam a bordo sistemas de radar de abertura sintética (SAR) têm se tornado mais comuns e, atualmente, são diversos os que operam com vários modos de imageamento, por exemplo, o canadense RADARSAT-2 (banda C), japonês ALOS/PALSAR-2 (banda L), italiano Cosmo-SkyMed (banda X) e alemão TerraSAR-X (banda X). Com exceção do ALOS/PALSAR-2, os outros três se destacam dos demais pela capacidade de adquirir imagens com alta resolução espacial (LOPES *et al.*, 2015).

3.1.2 RADARSAT-2

O RADARSAT-2 é o segundo satélite da missão homônima canadense; constitui uma parceria entre a Agência Espacial Canadense (*Canadian Space Agency* – CSA), que ajudou na construção/lançamento e recupera os investimentos ao fornecer os dados adquiridos pela missão para o governo federal, e a MDA (*MacDonald Dettwiler and Associates Ltd.*), responsável operacional (CSA, 2015).

Lançado em dezembro de 2007, mas ativo somente desde abril de 2008, o RADARSAT-2 é a continuidade do programa, a geração seguinte do antecessor, RADARSAT-1 (desativado em março de 2013). É um dos sistemas imageadores mais avançados de radar de observação da Terra comercialmente disponíveis, com avançadas melhorias técnicas, ampla gama de produtos de alta qualidade para centenas de aplicações e vida útil estimada para sete anos (CSA, 2015).

As órbitas dos satélites RADARSAT são idênticas – exceto por um pequeno *offset* de 30 minutos –, do tipo sol-síncrona (14 órbitas/dia) e com período de revisita de 24 dias (Figura 3.4).

A Tabela 3.2 a seguir apresenta uma relação de vantagens e melhorias do satélite RADARSAT-2 em relação ao anterior, RADARSAT-1. Além das descritas, há outras relacionadas ao dispositivo de bordo para gravação de dados, que deixou de ser analógico, e à implementação da direção de guinada (útil para reduzir as distorções relativas entre pontos).

	RADARSAT-1	RADARSAT-2	Vantagens do RADARSAT-2
Resolução	10 a 100 m	3 a 100 m	Maior detecção/reconhecimento de
espacial	10 a 100 m	5 a 100 m	objetos
Polarização	НН	Várias combinações possíveis de HH, HV, VV e VH; <i>quad-pol</i>	Melhor discriminação de vários tipos de superfície e maior capacidade de classificação de terreno
	À direita		Menor tempo de revisita, maior
Direção de visada	(à esquerda em	Rotina de operação à	eficiência de monitoramento e
	missões na	direita e à esquerda	disponibilidade de mapeamento
	Antártica)		rotineiro da Antártica
Sistema de		Recebedor de dados	Posição do satélite em tempo real (+
posicionamento	Nenhum	GPS a bordo	60 m)
global			

Tabela 3.2. Quadro comparativo entre os satélites da família RADARSAT (CSA, 2007).

Operando na banda C, com frequência de 5,4 GHz, o RADARSAT-2 possui 8 modos de imageamento (RADARSAT-1 possuía apenas 7) (Figura 3.5), a saber: *Fine*, *Wide*, *Standard*, *ScanSAR*, *Extended*, *Spotlight*, *Ship Detection* e *Ocean Surveillance*. Cada um deles apresenta particularidades, tipos de polarização (simples, dupla ou total) e diferentes faixas de imageamento (18 – 500 km) e ângulos de incidência ($10^\circ - 60^\circ$) (Tabela 3.3).

Figura 3.5. Modos de imageamento do satélite RADARSAT-2, visada à direita (CSA, 2015).

Tabela 3.3. Opções de polarização, faixa de imageamento e ângulo de incidência dos diversos modos de imageamento do RADARSAT-2 (MDA, 2016).

			OPÇ	ÕES D					
	Lin	lear	Lin	near	Du	nla	Quad	FAIXA DE	ÂNGULO DE
MODO	Sim	ples	Cruz	zada	Du	più	Quuu	IMAGEAMENTO	INCIDÊNCIA
	нн	vv	HV	VH	HH+HV	VV+VH	HH+VV+	(km)	(°)
		••		• • •	1111 111 1		HV+VH		
Standard	X	Х	Х	Х	Х	Х		100	20-52
Wide	X	Х	Х	Х	Х	Х		150	20-45
Fine	X	Х	Х	Х	Х	Х		50	30-50
Wide Fine	X	Х	Х	Х	Х	Х		150	20-45
Multi-Look	x	х	х	х				50	30-50
Fine									
Wide Multi-	x	x	x	x				90	29-50
Look Fine								~ ~	
Extra-Fine	X	Х	Х	Х				125	22-49
Ultra-Fine	X	X	X	Х				20	20-54

Wide Ultra- Fine	Х	Х	Х	Х				50	29-50
Extended High	Х							75	49-60
Extended Low	X							170	10-23
Standard Quad-pol							Х	25	18-49
Wide Standard Quad-pol							Х	50	18-42
Fine Quad-pol							Х	25	18-49
Wide Fine Quad-pol							Х	50	18-42
ScanSAR Narrow	Х	Х	Х	Х	Х	Х		300	20-46
ScanSAR Wide	X	X	X	X	Х	Х		500	20-49
Ship Detection	X	Х	Х	Х				450	35-56
Ocean Surveillance	Х	X	X	X	Х	Х		500	20-50
Spotlight	Х	Х	Х	Х				18	20-54

OBS.¹: Polarização Linear Simples refere-se à mesma polarização na trasmissão e recebimento (HH ou VV).

OBS.²: Polarização Linear Cruzada refere-se a uma polarização na transmissão e outra no recebimento (HV ou VH).

OBS.³:. Polarização Dupla refere-se a duas imagens adquiridas simultaneamente; polarização Quad refere-se a quatro.

A MDA, em um catálogo de informações publicado no *site* da empresa, dispõe sobre as capacidades de atuação do RADARSAT-2, tendo em vista os vários modos de imageamento disponíveis, nos setores de agricultura (colheita), aviação, monitoramento de desastres (criação de modelos digitais de elevação e supervisão de enchentes) e recursos naturais (pesca ilegal, desmatamento, degelo), mineração, óleo e gás (derramamentos, deformação co-sísmica, acompanhamento de oleodutos, operações no Ártico), além de segurança e defesa (vigilância marítima, detecção de alvos para a inteligência). Entende-se, afinal, que o RADARSAT-2 é uma fonte de dados indispensável para uso comercial e científico.

3.1.3 POLARIMETRIA

Silva (2010) fez uma minuciosa compilação acerca dos fundamentos da polarimetria SAR. Dele extrai-se que, na propagação da onda eletromagnética (EM) no espaço, seu vetor campo elétrico (E) varia no tempo, tanto em amplitude quanto em fase. Diferentemente do enfoque radargramétrico, com aplicações centradas na extração de informação de imagens de amplitude (PARADELLA *et al.*, 2015), a abordagem polarimétrica tem a característica de considerar ambas as medidas (amplitude e fase) no processo.

A caracterização da onda EM em dado instante de tempo é definida por sua polarização. Admite-se a representação desse estado em um sistema de coordenadas cartesianas, haja vista existirem normalmente duas antenas operando, polarizadas nas direções horizontal (H) e vertical (V). A diferença de fase (δ) entre os campos elétricos H e V pode ser vista na elipse (Figura 3.6) que define as diversas possibilidades de polarização de uma onda, juntamente com os principais parâmetros que a descrevem, $\chi \in \psi$ (SILVA, 2010).

Se a diferença de fase entre os componentes é igual a 0 (zero), a onda é dita linearmente polarizada. Se a amplitude é igual, ou $\chi = \pm 45^{\circ}$, e a diferença de fase é de $\pm \pi/2$, a polarização é dita circular. Quando foge a essa regra e o vetor E traça uma elipse perpendicular à direção de propagação, resulta uma polarização elíptica. Adicionalmente, tem-se a polarização linear horizontal ($\chi = 0^{\circ}$, $\psi = 0^{\circ}$) e linear vertical ($\chi = 0^{\circ}$, $\psi = 90^{\circ}$) (ANDRADE *et al.*, 2007).

Figura 3.6. Elipse de polarização (Fonte: SILVA, 2010, apud VAN DER SANDEN, 1997).

Na Tabela 3.4 a seguir, é exibida a relação dos estados de polarização resultantes da notação acima, que podem ser observados variando-se os valores dos ângulos de orientação e elipsidade. A polarização elíptica pode se degenerar ou em um círculo, ou um segmento de reta. Diz-se que é orientada para a direita quando, para um observador olhando na direção da

origem da radiação, a ponta do vetor E parece descrever uma elipse no sentido horário; na orientada à esquerda, o sentido é anti-horário.

Estado de polarização	Ângulo de orientação (ψ)	Ângulo de elipsidade (χ)
Horizontal (H)	0	0
Vertical (V)	π/2	0
Linear +45°	π/4	0
Linear -45°	-π/4	0
Circular à direita	[-π/2 π/2]	π/4
Circular à esquerda	[-π/2 π/2]	-π/4

Tabela 3.4. Estado de polarização da onda em função dos ângulos $\chi e \psi$ (LEE & POTTIER, 2009, *apud* SILVA, 2010).

Além da elipse de polarização, o vetor de Stokes (F) é outra forma de representar o estado de polarização da onda, que inclui quatro parâmetros reais, I_0 , Q, $U \in V$, relacionados com os parâmetros $\psi \in \chi$ já apresentados. I_0 representa a intensidade total da onda, Q é a diferença entre as intensidade horizontal e vertical da onda, U define a tendência de polarização linear e V define a tendência do sentido de polarização da onda eletromagnética (SILVA, 2010).

O grau de polarização de uma onda (D_{pol}) pode ser medido, então, por:

Equação 3.1

$$D_{pol} = \frac{\sqrt{Q^2 + U^2 + V^2}}{I_0}$$

Para fins de tratamento computacional, utiliza-se uma matriz de espalhamento complexa [S], de dimensão 2x2, na forma:

Equação 3.2

$$S = \begin{bmatrix} S_{hh} & S_{vh} \\ S_{hv} & S_{vv} \end{bmatrix}$$

cujos coeficientes da diagonal principal são termos de polarização paralela (ou lineares), S_{hh} e S_{vv} , que possuem a mesma polarização para os campos incidente e espalhado, e os da diagonal secundária, de polarização cruzada, S_{hv} e S_{vh} , que possuem polarizações ortogonais (LEE & POTTIER, 2009, *apud* SILVA, 2010).

É sabido que diferentes ondas incidentes produzem diferentes ecos polarizados, determinados pelos alvos. A simulação da resposta de iluminação do *pixel* da imagem pode

ser feita empregando como medida a matriz [S], que permite processar o dado como se fosse possível mudar a polarização emitida e recebida. Esta técnica, denominada síntese de polarização, auxilia a construção de respostas polarimétricas para os materiais (SILVA, 2010).

A resposta de polarização pode ser expressa em um diagrama tridimensional, cujos eixos correspondem aos ângulos de orientação (χ) e elipsidade (ψ) e à altura do pedestal (σ^0 normalizado), parâmetro que representa o coeficiente de retroespalhamento mínimo observado (VAN ZYL *et al.*, 1987, *apud* SILVA, 2010).

Figura 3.7. Respostas polarimétricas padrão dos tipos (A) polarização paralela e (B) polarização cruzada (SILVA, 2010).

Alvos naturais apresentam espalhamento complexo e, dessa forma, utilizam a combinação de informações interpretadas de alvos elementares, que possuem mecanismos de espalhamento conhecidos, caracterizados por suas matrizes [S] e respostas polarimétricas. Silva (2010) apresenta a compilação de Lee & Pottier (2009) para alguns desses alvos, definidos em base ortogonal, com as respectivas respostas de polarização paralela e cruzada (Figura 3.8).

Figura 3.8. Alvos e suas correspondentes matrizes [S] na base cartesiana {h, v}: (A) triedro, esfera e superfície plana, (B) dipolo horizontal, (C) diedro e (D) hélice à direita; e respostas em polarização paralela e cruzada (LEE & POTTIER, 2009, apud SILVA, 2010).

Para explicar a interação da onda com as partes constituintes da superfície terrestre, é preciso compreender o comportamento dos diferentes alvos, que podem ser dos tipos pontual (ou determinístico, ou coerente) e extenso (ou não determinístico, ou incoerente). Os primeiros são aqueles cujas dimensões são menores que a área de iluminação do feixe de radar, o que não acontece nos demais, por serem significativamente maiores (SILVA, 2010). A decomposição dos alvos para análise leva isso em consideração.

As manchas de óleo ora estudadas, bem como outras feições do mundo real, são enquadradas como alvos não determinísticos, ou seja, espalhadores situados em ambientes dinâmicos e sujeitos a variações no espaço e no tempo (SILVA, 2010). As técnicas de
Freeman & Durden (1998) e Cloude & Pottier (1997) são as mais citadas na literatura para aplicação em tais casos. Na presente dissertação, foi adotado o modelo proposto pela segunda dupla de autores na análise dos dados quad-pol do RADARSAT-2.

A teoria de decomposição por autovalores-autovetores da matriz de coerência de Cloude & Pottier (1997) emprega três parâmetros como forma de facilitar a análise dos dados SAR polarimétricos (LEE & POTTIER, 2009, *apud* SILVA, 2010):

- Entropia (H) mede o grau de aleatoriedade ou a desordem estatística do processo de espalhamento, onde:
 - H = 0, o espalhamento é controlado por um alvo puro ou pontual, no qual o sinal é totalmente polarizado;
 - 0 < H < 1, o mecanismo de espalhamento final resulta da combinação de três alvos puros, e cada autovetor é ponderado pelo correspondente autovalor;
 - H = 1, o processo de espalhamento é devido a combinação de três alvos puros, indicando a presença de alvos bem distribuídos.
- Ângulo alfa médio (α) relaciona-se com o tipo de mecanismo de espalhamento médio, em que:
 - $\bar{\alpha} \rightarrow 0$, indica mecanismos de espalhamento superficial, do tipo *Bragg*, produzido por superfícies rugosas;
 - o $\bar{\alpha} \rightarrow 45^{\circ}$, indica mecanismo de espalhamento do tipo volumétrico;
 - $\bar{\alpha}$ → 90°, indica mecanismo de espalhamento do tipo *double-bounce*, gerado por um refletor diédrico.
- Anisotropia (A) é um parâmetro complementar à entropia. Fornece informações da importância relativa entre o segundo e o terceiro mecanismos de espalhamento. Os autovalores associados a esses mecanismos para baixa entropia são altamente afetados pelo ruído, permitindo discriminar alvos apenas quando H > 0,7.

A entropia (H) e o ângulo alfa médio (\bar{a}) são critérios suficientes para caracterizar o espalhamento de um meio; assim, compõem um diagrama binário que permite classificar os alvos em nove zonas arbitrariamente divididas (Figura 3.9) (SILVA, 2010).

Figura 3.9. Plano de classificação H- $\bar{\alpha}$ com suas nove zonas admissíveis (LEE & POTTIER, 2009, *apud* SILVA, 2010).

- Zona 1: alta entropia espalhamento múltiplo.
 Mecanismo *double-bounce* em ambiente de H > 0,90, observado em floresta ou vegetação que apresente copa e ramos bem estruturados;
- Zona 2: alta entropia espalhamento em vegetação.

Espalhamento volumétrico, dado por $\bar{\alpha}$, em ambiente de H > 0,90, compreendendo espalhamento simples irradiado de uma nuvem de partículas aciculares anisotrópicas ou espalhamento múltiplo a partir de uma nuvem de partículas de baixa perda simétrica (*low loss symmetric particles*). Isto pode ser produzido por dossel de floresta ou de alguns tipos de superfície vegetadas com elementos de espalhamento anisotrópico altamente aleatórios;

- Zona 3: alta entropia espalhamento superficial Esta zona é considerada inválida por ser impossível distinguir espalhamento superficial em ambiente de H > 0,90;
- Zona 4: média entropia espalhamento múltiplo.
 Espalhamento diedral em ambiente de média entropia, o que acontece em florestas, nas quais o mecanismo *double-bounce* se dá nas bandas P e L por sua maior penetração através do dossel. Esta zona também pode ser relacionada a áreas urbanas na presença de

densos arranjos de espalhadores que podem gerar entropia moderada e baixa ordem de espalhamento múltiplo dominante;

- Zona 5: média entropia espalhamento em vegetação.
 Moderada entropia associada a uma predominância do mecanismo de espalhamento do tipo dipolo. O aumento da entropia H é devido a uma distribuição estatística central do ângulo de orientação. Esta zona pode incluir espalhamento de superfícies vegetadas com espalhadores anisotrópicos e moderada correlação com a orientação dos espalhadores;
- Zona 6: média entropia espalhamento superficial.
 Reflete um aumento na entropia por conta do aumento da rugosidade, devido, por exemplo, a efeitos da propagação da onda no dossel;
- Zona 7: baixa entropia eventos de múltiplos espalhamentos.
 Domínio de baixa entropia associada a mecanismos do tipo salto simples (*even*) ou duplo (*double-bounce*), tais como aqueles gerados por espalhadores dielétricos isolados e diedros metálicos;
- Zona 8: baixa entropia espalhamento modelado por dipolo.

Ocorrem fortes mecanismos correlacionados, os quais têm um grande desequilíbrio entre S_{hh} e S_{vv} em amplitude. Um espalhador dipolo isolado poderia responder por este comportamento, bem como o espalhamento poderia derivar de vegetação com orientação fortemente correlacionada de elementos de espalhamento anisotrópicos;

• **Zona 9**: baixa entropia – espalhamento superficial.

Modelada por espalhamento superficial do tipo *Bragg* e reflexão especular, os quais não envolvem inversão de fase de 180° entre S_{hh} e S_{vv} .

As publicações recentes utilizam com maior frequência o diagrama binário H- $\bar{\alpha}$ para visualizar de que forma óleo e superfície do mar se comportam quando são avaliados seus mecanismos de espalhamento da onda. A Figura 3.10, extraída de Tian *et al.* (2010), retrata as respostas de uma amostragem feita por estes autores usando imagens SAR polarimétricas RADARSAT-2 adquiridas sobre o mar da China, no modo de operação *Fine Quad-pol* (FQ13), com ângulo de incidência entre 32,55° e 33,97°.

A resposta da H e $\bar{\alpha}$ para o mar (Figura 3.10A) concentrou-se na zona 9 do referido plano de classificação (Figura 3.9), sendo claramente uma superfície do tipo *Bragg*. O óleo, em três versões de diferentes viscosidades, permeia por mais de uma zona do diagrama, com notável dispersão dos dados. O óleo leve (*peanut oil*) tende ao espalhamento *Bragg*, zona 9, o moderadamente viscoso (*engine oil*), zonas 5 e 6, indica partículas anisotrópicas/superfícies aleatórias, já o óleo pesado (*gear oil*), zonas 6 e 9, compreende resultados intermediários às duas outras variações de viscosidade.

Figura 3.10. Histograma de densidade H-α representando a decomposição de amostras da (A) superfície do mar,(B) óleo leve, (C) óleo moderadamente viscoso e (D) óleo pesado (TIAN *et al.*, 2010).

É ainda incomum encontrar publicações que tragam representações do plano H- $\bar{\alpha}$ como na Figura 3.10, embora esta forma de classificação de Cloude & Pottier (1997) venha sendo consideravelmente utilizada. Dessa forma, propõe-se a Tabela 3.5 como forma de visualizar os resultados de alguns autores no estudo do comportamento dos alvos óleo e mar segundo as características polarimétricas por eles apresentadas.

As medidas qualitativas associadas à entropia (H) e ângulo alfa ($\bar{\alpha}$), se baixa(o), média(o), alta(o), foram estabelecidas, em sua maior parte, com base nos números brutos

disponíveis; as exceções tratam-se de estimativas visuais feitas em mapas de intensidade/calor encontrados nos artigos. A coluna Zona do Diagrama H- $\bar{\alpha}$ corresponde a uma aproximação do que se encontraria graficamente caso fossem plotados os valores de referência dos autores relacionados.

Tabela 3.5. Comportamento dos alvos 'mar' e 'óleo' sob diferentes ângulos de incidência de diversos autores segundo as características polarimétricas H e $\bar{\alpha}$ qualitativamente caracterizadas, e a zona resultante estimada do plano de classificação de Cloude & Pottier (1997).

	Ângulo de incidência	Mar			Óleo		
Referência		Н	α	Zona do Diagrama H- $\overline{\alpha}$	Н	α	Zona do Diagrama H- $\overline{\alpha}$
Skrunes <i>et al.</i> (2014)	46,10° – 47,30°	Baixa	Baixo	9	Alta	Médio	5/6
Skrunes <i>et al.</i> (2014)	34,50° – 36,10°	Baixa	Baixo	9	Alta	Baixo	6
Tian <i>et al</i>	32,55° - 33,97°	Baixa	Baixo	9	Baixa	Baixo	9
(2010)					Alta	Médio	5/6
(2010)					Média	Baixo	6/9
Schuler & Lee (2006)	23,00° - 62,00°	Baixa	Baixo	9	Baixa a média	Baixo a médio	6/8
Zhang <i>et al.</i> (2011)	41,90° – 43,40°	Baixa	Baixo	9	Alta	Médio	5

3.2 DADOS METEO-OCEANOGRÁFICOS

Em áreas oceânicas, a intensidade do sinal de retorno é resultante do retroespalhamento superficial produzido por ondas centimétricas geradas pela ação dos ventos com velocidade acima de 3m/s. A presença de óleo nesses locais amortece tais ondas (Figura 3.11), o que resulta em conjuntos de pixels escuros nas imagens SAR de amplitude (BREKKE & SOLBERG, 2005). Em regiões com velocidade do vento abaixo desse limiar, não é mais possível distinguir manchas de óleo na superfície do mar pela falta de contraste entre os alvos nas imagens de radar.

Figura 3.11. Diferença do espalhamento do sinal em uma superfície livre da influência de óleo e em uma superfície amortecida pela presença de óleo (Projeto GlobeSAR *in* Soler, 2000, *apud* RORIZ, 2006).

No entanto, não só manchas de óleo provocam a redução da rugosidade da superfície do mar – e, consequentemente, padrões escuros nas imagens SAR –, mas também fenômenos como vento fraco (ou baixo vento), como já mencionado, além de águas mais frias e densas (ou plumas de ressurgência), concentração de fitoplânctons (ou *bloom* de algas), células de chuva (associadas a movimentos convectivos de massas de ar), rastros de navios (esteiras de popa), alguns poluentes marinhos, dentre outros (SILVA JÚNIOR *et al.*, 2003).

A fim de reduzir a subjetividade e a interferência desses chamados falsos alvos, que não têm origem associada ao óleo e se confudem com ele nas interpretações, a utilização de dados meteorológicos e oceanográficos, obtidos com outros sensores remotos orbitais, é crucial. Alguns dos satélites que fornecem informações auxiliares são o MODIS/Aqua (concentração de clorofila-a), AVHRR/NOAA (temperatura na superfície do mar), GOES (temperatura de topo de nuvem) e *SeaWinds*/QuikSCAT (campo de vento) (GENOVEZ *et al.*, 2009).

3.2.1 CONCENTRAÇÃO DE CLOROFILA-A

Altas concentrações de algas ou material fitoplanctônico na superfície do mar tornam muito maior a absorção de energia eletromagnética em determinado comprimento de onda do espectro, permitindo relacionar a reflectância das águas à concentração de clorofila-a (RORIZ, 2006). Esse mapeamento é de grande valor para a interpretação das imagens RADARSAT no que tange à presença de óleo, pois *blooms* de algas constituem falsos alvos.

Para criar os mapas com essa finalidade, faz-se uso do sensor americano MODIS, a bordo das plataformas Terra (lançada em 1999, coleta dados pela manhã) e Aqua (lançada em 2002, com aquisição à tarde), com revisita de 1 a 2 dias, ambas de responsabilidade da NASA, como parte da missão EOS (*Earth Observing System*). Ele integra a geração mais aperfeiçoada desse tipo de sistemas, projetados para satisfazer as necessidades observacionais da atmosfera, oceano e terra em escala global. Além do MODIS, cada satélite possui outros quatro sensores, mas aquele é o principal, com 36 bandas espectrais e resolução espacial de 250 m (bandas 1 e 2), 500 m (bandas 3 a 7) e 1000 m (bandas 8 a 36) (NASA, 2016).

3.2.2 TEMPERATURA DA SUPERFÍCIE DO MAR (TSM)

Os mapas de temperatura da superfície do mar (TSM) são confeccionados a partir do processamento de dados da banda termal do sensor americano AVHRR (*Advanced Very High Resolution Radiometer*), a bordo da série de satélites NOAA (*National Oceanic and Atmospheric Administration*), desenvolvida pela NASA (*National Aeronautics and Space Administration*) em conjunto com o NESDIS (*National Environmental Satellite Data and Information Service*) (EMBRAPA *apud* UFRGS, 2016).

O AVHRR foi construído para observar a cobertura de nuvens e determinar a temperatura da superfície de alvos naturais (da Terra, do topo de nuvens e do mar). Sua terceira e mais recente versão, AVHRR-3, lançado pela primeira vez em 1998 e carregado pelos satélites da série NOAA-15 a NOAA-19, é um sensor remoto cujo radiômetro possui seis detectores, que coletam informações na faixa do visível (banda 1), infravermelho próximo (bandas 2 e 3A), infravermelho médio (banda 3B) e no infravermelho termal (bandas 4 e 5) (NOAA, 2013). O recobrimento das cenas imageadas é de proporções continentais, 2400 km, com período de revisita diário e resolução espacial de 1,1 km (EMBRAPA *apud* UFRGS, 2016).

Uma alternativa às imagens do AVHRR é o MODIS, citado anteriormente. As bandas 31 e 32 correspondem ao comprimento de onda do termal, de interesse para a extração de TSM. A interpretação oceanográfica dos mapas de TSM, além de fornecer as informações de temperatura propriamente ditas, permite analisar conjuntamente características importantes como zonas de ressurgência e frentes oceânicas, bem como a posição principal e o padrão de meandramento de correntes oceânicas (MIRANDA *et al.*, 2004).

3.2.3 TEMPERATURA DE TOPO DE NUVEM (TTN)

Áreas sob efeito de chuva forte não podem ser utilizadas em imagens SAR para detecção de exsudações de óleo. O monitoramento dos sistemas de *cumulus nimbus* auxilia a estimativa da presença dessas células de chuva, por possuírem temperaturas de topo de nuvem extremamente baixas, da ordem de até -50 °C, em função da sua grande extensão vertical (MIRANDA *et al.*, 2004). Para tanto, os mapas de temperatura de topo de nuvem (TTN) dão suporte à visualização de sítios potenciais com chuvas muito intensas, que atenuariam o retroespalhamento das ondas do radar, retornando o sinal como falso alvo.

Semelhante aos TSM, os mapas de TTN empregam os dados do sensor AVHRR adquiridos na faixa do infravermelho termal. Outra opção é o sensor americano a bordo da família de satélites geoestacionários GOES, operada pelo NESDIS e controlada pela NASA; refere-se a um radiômetro que provê parâmetros atmosféricos em sua estrutura vertical, como temperatura e perfis de umidade, temperatura de topo de nuvem e distribuição de ozônio. Ele conta com cinco canais, do visível ao infravermelho termal, e é capaz de imagear completamente a Terra (NASA, 2016).

A série de satélites foi lançada pela primeira vez em 1975 e hoje já soma mais de quinze plataformas. Destas, apenas as quatro últimas encontram-se operantes, já existindo outras em desenvolvimento; a partir do GOES-8, foram equipadas com o sensor radiômetro. O GOES, em relação aos demais satélites, destaca-se pela alta resolução temporal, gerando diversos perfis diários da mesma área na superfície da Terra a cada 30 minutos. Por outro lado, sua resolução espacial de 4 km no nadir (no visível, é de 1 km) representa certa desvantagem (RORIZ, 2006).

3.2.4 CAMPO DE VENTO

Conhecer a magnitude dos ventos oceânicos é importante para avaliar a utilidade das imagens SAR na detecção de *seepage slicks*, pois variações no campo de velocidade de vento influenciam as condições da superfície. Valores adequados para esta finalidade estão entre 3,0 e 8,0 m/s; ventos muito fracos não produzem agitação do mar suficiente para observar uma mancha de óleo, enquanto ventos muito fortes deixam a água tão turbulenta que mascaram a presença de óleo (STAPLES & HODGINS, 1998, *apud* MIRANDA *et al.*, 2004).

Escaterômetros são utilizados para estimar os ventos a partir da rugosidade da superfície do mar. O sensor americano de observação terrestre, *SeaWinds*, a bordo do satélite

QuikSCAT, lançado em 1999 para funcionar em tempo estimado de 2 a 3 anos, permaneceu ativo até o final de 2009, quando, por falha mecânica, sua missão foi encerrada. Ele fazia o monitoramento da velocidade e direção dos ventos no oceano por meio de um sensor na faixa de microondas (banda K), com polarização vertical e cobertura de 90% da Terra em um dia (NASA, 2016). As imagens por ele adquiridas ainda são de grande utilidade.

Caso as imagens do QuikSCAT não estejam disponíveis, para interpretação conjunta com os dados RADARSAT-2, o par de satélites europeus MetOp-A, lançado em 2006, e MetOp-B, lançado em 2012, opera carregando a bordo o sensor ASCAT (*Advanced Scatterometer*). Este instrumento, na banda C, coleta dados sobre o oceano também para obter informações de campo de vento (Figura 3.12). São três antenas, cada uma com duas configurações de visada (direita e esquerda simultaneamente), fazendo com que cada local seja observado três vezes com diferentes ângulos, imageando faixas de 550 km de largura (necessita de 5 dias para cobertura global) e permitindo derivar direção e intensidade de vento com maior acurácia que os satélites predecessores (ESA, 2006).

Figura 3.12. Cobertura do ASCAT a bordo do satélite MetOp-B para o dia 10 de abril de 2016. As órbitas são ascendente e descendente, em (A) e (B), respectivamente (STAR, 2016).

Quando não estão disponíveis os dados dos escaterômetros para a referida análise conjunta com os dados RADARSAT-2, é empregado, complementarmente, o GFS (*Global Forecast System*) ou Sistema de Previsão Global. Trata-se de um modelo de previsão do tempo produzido pelo NCEP (*National Center for Environmental Prediction*), que pertence à NOAA (*National Oceanic and Atmospheric Administration*). Este é um modelo numérico integrado por quatro módulos separados, atmosférico, oceânico, terrestre e no gelo, com cobertura de todo o globo, executado quatro vezes ao dia (NOAA, 2016). A regularidade com que é revisto o torna bastante adequado à investigação de falsos alvos em imagens SAR, embora com resolução espacial inferior aos produtos QuickSCAT e ASCAT.

3.2.5 ALTURA SIGNIFICATIVA DE ONDAS

No estado adequado do mar para a detecção de *seepage slicks*, a altura de ondas deve ser menor que 1,5 m, de forma que não são geradas variações pronunciadas na superfície do oceano do ângulo local de incidência que possam sugerir falsos alvos. Nos extremos, um mar rugoso com altas ondas (altura de ondas >> 1,5 m) retorna um pulso esticado (amplitude do sinal refletido aumenta gradualmente) e um mar calmo com ondas pequenas (altura de ondas << 1,5 m) retorna um pulso curto (amplitude do sinal refletido aumenta bruscamente) (MIRANDA *et al.*, 2004). Mapas de altura significativa de ondas são confeccionados por meio da interpolação de dados em um período de três dias, ou seja, a data desejada, o dia anterior e aquele posterior.

O altímetro é o instrumento de medida utilizado para determinar a amplitude média das ondas no oceano, importante para o monitoramento de marés e para estudos da geodésia e controle de gravidade. O sensor a bordo do satélite TOPEX/Poseidon, lançado em 1992, como uma missão conjunta das agências espaciais americana, NASA, e francesa, CNES (*Centre National d'Études Spatiales*), teve duração planejada para três anos, mas encerrou as atividades somente em 2005. Ele operou na banda Ku (13,5 GHz) – o pulso era enviado com essa frequência para a superfíe do mar e retroespalhado para a antena –, coletando dados com uma faixa de 315 km de largura e com precisão de 5 cm nas medidas (NASA, 2016).

TOPEX/Poseidon (T/P) foi um projeto de cunho oceanográfico que combinou um altímetro de alta precisão e alta acurácia orbital, com o propósito de monitorar a circulação oceânica global, mapear a topografia da superfície/fundo do mar e contribuir para a previsão climática global. O programa WOCE (*World Ocean Circulation Experiment*) e também as campanhas TOGA/COARE (*Tropical Oceans and Global Atmosphere Experiment/Coupled Ocean Atmosphere Response Experiment*) são exemplos de sólida aplicação das informações obtidas por este satélite (EO PORTAL, 2017).

A missão T/P teve três sucessores, todos de nome Jason – o primeiro deles lançado no final de 2001. Os satélites reforçaram a atenção para o alcance global do El Niño e outros eventos climáticos e possibilitam melhores previsões de fenômenos extremos como furacões, inundações e secas; além disso, eles têm mapeado continuamente (órbita de dez dias e com as mesmas características do seu antecessor T/P) as correntes oceânicas globais e as marés e monitorado o aumento do nível do mar global e regional (EO PORTAL, 2017).

CAPÍTULO 4. MATERIAIS E MÉTODOS

O método de trabalho foi organizado em etapas conforme o fluxograma da Figura 4.1. A primeira delas consistiu na aquisição de informações prévias e relevantes sobre o tema; isso incluiu a revisão bibliográfica, com aprofundamento nos conhecimentos de sensor radar, além dos conceitos de polarimetria. Também foi importante entender alguns pormenores da informação meteo-oceanográfica orbital e separar os mapas disponíveis, como suporte à interpretação. Em paralelo, foram selecionadas as imagens do satélite RADARSAT-2 para o estudo. Com esses procedimentos, foi possível desenvolver um embasamento teórico para a pesquisa e iniciar o planejamento das etapas futuras.

Posteriormente, foi realizado o pré-processamento dos dados RADARSAT-2, que consistiu na correção geométrica/radiométrica, como a remoção do ruído speckle. Simultaneamente, foi avaliada a resposta de espalhamento dos alvos envolvidos, para que, em virtude de comportamentos similares, não houvesse equívocos ou ambiguidades na análise. Para a tarefa de estabelecer possíveis diferenças na assinatura polarimétrica entre o óleo e falsos alvos, foi empregado o plano de classificação formado pelos parâmetros H (entropia) *versus* $\bar{\alpha}$ (ângulo alfa médio), proposto por Cloude & Pottier (1997).

Figura 4.1. Fluxograma de variáveis analisadas, indicando a sequência de trabalho seguida (Elaborado pela

autora). 34 Foram escolhidas imagens RADARSAT-2, no modo de operação *Fine Quad-Pol* (FQ), recobrindo áreas onde é esperado que ocorra óleo na superfície do mar, da Baía de Campeche, onde se localiza o Complexo de Cantarell. A sequência de figuras a seguir está dividida, conforme a Tabela 4.1, em conjuntos de

- a) mapa de situação com indicativo de trajetória do satélite (Figuras 4.2, 4.5, 4.13 e 4.16);
- b) quatro imagens com polarização paralela e cruzada (HH, HV, VH e VV) obtidas a partir dos dados quad-pol (Figuras 4.3, 4.4, 4.6, 4.7, 4.14, 4.15, 4.17 e 4.18);
- c) mapas meteo-oceanográficos (TSM, TTN, campo de vento, altura significativa de onda, clorofila-a) do dia da aquisição dos dados RADARSAT-2. Notar que ID#01 e #02, bem como #03 e #04, foram obtidas no mesmo dia, apenas com alguns segundos de diferença, pois são capturas sucessivas na mesma trajetória de imageamento (Figuras 4.8 a 4.12 e 4.19 a 4.22).

Tabela 4.1. Imagens selecionadas e especificações de localização, modo de operação, resolução espacial, tamanho da cena, ângulo de incidência, data e hora de aquisição (LABSAR, 2016).

ID#	LOCALIZAÇÃO	MODO DE AQUISIÇÃO	RESOLUÇÃO ESPACIAL (metros)	TAMANHO DA CENA (km x km)	INTERVALO DE ÂNGULO DE INCIDÊNCIA (°)	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT*)
01	Cantarell	FQ2W	13,50	50 x 25	19,0 – 22,7	20/09/09	12:11:34
02	Cantarell	FQ2W	13,50	50 x 25	19,0 - 22,7	20/09/09	12:11:39
03	Cantarell	FQ15W	8,70	50 x 25	33,7 - 36,7	01/03/11	0:16:05
04	Cantarell	FQ15W	8,70	50 x 25	33,7 - 36,7	01/03/11	0:16:08

* GMT = Greenwich Mean Time.

Figura 4.2. Mapa de localização da imagem polarimétrica FQ2W do satélite RADARSAT-2 com ID#01 (LABSAR, 2016). O losango em vermelho indica a posição da exsudação petrolífera (*seepage slick*) de Cantarell.

Figura 4.3. Imagens RADARSAT-2 FQ2W adquiridas em 20/09/2009, às 12:11:34 GMT, sendo a polarização em (A) do tipo HH e, em (B), VV (Fonte: LABSAR, 2016).

Figura 4.4. Imagens RADARSAT-2 FQ2W adquiridas em 20/09/2009, às 12:11:34 GMT, sendo a polarização em (C) do tipo HV e, em (D), VH (Fonte: LABSAR, 2016).

Figura 4.5. Mapa de localização da imagem polarimétrica FQ2W do satélite RADARSAT-2 com ID#02 (LABSAR, 2016). O losango em vermelho indica a posição da exsudação petrolífera (*seepage slick*) de

Figura 4.6. Imagens RADARSAT-2 FQ2W adquiridas em 20/09/2009, às 12:11:39 GMT, sendo a polarização em (A) do tipo HH e, em (B), VV (Fonte: LABSAR, 2016).

Figura 4.7. Imagens RADARSAT-2 FQ2W adquiridas em 20/09/2009, às 12:11:39 GMT, sendo a polarização em (C) do tipo HV e, em (D), VH (Fonte: LABSAR, 2016).

Figura 4.8. Mapa de Temperatura da Superfície do Mar (TSM) de 20/09/2009, às 08:05 (GMT), com escala em graus Celsius, mostrando a localização das imagens ID#01 e ID#02 (Fonte: LABSAR, 2016).

Figura 4.9. Mapa de Temperatura de Topo de Nuvem (TTN) de 20/09/2009, às 08:05 (GMT), com escala em graus Celsius, mostrando a localização das imagens ID#01 e ID#02 (Fonte: LABSAR, 2016).

Figura 4.10. Mapa de Campo de Vento de 20/09/2009, às 15:03 (GMT), com escala em m/s, mostrando a localização das imagens ID#01 e ID#02 (Fonte: LABSAR, 2016).

Figura 4.11. Mapa de Altura Significativa de Onda de 20/09/2009, com escala em metros, mostrando a localização das imagens ID#01 e ID#02 (Fonte: LABSAR, 2016).

Figura 4.12. Mapa de Concentração de Clorofila-a de 20/09/2009, às 17:25 (GMT), com escala em mg/m³, mostrando a localização das imagens ID#01 e ID#02 (Fonte: LABSAR, 2016).

Figura 4.13. Mapa de localização da imagem polarimétrica FQ15W do satélite RADARSAT-2 com ID#03 (LABSAR, 2016). O losango em vermelho indica a posição da exsudação petrolífera (*seepage slick*) de Cantarell.

Figura 4.14. Imagens RADARSAT-2 FQ15W adquiridas em 01/03/2011, às 00:16:05 GMT, sendo a polarização em (A) do tipo HH e, em (B), VV (Fonte: LABSAR, 2016).

Figura 4.15. Imagens RADARSAT-2 FQ15W adquiridas em 01/03/2011, às 00:16:05 GMT, sendo a polarização em (C) do tipo HV e, em (D), VH (Fonte: LABSAR, 2016).

Figura 4.16. Mapa de localização da imagem polarimétrica FQ15W do satélite RADARSAT-2 com ID#04 (LABSAR, 2016). O losango em vermelho indica a posição da exsudação petrolífera (*seepage slick*) de Cantarell.

Figura 4.17. Imagens RADARSAT-2 FQ15W adquiridas em 01/03/2011, às 00:16:08 GMT, sendo a polarização em (A) do tipo HH e, em (B), VV (Fonte: LABSAR, 2016).

Figura 4.18. Imagens RADARSAT-2 FQ15W adquiridas em 01/03/2011, às 00:16:08 GMT, sendo a polarização em (C) do tipo HV e, em (D), VH (Fonte: LABSAR, 2016).

Figura 4.19. Mapa de Temperatura de Topo de Nuvem (TTN) de 01/03/2011, às 04:30 (GMT), com escala em graus Celsius, mostrando a localização das imagens ID#03 e ID#04 (Fonte: LABSAR, 2016).

Figura 4.20. Mapa de Campo de Vento de 01/03/2011, às 03:09 (GMT), com escala em m/s, mostrando a localização das imagens ID#03 e ID#04 (Fonte: LABSAR, 2016).

Figura 4.21. Mapa de Campo de Vento de 01/03/2011, às 00:00 (GMT), GFS, com escala em m/s, mostrando a localização das imagens ID#03 e ID#04 (Fonte: LABSAR, 2016).

Figura 4.22. Mapa de Altura Significativa de Onda de 01/03/2011, com escala em metros, mostrando a localização das imagens ID#03 e ID#04 (Fonte: LABSAR, 2016).

As imagens quad-pol do RADARSAT-2 foram tratadas empregando o SNAP (*Sentinels Application Platform*), aplicação desenvolvida para a Agência Espacial Europeia (ESA), pela *Array Systems Computing* em parceria com DLR (Centro Aeroespacial Alemão), *Brockmann Consult* e *OceanDataLab*. Habitualmente referido apenas por *Sentinel*, reúne todas as ferramentas voltadas para o processamento de dados SAR, visando facilitar sua acessibilidade e exploração; refere-se a um software próprio para imagens polarimétricas, de interface simples e boa interação com o usuário,

O tratamento das imagens foi realizado tendo por base os procedimentos de Sartori (2011). O pré-processamento consiste em obter a matriz de espalhamento, convertê-la para uma matriz de covariância e filtrá-la (a fim de reduzir o ruído inerente aos dados de radar). Em seguida, aplicam-se técnicas polarimétricas para a extração de informações que permitem separar contribuições de espalhamento de diferentes naturezas. Extraem-se, então, os atributos de interesse e computam-se a média e o desvio padrão dos elementos amostrais (3x3 pixels) para identificar quais desses atributos são úteis para a caracterização das manchas de óleo.

As imagens SAR, mapas e programas para realizar o projeto foram adquiridos ou produzidos pelo Laboratório de Sensoriamento Remoto por Radar Aplicado à Indústria do

Petróleo (LabSAR), vinculado ao Laboratório de Métodos Computacionais em Engenharia (LAMCE), da COPPE/UFRJ, no qual se desenvolvem pesquisas sobre o fenômeno de exsudação de óleo em sistemas petrolíferos *offshore* há mais de uma década.

A qualidade do material e dos recursos de que se dispôs foi inquestionável. Os procedimentos adotados foram fundamentais para alcançar os objetivos propostos e enriquecer/complementar a literatura pertinente, que ora embasa este trabalho.

CAPÍTULO 5. RESULTADOS

Dadas as quatro imagens destinadas para análise apresentadas no capítulo 4, Tabela 4.1, foram selecionadas duas (ID#02 e ID#04) em que os alvos visados estivessem melhor posicionados/mais bem centralizados e que exibissem diferentes ângulos de incidência. A primeira, em órbita ascendente, com resolução espacial de 13,50 m, foi adquirida em 20 de setembro de 2009, no modo de operação FQ2W, com angulação variando de 19° a 22,7°. A segunda imagem, descendente, resolução espacial de 8,70 m, data de pouco menos de 1,5 ano depois, 01 de março de 2011, foi obtida no modo de operação FQ15W e abrange intervalo de 33,7° a 36,7° de ângulo de incidência.

O procedimento inicial para manipulação digital dos dados foi o pré-processamento em *software* próprio para imagens polarimétricas, o SNAP – *Sentinels Application Platform*. A Figura 5.1 descreve esquematicamente os passos adotados, os quais são iguais para uma e outra imagem.

Figura 5.1. Fluxograma com o passo-a-passo realizado no *Sentinel* nas imagens polarimétricas. Os retângulos em cinza indicam os procedimentos adotados na presente dissertação (Elaborado pela autora).

As Figuras 5.2 e 5.3 expõem os produtos da sequência de tratamento polarimétrico desde a imagem bruta (Figura 5.2A e 5.3A), em que o primeiro passo, calibração (Figura 5.2B e 5.3B), objetiva criar uma imagem onde o valor digital do *pixel* se relaciona diretamente com

o retroespalhamento da cena – lembrando que, para o processamento polarimétrico, o dado deve ser salvo na forma complexa. O *multilooking* (Figura 5.2C e 5.3C), por sua vez, consiste em dividir a imagem em looks, oferecendo uma média destes e diminuindo o comprimento sintético da antena, a fim de reduzir a resolução em azimute proporcionalmente ao número de visadas, de modo a atenuar preliminarmente o ruído nos dados.

Os seguintes passos compreendem a aplicação de ferramentas de transformação dos dados em formatos mais utilizáveis para as análises. A geração da matriz é indispensável em todos os métodos; a preferência na conversão para uma matriz de coerência T3 (Figura 5.2D e 5.3D) levou em conta o fato de os seus elementos terem interpretação física.

A filtragem (Figura 5.2E e 5.3E) visa à remoção da aparência granular conferida pelo fenômeno *Speckle*, que afeta todos os canais polarimétricos da imagem. O contraste mostrado, antes deste procedimento, é pobre e as cenas têm aspecto aleatório – em razão da distribuição ao acaso de níveis de cinza muito claros (interferências construtivas) e muito escuros (interferências destrutivas) dos pixels –, o que dificulta qualquer interpretação visual (ESA, 2015). O *software* da ESA dispõe de quatro filtros para imagens completamente polarizadas, que preservam os elementos complexos das bandas, tendo sido testados três deles, quais sejam, *Box Car, Improved Lee Sigma* e *Refined Lee*.

Todos, em percepção global, são muito similares, mas, em grande escala, com amplo *zoom*, a resolução, no *Box Car*, para manipulação individual dos pixels, não é apropriada, tem-se a sensação da imagem sem foco. No *Improved Lee Sigma*, isso melhora, porém alguns dos pixels, nas regiões de maior retorno, aparecem desprovidos de resposta. Por fim, o *Refined Lee* atendeu mais efetivamente ao requisito de melhor interpretação visual, tendo sido eleito para dar sequência ao trabalho.

A aplicação de uma decomposição polarimétrica subentende obter informação do processo de espalhamento, permitindo separar as diferentes contribuições (ESA, 2015). São dez as opções de decomposições, mas, no caso, aplicou-se somente a H-A- α (Figura 5.2F e 5.3F), de Cloude & Pottier (1997).

De posse das imagens previamente tratadas, reservaram-se os dois últimos produtos (Figuras 5.2E/F e 5.3E/F) para manipulação: o primeiro pela melhora nítida na qualidade/resolução consequente da remoção de ruído, o segundo pelo interesse na informação para confecção do diagrama de Cloude & Pottier (1997), objetivo-chave deste estudo.

53

Figura 5.2. Produtos do pré-processamento polarimétrico da imagem ID#02, sendo A = imagem bruta, imagem intensidade HH, B = calibração, imagem intensidade HH, C = multilooking, imagem intensidade HH, D = matriz de coerência T3, imagem T11, E = filtro Speckle do tipo Refined Lee, imagem T11, F = decomposição H-A- α , imagem entropia.

Figura 5.3. Produtos do pré-processamento polarimétrico da imagem ID#04, sendo A = imagem bruta, imagem intensidade HH, B = calibração, imagem intensidade HH, C = multilooking, imagem intensidade HH, D = matriz de coerência T3, imagem T11, E = filtro Speckle do tipo Refined Lee, imagem T11, F = decomposição H-A-α, imagem entropia.

Para tanto, elaboraram-se versões georreferenciadas de ID#02 e ID#04, exportadas em formato *TIFF*, a fim de nelas trabalhar no *software* ArcGIS – ali foram gerados os *shapefiles* (*.shp*) dos polígonos referentes às amostras em tamanho, 3x3 pixels, em quantidade adequada (Tabela 5.1) para estudar pormenorizadamente os alvos de interesse. Estas amostras, importadas como máscaras no SNAP, tiveram de ser corrigidas uma a uma, posto que os

vetores apresentaram as distorções geométricas esperadas, considerando as imagens ora utilizadas sem coordenadas geográficas definidas.

Tabela 5.1. Imagens utilizadas e suas especificações (modo de aquisição, data e hora de aquisição, ângulo de incidência) e total de amostras coletadas por classe (óleo, plataforma, mar e falso alvo).

ID#	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	ÂNGULO DE INCIDÊNCIA (°)	CLASSE	Nº DE AMOSTRAS
02 F	FQ2W	20/09/2009	12:11:39	19,0 - 22,7	ÓLEO	200
					PLATAFORMA	75
					MAR	75
					FALSO ALVO	75
04	FQ15W	01/03/2011	00:16:08	33,7 - 36,7	ÓLEO	200
					PLATAFORMA	75
					MAR	75

As Figuras 5.4 a 5.7 retratam a boa distribuição espacial das amostras e a busca de conferir representatividade de cada classe como um todo, e permitem ter noção do posicionamento geográfico dos alvos.

Figura 5.4. Mapas de distribuição espacial das amostras coletadas para cada classe da imagem ID#02, sendo A =

mar, B = plataforma. 57

Figura 5.5. Mapas de distribuição espacial das amostras coletadas para cada classe da imagem ID#02, sendo C = óleo, D = falso alvo.

Figura 5.6. Mapas de distribuição espacial das amostras coletadas para cada classe da imagem ID#04, sendo A =

mar, B = plataforma.

Figura 5.7. Mapas de distribuição das amostras coletadas para cada classe da imagem ID#04, sendo C = óleo.

A extração dos dados foi realizada em duas etapas: primeiro, as amostras foram examinadas individualmente para aquisição dos valores medidos, no *pixel* central, de linha, coluna, ângulo de incidência e coeficientes de retroespalhamento (σ^0), mostrados como função de intensidade HH, HV, VV – convertidos em dB, segundo a equação,

Equação 5.1

$$\sigma^0_{dB} = 10 \log \sigma^0$$

Posteriormente, conhecidos os diagramas próprios das amostras, determinaram-se entropia (H) e ângulo alfa (α), calculados como uma média dos nove *pixels*. Dispondo deste conjunto de informações, criou-se uma base de dados (Anexos) em que é possível visualizar os registros de maneira dinâmica e combiná-los em esquemas ilustrativos. As variáveis H, α e σ^0 foram ainda exploradas estatisticamente, estimando-se medidas de localização (média) e dispersão (desvio padrão), mostradas na Tabela 5.2.

IMAGEM	CLASSE	Ħ	S _H	α (°)	Sα	σ ⁰ HH	$S_{\sigma^0 HH}$	$\sigma^0 VV$	$S_{\sigma^0 VV}$
ID#02	ÓLEO	0,18897	0,04610	6,53	2,06	-12,43760	1,27332	-37,91955	2,04511
	PLATAFORMA	0,72161	0,11997	34,54	10,32	-1,99285	4,02805	-11,06943	4,47539
	MAR	0,10080	0,01711	3,96	0,86	-6,66955	1,03244	-33,97168	1,81039
	FALSO ALVO	0,34104	0,11880	13,26	6,12	-17,03421	2,52448	-36,61381	3,20994
	ÓLEO	0,86893	0,08179	44,37	6,70	-30,08030	1,96173	-34,80139	1,66809
ID#04	PLATAFORMA	0,84877	0,07928	56,06	7,06	-4,26980	6,05915	-7,57911	4,42248
	MAR	0,38064	0,10032	18,28	3,93	-20,36193	1,24304	-33,15113	1,80609

Tabela 5.2. Medidas de entropia (H), ângulo alfa (α) e coeficientes de retroespalhamento (σ^0) HH e VV médios das classes alvo e seus respectivos desvios padrão.

Foram elaborados gráficos (Figuras 5.8 a 5.21) associando o ângulo de incidência à entropia e ângulo alfa, trazidos a seguir. Visto que são duas as imagens, ID#02 e ID#04, são dois pares de figuras para cada classe estabelecida, exceto falso alvo, não diferenciado na imagem ID#04.

A entropia (\overline{H}) e o ângulo alfa ($\overline{\alpha}$) foram padronizados, no eixo das ordenadas (y), para abranger toda a faixa de medidas, do mínimo ao máximo, 0 a 1 e 0° a 90°, respectivamente. O ângulo de incidência, no eixo das abscissas (x), varia conforme o intervalo específico da imagem (já exposto na Tabela 5.1).

Figura 5.8. Gráfico ângulo de incidência vs. entropia do mar para a imagem ID#02.

Figura 5.9. Gráfico ângulo de incidência vs. entropia do mar para a imagem ID#04.

Figura 5.10. Gráfico ângulo de incidência vs. ângulo alfa do mar para a imagem ID#02.

Figura 5.11. Gráfico ângulo de incidência vs. ângulo alfa do mar para a imagem ID#04.

Figura 5.12. Gráfico ângulo de incidência vs. entropia da plataforma para a imagem ID#02.

Figura 5.13. Gráfico ângulo de incidência vs. entropia da plataforma para a imagem ID#04.

Figura 5.14. Gráfico ângulo de incidência vs. ângulo alfa da plataforma para a imagem ID#02.

Figura 5.15. Gráfico ângulo de incidência vs. ângulo alfa da plataforma para a imagem ID#04.

Figura 5.16. Gráfico do ângulo de incidência vs. entropia do óleo para a imagem ID#02.

Figura 5.17. Gráfico do ângulo de incidência vs. entropia do óleo para a imagem ID#04.

Figura 5.18. Gráfico do ângulo de incidência vs. ângulo alfa do óleo para a imagem ID#02.

Figura 5.19. Gráfico do ângulo de incidência vs. ângulo alfa do óleo para a imagem ID#04.

Figura 5.20. Gráfico do ângulo de incidência vs. entropia do falso alvo para a imagem ID#02.

Figura 5.21. Gráfico do ângulo de incidência vs. ângulo alfa do falso alvo para a imagem ID#02.

O último estágio da interpretação corresponde à criação dos diagramas de Cloude & Pottier (1997), que relacionam entropia (H) e ângulo alfa (α) (Figuras 5.22 e 5.23). Cabe notar as diferenças no comportamento do mar, plataforma, óleo e falso alvo no que tange aos diferentes intervalos ocupados pelos valores das amostras e à correspondência para uma ou mais das nove zonas admissíveis delineadas no citado diagrama.

É por meio deste plano de classificação que se obtém a caracterização dos mecanismos de espalhamento dos alvos, uma vez que, para imagens recobrindo aproximadamente a mesma área geográfica e com pequena lacuna temporal de aquisição, à semelhança de ID#02 e ID#04, constatam-se respostas díspares, que serão objeto de discussão no próximo item.

Figura 5.22. Diagramas H- α para cada uma das classes de alvos selecionados na imagem ID#02, sendo A = mar, B = plataforma, C = óleo, D = falso alvo.

Ainda sobre a apresentação dos dados no diagrama de Cloude & Pottier (1997), as Figuras 5.24 e 5.25 exibem um panorama comparativo, confrontando os alvos relevantes e promovendo uma visão geral, o que levanta questões e contribui com a discussão acerca da influência da geometria de imageamento na resposta polarimétrica dos objetos.

Figura 5.24. Diagrama H- α comparativo de todos os alvos da imagem ID#02, sendo verde = mar, azul = plataforma, vermelho = óleo, amarelo = falso alvo.

Figura 5.25. Diagrama H- α comparativo de todos os alvos da imagem ID#04, sendo verde = mar, azul = plataforma, vermelho = δ leo.

5.1 DISCUSSÃO

As interpretações dos gráficos (Figuras 5.8 a 5.21) e diagramas de Cloude & Pottier (1997) (Figuras 5.22 a 5.25) levam em conta as respostas bem heterogêneas encontradas de uma imagem para outra, de forma que se podem discorrer sobre os seguintes aspectos:

(i) O mar, em ID#02, apresenta retroespalhamento claramente como uma superfície do tipo *Bragg*, Z9 – baixa entropia e baixo ângulo alfa –; isto se deve em parte ao pequeno ângulo de incidência de imageamento, que discerne com menor rigor a rugosidade dos alvos. Há que se ressaltar o pequeno desvio padrão dos pontos (Tabela 5.2), ratificando o espalhamento mais homogêneo da classe.

Em ID#04, existe expressiva dispersão dos dados (desvio padrão proeminente), mas ainda tendendo ao espalhamento superficial do tipo *Bragg*, Z9. Para tentar dirimir as questões envolvendo os alvos posicionados na Z6 – média entropia e baixo ângulo alfa –, criou-se uma subclasse, amostras com entropia \geq 0,50, linha esta que marca a transição das zonas. Das 75, quinze atenderam a esse requisito (Tabela 5.3).

IMAGEM	AMOSTRA	ÂNGULO DE INCIDÊNCIA (°)	Ħ	α (°)
ID#04	Mar_57	33,81	0,53765191	23,62
ID#04	Mar_14	33,85	0,54915365	24,95
ID#04	Mar_49	33,86	0,51052517	23,17
ID#04	Mar_41	33,87	0,50857205	21,83
ID#04	Mar_63	33,93	0,54980469	21,16
ID#04	Mar_53	36,25	0,54069010	25,97
ID#04	Mar_2	36,40	0,50227865	21,44
ID#04	Mar_66	36,41	0,54025608	24,66
ID#04	Mar_13	36,47	0,60753038	27,59
ID#04	Mar_29	36,49	0,52788628	22,04
ID#04	Mar_33	36,49	0,53483073	24,31
ID#04	Mar_17	36,51	0,52766927	23,02
ID#04	Mar_55	36,53	0,58843316	26,06
ID#04	Mar_16	36,56	0,54307726	25,09
ID#04	Mar_62	36,57	0,53483073	23,00

Tabela 5.3. Subclasse de amostras com entropia $\geq 0,50$, ordenadas pelo ângulo de incidência crescente.

Destas, apenas Mar_63 e Mar_53 não estão nos *range* extremos, *far/near* (embora próximos); ou seja, as treze outras amostras estão localizadas nas regiões de maiores/menores ângulos de incidência registrados para a classe.

Partindo dos gráficos anteriores, julgou-se válido analisar a influência do ângulo de incidência em um contexto mais amplo, utilizando todo o intervalo de imageamento (não vale para pequenos intervalos, como o abrangido por uma imagem). O que se observa é que, quanto maior o ângulo de incidência, maiores entropia e ângulo alfa (Figuras 5.26 e 5.27).

Figura 5.26. Gráfico do ângulo de incidência *vs.* entropia do mar, comparativo das imagens ID#02 e ID#04.

Figura 5.27. Gráfico do ângulo de incidência *vs*. ângulo alfa do mar, comparativo das imagens ID#02 e ID#04.

(ii) Em relação às plataformas, a ID#02 não é representativa, dado o ângulo de incidência inadequado para observação e o desvio padrão dos dados que é bem grande. Ainda assim, estas comporiam as Z5 – média entropia e médio ângulo alfa – e Z6.

Na ID#04, percebe-se uma concentração mais uniforme das amostras (desvio padrão aceitável) no campo Z4 – média entropia e alto ângulo alfa –, onde predominam mecanismos de espalhamento múltiplos, efeitos de propagação da reflexão *double-bounce* (esta ocorre quando duas ou mais superfícies lisas são adjacentes, no caso, mar e plataforma, gerando alto retroespalhamento). Delimitaram-se outra vez subclasses para identificar as anomalias,

- a. amostras com ângulo alfa $\leq 51^{\circ}$
- b. amostras com entropia ≥ 0.90 (Tabela 5.4).

Tabela 5.4.	Subclasse	de amostras	com	entropia \geq (),90,	ordenadas	pelo	ângulo	o de
incidência c	crescente.								

IMAGEM	AMOSTRA	ÂNGULO DE INCIDÊNCIA (°)	Ħ	α (°)
ID#04	Plataforma_5	34,04	0,95540365	51,85
ID#04	Plataforma_58	34,24	0,96408420	51,28
ID#04	Plataforma_62	34,29	0,94390191	53,19
ID#04	Plataforma_59	34,41	0,90440538	51,90
ID#04	Plataforma_67	34,49	0,95887587	55,91
ID#04	Plataforma_11	34,60	0,94433594	51,36
ID#04	Plataforma_14	34,60	0,92415365	49,48
ID#04	Plataforma_75	34,61	0,93326823	57,06
ID#04	Plataforma_21	34,67	0,92285156	45,30
ID#04	Plataforma_32	34,95	0,92871094	53,17
ID#04	Plataforma_25	35,08	0,92697483	55,30
ID#04	Plataforma_54	35,11	0,93044705	52,12
ID#04	Plataforma_55	35,12	0,94151476	53,25
ID#04	Plataforma_26	35,13	0,94997830	55,89
ID#04	Plataforma_35	35,17	0,96104601	53,76
ID#04	Plataforma_50	35,24	0,90353733	55,17
ID#04	Plataforma_40	35,25	0,93305122	51,06
ID#04	Plataforma_39	35,26	0,90657552	60,13
ID#04	Plataforma_41	35,33	0,91612413	47,63
ID#04	Plataforma_43	35,33	0,91351997	56,10
ID#04	Plataforma_46	35,35	0,90679253	54,70
ID#04	Plataforma_73	35,52	0,98687066	56,83
ID#04	Plataforma_72	35,83	0,92003038	50,48

A primeira tentativa não foi bem sucedida, os correspondentes pontos com ângulo $alfa \le 51^{\circ}$ não apresentaram qualquer desempenho regular que pudesse justificar o deslocamento amostral para a Z5. A segunda, em contrapartida, sustenta a premissa de que as respostas com entropia $\ge 0,90$ eventualmente estão associadas a grandes complexos de plataformas; explica-se, ainda que lidando com estruturas metálicas artificiais, de formas geométricas bem definidas (que pressupunham comportamento determinístico), quanto maior a estrutura, maior a aleatoriedade.

Os gráficos a seguir (Figuras 5.28 e 5.29) revelam os mesmos gráficos precedentes, ora separados, confrontando as medidas de acordo com a inteira extensão do ângulo de incidência das imagens ID#02 e ID#04. Posto isso, quanto maior o ângulo de incidência, maiores entropia e ângulo alfa.

Figura 5.28. Gráfico do ângulo de incidência vs. entropia da plataforma, comparativo das imagens ID#02 e ID#04.

Figura 5.29. Gráfico do ângulo de incidência vs. ângulo alfa da plataforma, comparativo das imagens ID#02 e ID#04.

(iii) Falsos alvos só foram especificados na ID#02; remetem a porções na imagem que se confudem com a presença de óleo, mas, em verdade, estão associadas a áreas com baixo vento – velocidades inferiores a 3m/s, que ocasionam a atenuação do retroespalhamento da superfície, resultando em tons de cinza mais escuros. No diagrama H- α , esta classe pode ser vista na Z9 e Z6 das Figuras 5.22D e 5.24, dado que o desvio padrão é significativo.

Aqui, o critério para a subclasse selecionou amostras com entropia \geq 0,50 (Tabela 5.5).

IMAGEM	AMOSTRA	ÂNGULO DE INCIDÊNCIA (°)	Ħ	α (°)
ID#02	Falso_Alvo_11	22,58	0,50271267	18,88
ID#02	Falso_Alvo_13	21,33	0,52506510	21,85
ID#02	Falso_Alvo_45	21,82	0,54416233	22,33
ID#02	Falso_Alvo_6	21,76	0,52810330	23,66
ID#02	Falso_Alvo_71	21,82	0,59950087	25,34
ID#02	Falso_Alvo_5	21,78	0,59472656	26,06
ID#02	Falso_Alvo_66	21,77	0,59667969	26,51
ID#02	Falso_Alvo_75	21,78	0,53895399	26,81
ID#02	Falso_Alvo_68	21,79	0,65896267	33,90
ID#02	Falso_Alvo_70	21,80	0,66547309	35,69

Tabela 5.5. Subclasse de amostras com entropia \geq 0,50, ordenadas pelo ângulo alfa médio crescente.

Com exceção da Falso_Alvo_11 (que, na lista, está logo acima, separada apenas por uma amostra), as demais nove representam os maiores ângulo alfa médios da classe. Entende-se, esta inferência não coaduna com a variação do ângulo de incidência, sendo estes arbitrários para a referida subclasse.

(iv) Quanto ao óleo, este não alterou a superfície *Bragg* na faixa de 19-22,7°, ID#02, mantendo-se na Z9. A dispersão dos pontos é notadamente pequena, mas o desvio padrão calculado não é irrelevante em virtude da amostra Óleo_112, um *outlier*, posicionado na Z6, que distoa por apresentar valores de entropia e ângulo alfa muito maiores que o restante do grupo.

Apesar de se tratar de uma superfície de textura muito lisa e a entropia e ângulo alfa baixos serem esperados, é plausível imputar parte desta resposta ao pequeno ângulo de incidência de imageamento.

O que se vê na ID#04 é bastante divergente da primeira imagem; o óleo ocupa em sua maior parte a Z2 – alta entropia e médio ângulo alfa –, Z5 e Z6, e pontos isolados na Z1 – alta entropia e alto ângulo alfa – e Z4. Em suma, no intervalo de

ângulo de incidência de 33,7-36,7°, a aleatoriedade é considerável. As subclasses estipuladas para observação mais criteriosa são,

- a. amostras com entropia $\geq 0,90$
- b. amostras com ângulo alfa entre 39-51°

Ambos os intervalos não foram vantajosos quando da variação dos mecanismos de espalhamento do óleo; um número grande de amostras sem qualquer padrão aparente passou, levando a crer que os indicadores não são eficientes.

Os gráficos das Figuras 5.30 e 5.31 ilustram, de forma simplificada, a principal verificação experimental deste trabalho, entropia e ângulo alfa das amostras contrastantemente maiores quanto maior o ângulo de incidência.

Figura 5.30. Gráfico do ângulo de incidência *vs.* entropia do óleo, comparativo das imagens ID#02 e ID#04.

Figura 5.31. Gráfico do ângulo de incidência vs. ângulo alfa do óleo, comparativo das imagens

ID#02 e ID#04.

(v) No capítulo 3, Fundamentação Teórica, final do item 3.1, foi apresentada a Tabela
3.5, replicada a seguir, acrescida de mais duas linhas com os resultados obtidos neste estudo.

	Ângulo de		N	lar		Óle	0
Referência	incidência	Н	α	Zona do Diagrama H- α	Н	α	Zona do Diagrama H- $\overline{\alpha}$
Skrunes <i>et al.</i> (2014)	46,10° – 47,30°	Baixa	Baixo	9	Alta	Médio	5/6
Skrunes <i>et al.</i> (2014)	34,50° – 36,10°	Baixa	Baixo	9	Alta	Baixo	6
Tian et al					Baixa	Baixo	9
(2010)	32,55° - 33,97°	Baixa	Baixo	9	Alta	Médio	5/6
(2010)					Média	Baixo	6/9
Schuler & Lee (2006)	23,00° - 62,00°	Baixa	Baixo	9	Baixa a média	Baixo a médio	6/8
Zhang <i>et al.</i> (2011)	41,90° – 43,40°	Baixa	Baixo	9	Alta	Médio	5
Torres, S.B. (2017)	19,00° – 22,70°	Baixa	Baixo	9	Baixa	Baixo	9
Torres, S.B. (2017)	33,70° – 36,70°	Baixa	Baixo	9	Alta	Médio	2/5/6

Staples & Touzi (2014) citando MDA (2011), Migliaccio *et al.* (2007) e Schuler & Lee (2004) defendem que, para ângulos de incidência pequenos, menores que 30°, mar e óleo mostram valores similares de H, mas, à medida que se aumenta o ângulo de incidência, a entropia do óleo aumenta, enquanto a do mar permanece relativamente constante. Importante a ressalva de que não se tem correspondência análoga para associar ângulo de incidência e ângulo alfa.

Como se pode perceber, com exceção de um dos três tipos de óleo descritos por Tian *et al.* (2010), todos autores seguem a relação acima proposta para entropia e ângulo de incidência, inclusive os resultados apresentados por ocasião deste trabalho.

Embora não se disponha de casos comparativos para baixos ângulos de incidência, tal qual o da imagem ID#02, o resultado obtido para a imagem ID#04 é o que se esperava dado o panorama teórico e bibliográfico.

CAPÍTULO 6. CONCLUSÕES

A evolução do conhecimento sobre polarimetria SAR aplicada à indústria do petróleo promovida pelo presente trabalho consistiu na confecção de representações gráficas que caracterizam os mecanismos de espalhamento para quatro classes de interesse: mar, plataforma, falso alvo e óleo. Sendo assim, a análise dos dados – com destaque para os diagramas de entropia (H) *vs*. ângulo alfa ($\bar{\alpha}$) de Cloude & Pottier (1997) e para a influência nos resultados dos diferentes ângulos de incidência de imageamento – permitiu estabelecer as seguintes conclusões:

O mar é uma superfície que apresenta espalhamento do tipo *Bragg*, logo, de espalhamento superficial e baixa entropia, independente do ângulo de incidência sob o qual se observa. Há que se atentar para a maior homogeneidade das amostras (menor desvio padrão) em ID#02 (19,0° – 22,7°) em relação a ID#04 (33,7° – 36,7°).

De modo geral (de $19^{\circ} - 36,7^{\circ}$, no limite das possibilidades das imagens disponíveis para a pesquisa), quanto maior o ângulo de incidência, maiores entropia e ângulo alfa.

- 2. As plataformas, em alguns casos, apresentaram comportamento não inteiramente determinístico, o que seria de se esperar para estruturas metálicas artificiais. Baixos ângulos de incidência (ID#02) se mostraram inadequados para caracterização da assinatura polarimétrica. Ângulos maiores, por sua vez, (ID#04) são representativos do mecanismo de espalhamento *double-bounce*, com a ressalva para grandes complexos de plataformas que respondem de forma mais aleatória. Verifica-se, como no mar, que, quanto maior o ângulo de incidência, maiores entropia e ângulo alfa, ainda que esta relação não se mostre tão evidente como na classe anterior.
- Os falsos alvos (associados a regiões de baixo vento), por terem sido identificados apenas na imagem com menor intervalo de ângulo de incidência (ID#02), não possibilitam propor associação direta entre o imageamento e os objetos imageados.

Respondem como superfícies moderadamente aleatórias a quase determinísticas de espalhamento superficial.

4. O óleo mostrou-se a classe mais diretamente afetada pela geometria de imageamento; diferentes ângulos de incidência remetem a mecanismos de espalhamento diversos. Para ângulos de incidência pequenos (ID#02), o óleo se assemelha ao mar, respondendo como uma superfície do tipo *Bragg*. O aumento da entropia é concomitante ao aumento do ângulo de incidência (ID#04); o ângulo alfa também cresce, mas em proporção menos expressiva, descrevendo uma superfície aleatória e/ou anisotrópica. Os resultados corroboram aqueles obtidos por Skrunes *et al.* (2014) e Tian *et al.* (2010), onde o ângulo de incidência e as características polarimétricas são similares.

Este projeto resultou na elucidação das diferentes assinaturas do óleo nos diagramas de Cloude & Pottier (1997), com levantamento de dados importante para a comprovação da influência da geometria de imageamento na caracterização dos alvos. O objetivo do trabalho foi alcançado com êxito, contribuindo para pesquisas futuras na área.

Como sugestão para trabalhos futuros, com a finalidade de se obter um entendimento mais abrangente das propriedades físicas de exsudações de óleo na superfície marinha, recomenda-se avaliar diferentes técnicas de classificação polarimétrica baseadas nos mecanismos de espalhamento do alvo, dentre elas Freeman & Durden (1998) e Van Zyl (1989).

REFERÊNCIAS BIBLIOGRÁFICAS

- ANDRADE, N.S.O. Qualidade Geométrica de Imagens JERS-1 (SAR) e RADARSAT (modos S2 e S3) em Ambiente de Floresta Tropical (Rondônia). Dissertação de Mestrado, São José dos Campos, INPE, 1999. 203p.
- ANDRADE, N.S.O., SANTA ROSA, A.N.C., FARIA, P.C.C. Fundamentos de Polarimetria SAR. In: Anais XVII Simpósio Brasileiro de Sensoriamento Remoto – SBSR, João Pessoa-PB, Brasil, 25 a 29 de abril de 2015, INPE. p. 4775-4782.
- BREKKE, C., SOLBERG, A. H. S. Oil spill detection by satellite remote sensing Review. Remote Sensing of Environment (95), pp 1-13, 2005.
- CARVALHO, G.A. *et al.* The Use of a RADARSAT-derived Long-term Dataset to Investigate the Sea Surface Expressions of Human-related Oil spills and Naturally Occurring Oil Seeps in Campeche Bay, Gulf of Mexico. Canadian Journal of Remote Sensing (Cessou em 2004. Cont. ISSN 1712-798X Canadian Journal of Remote Sensing (CD-ROM)), v. 1, p. 00-00, 2016.
- CARVALHO, G.A. *et al.* The use of RADARSAT-derived information to investigate oil slick occurrence in Campeche Bay, Gulf of Mexico. In: Anais XVII Simpósio Brasileiro de Sensoriamento Remoto SBSR, João Pessoa-PB, Brasil. INPE. 2015. p0217.
- CLOUDE, S.R., POTTIER, E. An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 1, January 1997, p. 68-78.
- CNH. Comisión Nacional de Hidrocarburos. Dictamen Técnico del Proyecto de Explotación Cantarell (Modificación Sustantiva). SENER, Secretaría de Energía, Estados Unidos Mexicanos. Julio, 2013.
- COIMBRA, M.J.B. Radar de Abertura Sintética (SAR). Disponível em: https://web.fe.up.pt/~hmiranda/st2/sar.pdf. Acesso em: abril de 2016.
- CSA. Canadian Space Agency. RADARSAT-2 Built for performance and versatility. 2007. Disponível em: <u>http://www.asc-csa.gc.ca/eng/satellites/radarsat2/description.asp</u>. Acesso em: abril de 2016.
 - _. RADARSAT-2 Home/Satellite Characteristics. 2015. Disponível em: <u>http://www.asc-csa.gc.ca/eng/satellites/radarsat2/default.asp</u> e <u>http://www.asc-csa.gc.ca/eng/satellites/radarsat/radarsat-tableau.asp</u>. Acesso em: abril de 2016.
- EMBRAPA. Sistemas orbitais de monitoramento e gestão territorial [S.I]. Disponível em: <u>http://www.sat.cnpm.embrapa.br</u>. Acesso em: abril de 2016.
- EO PORTAL. Earth Observation Portal. TOPEX/Poseidon. 2017. Disponível em: <u>https://directory.eoportal.org/web/eoportal/satellite-missions/t/topex-poseidon</u>. Acesso em: novembro de 2017.

- ESA. European Space Agency. MetOp/ASCAT. Junho de 2006. Disponível em: <u>http://www.esa.int/Our_Activities/Observing_the_Earth/The_Living_Planet_Program</u> <u>me/Meteorological_missions/MetOp/About_ASCAT</u>. Acesso em: abril de 2016.
- _____. SENTINEL-1 Toolbox (S1TBX) Polarimetric Tutorial. March 2015. Disponível em: https://sentinel.esa.int/web/sentinel/toolboxes. Acesso em: abril de 2016.
- FLORES IBARRA, K., MATA CASTILLO, C., NÁPOLES VALENZUELA, J.I. Sonda de Campeche. Abril de 2013. Disponível em: <u>http://es.slideshare.net/ivannapoles1/sonda-de-campeche</u>. Acesso em: abril de 2016.
- FREEMAN, A.; DURDEN, S.L. A. Freeman and S. L. Durden: A Three-Component Scattering Model for Polarimetric SAR Data, IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 3, pp. 963–973, May 1998.
- FREITAS, C.C. *et al.* Utilização de imagens de radar de abertura sintética na classificação de uso e ocupação do solo. São José dos Campos: INPE, 2007-08-11. Disponível em: <u>http://www.dpi.inpe.br/ofigeo.PDF</u>. Acesso em: abril de 2016.
- GENOVEZ, P., PALMEIRA, F.L.B, BENTZ, C.M. Detecção e Monitoramento de Óleo através da Utilização Integrada de Imagens de Satélite, Verificações de Campo e Modelagem de Deriva de Óleo: Uma Abordagem Operacional. *In*: Anais XIV Simpósio Brasileiro de Sensoriamento Remoto – SBSR, Natal-RN, Brasil, 25 a 30 de abril de 2009, INPE. p. 5235-5242.
- IBARRA, R.M. Dolomitización y generación de porosidad vugular en la brecha K/T del Campo Cantarell, Zona Marina Campeche. Tese de Doutorado, Universidad Nacional Autonoma de Mexico. 2009.
- IEA. International Energy Agency. Key World Energy Statistics. 2015.
- JONES, V.T. & DROZD, R.J. 1983. Predictions of oil or gas potential by near-surface geochemistry. AAPG Bull., 67:932-952.
- LabSAR. Laboratório de Sensoriamento Remoto por Radar Aplicado à Indústria do Petróleo. 3º Relatório Final. Novas Tecnologias para o Sensoriamento Remoto de Exsudações de Óleo na Superfície Marinha. 2016.
- LEDO, F. RADARSAT-2. 2006. Disponível em: <u>http://www.piatammar.ufpa.br/downloads/rsat2_multipolar_fe2006_fernanda.pdf</u>. Acesso em: abril de 2016.
- LEITE, M.V. *et al.* Aplicação de Perfis Geofísicos em Projetos de Perfuração de Poços de Petróleo no Golfo do México. *In*: Revista Brasileira de Geociências, 41(1), março de 2011. p. 68-75.
- LOPES, C.A.L., SANO, E.E., PASCUAL, M.F. Imagens RADARSAT-2 aplicadas ao monitoramento ambiental de obras de mobilidade urbana: o caso da Via Expressa Transolímpica no Rio de Janeiro/RJ. *In*: Anais XVII Simpósio Brasileiro de

Sensoriamento Remoto - SBSR, João Pessoa-PB, Brasil, 25 a 29 de abril de 2015, INPE. p. 6637-6644.

- MARTINS, F.S.R.V. Caracterização e estimativa de biomassa aérea de florestas atingidas pelo fogo a partir de imagens polarimétricas ALOS/PALSAR. Dissertação de Mestrado. São José dos Campos : INPE, 2012. xxviii + 143 p.
- MDA. MacDonald, Dettwiler and Associates Ltd. RADARSAT-2 Information Products: Surveillance and Inteligence. Disponível em: <u>https://mdacorporation.com/docs/default-source/brochures/geospatial-</u> <u>services/radarsat-2-information-products-11502r11.pdf?sfvrsn=6</u>. Acesso em: abril de 2016.
- ______. RADARSAT-2 Product Description. RN-SP52-1238. Issue 1/13: March 21, 2016. Disponível em : <u>https://mdacorporation.com/docs/default-source/technical-documents/geospatial-services/52-1238_rs2_product_description.pdf?sfvrsn=10</u>. Acesso em: novembro de 2017.
- MENESES, P. R. Princípios de Sensoriamento Remoto. In: Meneses, P. R.; Almeida, T. (Org.). Introdução ao Processamento de Imagens de Sensoriamento Remoto. Brasília, DF. Ed. CNPq, 2012. cap. 1, p. 1-33.
- MENESES, P. R.; SANO, E. E. Sensor Radar de Abertura Sintética. *In*: Meneses, P. R.; Almeida, T. (Org.). Introdução ao Processamento de Imagens de Sensoriamento Remoto. Brasília, DF. Ed. CNPq, 2012. cap. 4, p. 57-76.
- MIGLIACCIO, M. *et al.* Polarimetric Synthetic Aperture Radar Utilized to Track Oil Spills. Eos, Vol. 93, No. 16, 17 April 2012, pp. 161-163.
- MILLER, D.J. Caracterização Geoquímica e Geológica de Duas Exsudações de Hidrocarbonetos na Bacia de Campos. Dissertação de Mestrado, COPPE/UFRJ. Rio de Janeiro, Brasil, 2006. 181p.
- MIRANDA, F.P. *et al.* Analyis of RADARSAT-1 data for offshore monitoring activities in the Cantarell Complex, Gulf of Mexico, using the unsupervised semivariogram textural classifier (USTC), Canadian Journal of Remote Sensing. Ottawa, Ontario, Canada, v. 30, n.3, p. 424-436, 2004.
- NASA. National Aeronautics and Space Administration. MODIS. Disponível em: <u>http://modis.gsfc.nasa.gov/about/specifications.php</u>. Acesso em: abril de 2016.
- _____. QuikSCAT. Disponível em: <u>https://winds.jpl.nasa.gov/missions/quikscat/</u>. Acesso em: abril de 2016.
- _____. TOPEX/POSEIDON. Disponível em: <u>http://science.nasa.gov/missions/topex-poseidon/</u>. Acesso em: abril de 2016.
- NOAA. National Oceanic and Atmospheric Administration. Advanced Very High Resolution Radiometer – AVHRR. Novembro de 2013. Disponível em: <u>http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html</u>. Acesso em: abril de 2016.

_____. Global Forecast System (GFS). Disponível em: <u>https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs</u>. Acesso em: abril de 2016.

- PARADELLA, W.R. *et al.* Radares Imageadores (SAR) orbitais: tendências em sistemas e aplicações. *In*: Anais XVII Simpósio Brasileiro de Sensoriamento Remoto SBSR, João Pessoa-PB, Brasil. INPE. 2015. p0506.
- PEMEX. Petróleos Mexicanos. Boletines de Prensa. Precisiones respecto al comportamiento del complejo Cantarell. 08/12/2005. Disponível em; http://web.archive.org/web/20070629162437/http://www.pemex.com/index.cfm?actio n=content§ionID=8&catID=40&subcatID=3672. Acesso em: abril de 2016.
- POWER ENGINEERING. Mexico sets 25% pollution cut by 2030 for climate talks. 30/03/2015. Disponível em: <u>http://www.power-eng.com/articles/2015/03/mexico-sets-25-pollution-cut-by-2030-for-climate-talks.html</u>. Acesso em abril de 2016.
- RORIZ, C.E.D. Detecção de exsudações de óleo utilizando imagens do satélite RADARSAT-1 na porção *offshore* do Delta do Niger – Rio de Janeiro: UFRJ/COPPE, 2006.
- ROSOT, N.C. Integração de Imagens de Sensores de Microondas e Ópticos para Fins de Mapeamento e Classificação de Reflorestamentos no Sul do Brasil. Tese de Doutorado, Florianópolis, UFSC, 2001. 207p.
- SARTORI, L.R. Informação polarimétrica PALSAR/ALOS aplicada à discriminação de espécies e estimação de parâmetros morfológicos de macrófitas. Tese de Doutorado. Presidente Prudente, UNESP, 2011. 126 f.
- SCHULER, D.L; LEE, J.S. Mapping ocean surface features using biogenic slick-fields and SAR polarimetric decomposition techniques. IEE Proceedings – Radar, Sonar and Navigation, Vol. 153, No. 3, June 2006, pp. 260-270.
- SILVA JÚNIOR, C.L. *et al.* Utilização de Dados Orbitais Multisensor na Caracterização de Exsudações Naturais de Óleo no Golfo do México. In: Anais XI SBSR, Belo Horizonte, Brasil, 05 - 10 abril 2003, INPE, p. 929-936.
- SILVA, A.Q. Avaliação de Imagens SAR no Mapeamento de Crostas Lateríticas do Depósito N1, Província Mineral de Carajás, Pará. Tese de Doutorado. São José dos Campos: INPE, 2010. xxviii+233 p.
- SKRUNES, S., BREKKE, C., ELTOFT, T. Characterization of Marine Surface Slicks by Radarsat-2 Multipolarization Features. IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 9, September 2014, pp. 5302-5319.
- STAPLES, G.; TOUZI, R. The Application of RADARSAT-2 Quad-Polarized Data for Oil Slick Characterization. *In*: International Oil Spill Conference, Savannah, Georgia, May 2014, pp. 2242-2252.

- STAR. Data from Satellite/Instruments: Advanced Scatterometer (ASCAT MetOp-B). Disponível em: <u>http://manati.star.nesdis.noaa.gov/datasets/ASCATBData.php</u>. Acesso em: abril de 2016.
- TIAN, W. *et al.* An Experiment for Oil Spill Recognition Using RADARSAT-2 Image. *In*: Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, Hawaii, USA, 2010, pp. 2761-2764.
- UFRGS. Universidade Federal do Rio Grande do Sul. Sensores e Plataformas Orbitais. Disponível em: <u>http://www.ufrgs.br/engcart/PDASR/sensores.html#3</u>. Acesso em: abril de 2016.
- VAN ZYL, J.J. Unsupervised classification of scattering mechanisms using radar polarimetry data. IEEE Trans. Geosci. Remote Sens., 1989, 27, pp. 36–45.
- VASCONCELOS, A.O. Modelagem da biomassa do manguezal da APA de GuapiMirim utilizando dados multitemporais polarimétricos do sensor RADARSAT-2/ Adriano de Oliveira Vasconcelos. – Rio de Janeiro: UFRJ/COPPE, 2016.
- ZHANG, B. *et al.* Mapping sea surface oil slicks using RADARSAT-2 quad-polarization SAR image. Geophysical Research Letters, Vol. 38, L10602, 2011.

ANEXOS

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Óleo_1	ID#02	FQ2W	20/09/2009	12:11:39	3X3	446	2836	20,00	Refined Lee	0,22471788
Óleo_2	ID#02	FQ2W	20/09/2009	12:11:39	3X3	459	2928	19,90	Refined Lee	0,18977865
Óleo_3	ID#02	FQ2W	20/09/2009	12:11:39	3X3	363	2489	20,34	Refined Lee	0,17393663
Óleo_4	ID#02	FQ2W	20/09/2009	12:11:39	3X3	368	2762	20,07	Refined Lee	0,13682726
Óleo_5	ID#02	FQ2W	20/09/2009	12:11:39	3X3	781	2569	20,26	Refined Lee	0,19455295
Óleo_6	ID#02	FQ2W	20/09/2009	12:11:39	3X3	774	2558	20,28	Refined Lee	0,20735677
Óleo_7	ID#02	FQ2W	20/09/2009	12:11:39	3X3	779	2537	20,30	Refined Lee	0,26768663
Óleo_8	ID#02	FQ2W	20/09/2009	12:11:39	3X3	675	2442	20,39	Refined Lee	0,17849392
Óleo_9	ID#02	FQ2W	20/09/2009	12:11:39	3X3	739	2439	20,39	Refined Lee	0,17220052
Óleo_10	ID#02	FQ2W	20/09/2009	12:11:39	3X3	786	2606	20,23	Refined Lee	0,17068142
Óleo_11	ID#02	FQ2W	20/09/2009	12:11:39	3X3	766	2503	20,33	Refined Lee	0,16113281
Óleo_12	ID#02	FQ2W	20/09/2009	12:11:39	3X3	727	2543	20,29	Refined Lee	0,15006510
Óleo_13	ID#02	FQ2W	20/09/2009	12:11:39	3X3	454	2926	19,90	Refined Lee	0,16417101
Óleo_14	ID#02	FQ2W	20/09/2009	12:11:39	3X3	652	2471	20,36	Refined Lee	0,16308594
Óleo_15	ID#02	FQ2W	20/09/2009	12:11:39	3X3	644	2456	20,38	Refined Lee	0,18891059
Óleo_16	ID#02	FQ2W	20/09/2009	12:11:39	3X3	802	2597	20,24	Refined Lee	0,19563802
Óleo_17	ID#02	FQ2W	20/09/2009	12:11:39	3X3	762	2525	20,31	Refined Lee	0,16829427
Óleo_18	ID#02	FQ2W	20/09/2009	12:11:39	3X3	690	2383	20,45	Refined Lee	0,19281684
Óleo_19	ID#02	FQ2W	20/09/2009	12:11:39	3X3	646	2340	20,49	Refined Lee	0,15375434
Óleo_20	ID#02	FQ2W	20/09/2009	12:11:39	3X3	757	2401	20,43	Refined Lee	0,19759115
Óleo_21	ID#02	FQ2W	20/09/2009	12:11:39	3X3	757	2386	20,45	Refined Lee	0,13704427
Óleo_22	ID#02	FQ2W	20/09/2009	12:11:39	3X3	702	2512	20,32	Refined Lee	0,19021267
Óleo_23	ID#02	FQ2W	20/09/2009	12:11:39	3X3	637	2518	20,32	Refined Lee	0,14355469
Óleo_24	ID#02	FQ2W	20/09/2009	12:11:39	3X3	439	2812	20,02	Refined Lee	0,18218316
Óleo_25	ID#02	FQ2W	20/09/2009	12:11:39	3X3	445	2390	20,44	Refined Lee	0,13248698
Óleo_26	ID#02	FQ2W	20/09/2009	12:11:39	3X3	324	2582	20,25	Refined Lee	0,14529080
Óleo_27	ID#02	FQ2W	20/09/2009	12:11:39	3X3	359	2655	20,18	Refined Lee	0,14160156
Óleo_28	ID#02	FQ2W	20/09/2009	12:11:39	3X3	652	2412	20,42	Refined Lee	0,19238281
Óleo_29	ID#02	FQ2W	20/09/2009	12:11:39	3X3	771	1620	21,19	Refined Lee	0,27202691
Óleo_30	ID#02	FQ2W	20/09/2009	12:11:39	3X3	752	1662	21,15	Refined Lee	0,23491753
Óleo_31	ID#02	FQ2W	20/09/2009	12:11:39	3X3	755	1696	21,11	Refined Lee	0,29394531
Óleo_32	ID#02	FQ2W	20/09/2009	12:11:39	3X3	764	1708	21,10	Refined Lee	0,24620226
Óleo_33	ID#02	FQ2W	20/09/2009	12:11:39	3X3	775	1738	21,07	Refined Lee	0,18587240
Óleo_34	ID#02	FQ2W	20/09/2009	12:11:39	3X3	770	1727	21,08	Refined Lee	0,23643663
Óleo_35	ID#02	FQ2W	20/09/2009	12:11:39	3X3	441	2797	20,04	Refined Lee	0,21017795
Óleo_36	ID#02	FQ2W	20/09/2009	12:11:39	3X3	791	1677	21,13	Refined Lee	0,25141059
Óleo_37	ID#02	FQ2W	20/09/2009	12:11:39	3X3	774	1706	21,10	Refined Lee	0,23556858
Óleo_38	ID#02	FQ2W	20/09/2009	12:11:39	3X3	754	1678	21,13	Refined Lee	0,23101128

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Óleo_1	ID#02	8,80	0,04467	-13,50	0,00356	-24,49	0,00012	-39,21
Óleo_2	ID#02	7,02	0,06535	-11,85	0,00528	-22,77	0,00027	-35,69
Óleo_3	ID#02	5,52	0,07739	-11,11	0,00320	-24,95	0,00011	-39,59
Óleo_4	ID#02	5,69	0,08837	-10,54	0,00492	-23,08	0,00019	-37,21
Óleo_5	ID#02	7,06	0,04418	-13,55	0,00241	-26,18	0,00013	-38,86
Óleo_6	ID#02	6,22	0,07739	-11,11	0,00320	-24,95	0,00011	-39,59
Óleo_7	ID#02	10,81	0,03788	-14,22	0,00347	-24,60	0,00011	-39,59
Óleo_8	ID#02	5,19	0,04943	-13,06	0,00303	-25,19	0,00008	-40,97
Óleo_9	ID#02	5,65	0,05253	-12,80	0,00310	-25,09	0,00014	-38,54
Óleo_10	ID#02	5,03	0,05429	-12,65	0,00260	-25,85	0,00014	-38,54
Óleo_11	ID#02	4,74	0,04299	-13,67	0,00288	-25,41	0,00013	-38,86
Óleo_12	ID#02	4,81	0,06229	-12,06	0,00252	-25,99	0,00010	-40,00
Óleo_13	ID#02	4,85	0,07456	-11,27	0,00464	-23,33	0,00022	-36,58
Óleo_14	ID#02	5,65	0,06371	-11,96	0,00347	-24,60	0,00010	-40,00
Óleo_15	ID#02	6,04	0,06857	-11,64	0,00470	-23,28	0,00012	-39,21
Óleo_16	ID#02	6,24	0,07572	-11,21	0,00374	-24,27	0,00013	-38,86
Óleo_17	ID#02	4,74	0,04810	-13,18	0,00251	-26,00	0,00010	-40,00
Óleo_18	ID#02	5,93	0,05262	-12,79	0,00432	-23,65	0,00012	-39,21
Óleo_19	ID#02	5,67	0,07194	-11,43	0,00279	-25,54	0,00009	-40,46
Óleo_20	ID#02	5,44	0,06213	-12,07	0,00440	-23,57	0,00013	-38,86
Óleo_21	ID#02	5,73	0,05446	-12,64	0,00305	-25,16	0,00014	-38,54
Óleo_22	ID#02	7,20	0,06255	-12,04	0,00452	-23,45	0,00011	-39,59
Óleo_23	ID#02	4,42	0,06375	-11,96	0,00386	-24,13	0,00014	-38,54
Óleo_24	ID#02	7,94	0,07878	-11,04	0,00473	-23,25	0,00017	-37,70
Óleo_25	ID#02	3,62	0,07376	-11,32	0,00268	-25,72	0,00022	-36,58
Óleo_26	ID#02	4,21	0,10325	-9,86	0,00542	-22,66	0,00023	-36,38
Óleo_27	ID#02	4,23	0,09328	-10,30	0,00307	-25,13	0,00016	-37,96
Óleo_28	ID#02	6,49	0,05381	-12,69	0,00419	-23,78	0,00021	-36,78
Óleo_29	ID#02	10,13	0,02563	-15,91	0,00203	-26,93	0,00007	-41,55
Óleo_30	ID#02	7,12	0,03390	-14,70	0,00285	-25,45	0,00013	-38,86
Óleo_31	ID#02	9,66	0,03364	-14,73	0,00330	-24,81	0,00012	-39,21
Óleo_32	ID#02	9,91	0,03806	-14,20	0,00322	-24,92	0,00014	-38,54
Óleo_33	ID#02	7,84	0,04413	-13,55	0,00247	-26,07	0,00007	-41,55
Óleo_34	ID#02	7,06	0,03306	-14,81	0,00317	-24,99	0,00011	-39,59
Óleo_35	ID#02	8,45	0,06347	-11,97	0,00497	-23,04	0,00018	-37,45
Óleo_36	ID#02	10,65	0,03715	-14,30	0,00320	-24,95	0,00008	-40,97
Óleo_37	ID#02	7,72	0,03120	-15,06	0,00376	-24,25	0,00008	-40,97
Óleo_38	ID#02	8,92	0,03470	-14,60	0,00323	-24,91	0,00012	-39,21

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Óleo_39	ID#02	FQ2W	20/09/2009	12:11:39	3X3	734	2261	20,57	Refined Lee	0,16308594
Óleo_40	ID#02	FQ2W	20/09/2009	12:11:39	3X3	723	2282	20,55	Refined Lee	0,17588976
Óleo_41	ID#02	FQ2W	20/09/2009	12:11:39	3X3	755	2350	20,48	Refined Lee	0,16612413
Óleo_42	ID#02	FQ2W	20/09/2009	12:11:39	3X3	751	2229	20,60	Refined Lee	0,15483941
Óleo_43	ID#02	FQ2W	20/09/2009	12:11:39	3X3	737	2193	20,64	Refined Lee	0,17154948
Óleo_44	ID#02	FQ2W	20/09/2009	12:11:39	3X3	713	2120	20,71	Refined Lee	0,17024740
Óleo_45	ID#02	FQ2W	20/09/2009	12:11:39	3X3	715	2134	20,69	Refined Lee	0,20627170
Óleo_46	ID#02	FQ2W	20/09/2009	12:11:39	3X3	454	2825	20,01	Refined Lee	0,19715712
Óleo_47	ID#02	FQ2W	20/09/2009	12:11:39	3X3	742	2172	20,66	Refined Lee	0,14594184
Óleo_48	ID#02	FQ2W	20/09/2009	12:11:39	3X3	789	1781	21,03	Refined Lee	0,15831163
Óleo_49	ID#02	FQ2W	20/09/2009	12:11:39	3X3	774	1773	21,04	Refined Lee	0,18261719
Óleo_50	ID#02	FQ2W	20/09/2009	12:11:39	3X3	753	1936	20,88	Refined Lee	0,17957899
Óleo_51	ID#02	FQ2W	20/09/2009	12:11:39	3X3	758	1948	20,87	Refined Lee	0,19325087
Óleo_52	ID#02	FQ2W	20/09/2009	12:11:39	3X3	740	1992	20,83	Refined Lee	0,18674045
Óleo_53	ID#02	FQ2W	20/09/2009	12:11:39	3X3	729	2118	20,71	Refined Lee	0,18956163
Óleo_54	ID#02	FQ2W	20/09/2009	12:11:39	3X3	723	2101	20,72	Refined Lee	0,14507378
Óleo_55	ID#02	FQ2W	20/09/2009	12:11:39	3X3	709	2062	20,76	Refined Lee	0,15809462
Óleo_56	ID#02	FQ2W	20/09/2009	12:11:39	3X3	796	1853	20,96	Refined Lee	0,17480469
Óleo_57	ID#02	FQ2W	20/09/2009	12:11:39	3X3	433	2855	19,98	Refined Lee	0,22276476
Óleo_58	ID#02	FQ2W	20/09/2009	12:11:39	3X3	755	1122	21,65	Refined Lee	0,18934462
Óleo_59	ID#02	FQ2W	20/09/2009	12:11:39	3X3	761	1132	21,64	Refined Lee	0,19325087
Óleo_60	ID#02	FQ2W	20/09/2009	12:11:39	3X3	764	1193	21,59	Refined Lee	0,13747830
Óleo_61	ID#02	FQ2W	20/09/2009	12:11:39	3X3	761	1170	21,61	Refined Lee	0,17415365
Óleo_62	ID#02	FQ2W	20/09/2009	12:11:39	3X3	759	1153	21,62	Refined Lee	0,14290365
Óleo_63	ID#02	FQ2W	20/09/2009	12:11:39	3X3	726	1198	21,58	Refined Lee	0,21191406
Óleo_64	ID#02	FQ2W	20/09/2009	12:11:39	3X3	711	1151	21,62	Refined Lee	0,18522135
Óleo_65	ID#02	FQ2W	20/09/2009	12:11:39	3X3	751	1245	21,54	Refined Lee	0,17784288
Óleo_66	ID#02	FQ2W	20/09/2009	12:11:39	3X3	714	1239	21,54	Refined Lee	0,14073351
Óleo_67	ID#02	FQ2W	20/09/2009	12:11:39	3X3	736	1216	21,56	Refined Lee	0,17588976
Óleo_68	ID#02	FQ2W	20/09/2009	12:11:39	3X3	451	2874	19,96	Refined Lee	0,19889323
Óleo_69	ID#02	FQ2W	20/09/2009	12:11:39	3X3	784	1266	21,52	Refined Lee	0,17610677
Óleo_70	ID#02	FQ2W	20/09/2009	12:11:39	3X3	576	832	21,92	Refined Lee	0,24837240
Óleo_71	ID#02	FQ2W	20/09/2009	12:11:39	3X3	559	858	21,89	Refined Lee	0,16981337
Óleo_72	ID#02	FQ2W	20/09/2009	12:11:39	3X3	553	913	21,84	Refined Lee	0,21603733
Óleo_73	ID#02	FQ2W	20/09/2009	12:11:39	3X3	543	888	21,87	Refined Lee	0,23122830
Óleo_74	ID#02	FQ2W	20/09/2009	12:11:39	3X3	511	948	21,81	Refined Lee	0,20453559
Óleo_75	ID#02	FQ2W	20/09/2009	12:11:39	3X3	457	1048	21,72	Refined Lee	0,13943142
Óleo_76	ID#02	FQ2W	20/09/2009	12:11:39	3X3	448	1064	21,70	Refined Lee	0,19759115

ANEXO 1 - BANCO DE DADOS DAS	CLASSES DE AMOSTRAS	DA IMAGEM ID#02
------------------------------	---------------------	-----------------

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Óleo_39	ID#02	5,13	0,05973	-12,24	0,00267	-25,73	0,00010	-40,00
Óleo_40	ID#02	5,97	0,05067	-12,95	0,00340	-24,69	0,00017	-37,70
Óleo_41	ID#02	4,64	0,09423	-10,26	0,00369	-24,33	0,00015	-38,24
Óleo_42	ID#02	5,67	0,05770	-12,39	0,00332	-24,79	0,00011	-39,59
Óleo_43	ID#02	4,93	0,06578	-11,82	0,00265	-25,77	0,00014	-38,54
Óleo_44	ID#02	5,63	0,06770	-11,69	0,00188	-27,26	0,00022	-36,58
Óleo_45	ID#02	7,26	0,04288	-13,68	0,00329	-24,83	0,00011	-39,59
Óleo_46	ID#02	10,50	0,04807	-13,18	0,00405	-23,93	0,00010	-40,00
Óleo_47	ID#02	3,78	0,06006	-12,21	0,00307	-25,13	0,00013	-38,86
Óleo_48	ID#02	5,91	0,05283	-12,77	0,00314	-25,03	0,00019	-37,21
Óleo_49	ID#02	7,80	0,04910	-13,09	0,00252	-25,99	0,00012	-39,21
Óleo_50	ID#02	5,32	0,06481	-11,88	0,00271	-25,67	0,00022	-36,58
Óleo_51	ID#02	6,12	0,04032	-13,94	0,00373	-24,28	0,00012	-39,21
Óleo_52	ID#02	6,44	0,06871	-11,63	0,00319	-24,96	0,00013	-38,86
Óleo_53	ID#02	6,38	0,06797	-11,68	0,00420	-23,77	0,00013	-38,86
Óleo_54	ID#02	4,87	0,04357	-13,61	0,00217	-26,64	0,00013	-38,86
Óleo_55	ID#02	4,35	0,06281	-12,02	0,00289	-25,39	0,00010	-40,00
Óleo_56	ID#02	5,89	0,08413	-10,75	0,00343	-24,65	0,00026	-35,85
Óleo_57	ID#02	6,06	0,07398	-11,31	0,00395	-24,03	0,00067	-31,74
Óleo_58	ID#02	5,67	0,05302	-12,76	0,00385	-24,15	0,00025	-36,02
Óleo_59	ID#02	5,89	0,04416	-13,55	0,00293	-25,33	0,00023	-36,38
Óleo_60	ID#02	4,62	0,05754	-12,40	0,00238	-26,23	0,00024	-36,20
Óleo_61	ID#02	6,22	0,05335	-12,73	0,00335	-24,75	0,00017	-37,70
Óleo_62	ID#02	5,40	0,06065	-12,17	0,00236	-26,27	0,00017	-37,70
Óleo_63	ID#02	6,38	0,04260	-13,71	0,00334	-24,76	0,00027	-35,69
Óleo_64	ID#02	5,91	0,04534	-13,44	0,00320	-24,95	0,00022	-36,58
Óleo_65	ID#02	6,85	0,05879	-12,31	0,00350	-24,56	0,00029	-35,38
Óleo_66	ID#02	5,19	0,06254	-12,04	0,00270	-25,69	0,00024	-36,20
Óleo_67	ID#02	6,01	0,04554	-13,42	0,00321	-24,93	0,00035	-34,56
Óleo_68	ID#02	5,71	0,04497	-13,47	0,00217	-26,64	0,00030	-35,23
Óleo_69	ID#02	4,89	0,04453	-13,51	0,00254	-25,95	0,00016	-37,96
Óleo_70	ID#02	7,69	0,04919	-13,08	0,00377	-24,24	0,00031	-35,09
Óleo_71	ID#02	7,59	0,06787	-11,68	0,00365	-24,38	0,00028	-35,53
Óleo_72	ID#02	6,75	0,04437	-13,53	0,00269	-25,70	0,00017	-37,70
Óleo_73	ID#02	7,94	0,04556	-13,41	0,00314	-25,03	0,00033	-34,81
Óleo_74	ID#02	6,26	0,04229	-13,74	0,00272	-25,65	0,00024	-36,20
Óleo_75	ID#02	4,40	0,04847	-13,15	0,00163	-27,88	0,00029	-35,38
Óleo_76	ID#02	7,22	0,03430	-14,65	0,00287	-25,42	0,00018	-37,45

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Óleo_77	ID#02	FQ2W	20/09/2009	12:11:39	3X3	424	1090	21,68	Refined Lee	0,21625434
Óleo_78	ID#02	FQ2W	20/09/2009	12:11:39	3X3	422	1107	21,67	Refined Lee	0,20475260
Óleo_79	ID#02	FQ2W	20/09/2009	12:11:39	3X3	464	2897	19,93	Refined Lee	0,20106337
Óleo_80	ID#02	FQ2W	20/09/2009	12:11:39	3X3	424	1126	21,65	Refined Lee	0,21386719
Óleo_81	ID#02	FQ2W	20/09/2009	12:11:39	3X3	787	1701	21,11	Refined Lee	0,23535156
Óleo_82	ID#02	FQ2W	20/09/2009	12:11:39	3X3	779	1631	21,18	Refined Lee	0,26443142
Óleo_83	ID#02	FQ2W	20/09/2009	12:11:39	3X3	437	1160	21,62	Refined Lee	0,16937934
Óleo_84	ID#02	FQ2W	20/09/2009	12:11:39	3X3	446	1173	21,60	Refined Lee	0,16981337
Óleo_85	ID#02	FQ2W	20/09/2009	12:11:39	3X3	455	1195	21,58	Refined Lee	0,17805990
Óleo_86	ID#02	FQ2W	20/09/2009	12:11:39	3X3	461	1202	21,58	Refined Lee	0,16286892
Óleo_87	ID#02	FQ2W	20/09/2009	12:11:39	3X3	466	1229	21,55	Refined Lee	0,18370226
Óleo_88	ID#02	FQ2W	20/09/2009	12:11:39	3X3	472	1249	21,53	Refined Lee	0,19259983
Óleo_89	ID#02	FQ2W	20/09/2009	12:11:39	3X3	477	1268	21,52	Refined Lee	0,17154948
Óleo_90	ID#02	FQ2W	20/09/2009	12:11:39	3X3	449	2900	19,93	Refined Lee	0,20062934
Óleo_91	ID#02	FQ2W	20/09/2009	12:11:39	3X3	483	1281	21,50	Refined Lee	0,17654080
Óleo_92	ID#02	FQ2W	20/09/2009	12:11:39	3X3	479	1295	21,49	Refined Lee	0,18999566
Óleo_93	ID#02	FQ2W	20/09/2009	12:11:39	3X3	486	1319	21,47	Refined Lee	0,21213108
Óleo_94	ID#02	FQ2W	20/09/2009	12:11:39	3X3	483	1313	21,47	Refined Lee	0,19368490
Óleo_95	ID#02	FQ2W	20/09/2009	12:11:39	3X3	493	1391	21,45	Refined Lee	0,18066406
Óleo_96	ID#02	FQ2W	20/09/2009	12:11:39	3X3	498	1364	21,43	Refined Lee	0,26898872
Óleo_97	ID#02	FQ2W	20/09/2009	12:11:39	3X3	562	2386	20,45	Refined Lee	0,14377170
Óleo_98	ID#02	FQ2W	20/09/2009	12:11:39	3X3	571	2378	20,45	Refined Lee	0,15418837
Óleo_99	ID#02	FQ2W	20/09/2009	12:11:39	3X3	504	2431	20,40	Refined Lee	0,17697483
Óleo_100	ID#02	FQ2W	20/09/2009	12:11:39	3X3	765	2244	20,59	Refined Lee	0,16438802
Óleo_101	ID#02	FQ2W	20/09/2009	12:11:39	3X3	461	2839	19,99	Refined Lee	0,20193142
Óleo_102	ID#02	FQ2W	20/09/2009	12:11:39	3X3	676	2415	20,42	Refined Lee	0,15071615
Óleo_103	ID#02	FQ2W	20/09/2009	12:11:39	3X3	787	2564	20,27	Refined Lee	0,23838976
Óleo_104	ID#02	FQ2W	20/09/2009	12:11:39	3X3	506	922	21,83	Refined Lee	0,13704427
Óleo_105	ID#02	FQ2W	20/09/2009	12:11:39	3X3	543	1533	21,27	Refined Lee	0,15614149
Óleo_106	ID#02	FQ2W	20/09/2009	12:11:39	3X3	792	2628	20,21	Refined Lee	0,17133247
Óleo_107	ID#02	FQ2W	20/09/2009	12:11:39	3X3	669	2472	20,36	Refined Lee	0,14572483
Óleo_108	ID#02	FQ2W	20/09/2009	12:11:39	3X3	351	2523	20,31	Refined Lee	0,15722656
Óleo_109	ID#02	FQ2W	20/09/2009	12:11:39	3X3	424	2410	20,42	Refined Lee	0,13574219
Óleo_110	ID#02	FQ2W	20/09/2009	12:11:39	3X3	351	2589	20,24	Refined Lee	0,12141927
Óleo_111	ID#02	FQ2W	20/09/2009	12:11:39	3X3	310	2679	20,15	Refined Lee	0,12641059
Óleo_112	ID#02	FQ2W	20/09/2009	12:11:39	3X3	440	2883	19,95	Refined Lee	0,64355469
Óleo_113	ID#02	FQ2W	20/09/2009	12:11:39	3X3	440	2857	19,97	Refined Lee	0,16286892
Óleo_114	ID#02	FQ2W	20/09/2009	12:11:39	3X3	523	920	21,84	Refined Lee	0,13639323

ANEXO 1 - BANCO DE DADOS DAS (CLASSES DE AMOSTRAS I	DA IMAGEM ID#02
--------------------------------	-----------------------	-----------------

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Óleo_77	ID#02	6,12	0,04300	-13,67	0,00253	-25,97	0,00020	-36,99
Óleo_78	ID#02	7,80	0,03780	-14,23	0,00296	-25,29	0,00014	-38,54
Óleo_79	ID#02	6,38	0,05962	-12,25	0,00413	-23,84	0,00019	-37,21
Óleo_80	ID#02	6,92	0,02951	-15,30	0,00268	-25,72	0,00022	-36,58
Óleo_81	ID#02	7,98	0,02801	-15,53	0,00274	-25,62	0,00008	-40,97
Óleo_82	ID#02	9,46	0,04269	-13,70	0,00355	-24,50	0,00010	-40,00
Óleo_83	ID#02	5,69	0,07189	-11,43	0,00354	-24,51	0,00025	-36,02
Óleo_84	ID#02	4,74	0,04730	-13,25	0,00315	-25,02	0,00021	-36,78
Óleo_85	ID#02	6,61	0,05434	-12,65	0,00358	-24,46	0,00026	-35,85
Óleo_86	ID#02	6,63	0,06440	-11,91	0,00340	-24,69	0,00016	-37,96
Óleo_87	ID#02	5,24	0,04109	-13,86	0,00232	-26,35	0,00016	-37,96
Óleo_88	ID#02	6,12	0,04837	-13,15	0,00346	-24,61	0,00018	-37,45
Óleo_89	ID#02	5,22	0,05285	-12,77	0,00224	-26,50	0,00018	-37,45
Óleo_90	ID#02	6,53	0,07707	-11,13	0,00499	-23,02	0,00021	-36,78
Óleo_91	ID#02	6,28	0,03580	-14,46	0,00234	-26,31	0,00020	-36,99
Óleo_92	ID#02	8,35	0,04889	-13,11	0,00317	-24,99	0,00014	-38,54
Óleo_93	ID#02	8,08	0,04232	-13,73	0,00343	-24,65	0,00020	-36,99
Óleo_94	ID#02	6,87	0,03838	-14,16	0,00256	-25,92	0,00009	-40,46
Óleo_95	ID#02	6,65	0,05054	-12,96	0,00291	-25,36	0,00014	-38,54
Óleo_96	ID#02	8,92	0,03930	-14,06	0,00353	-24,52	0,00016	-37,96
Óleo_97	ID#02	4,78	0,07262	-11,39	0,00346	-24,61	0,00014	-38,54
Óleo_98	ID#02	7,08	0,05312	-12,75	0,00249	-26,04	0,00009	-40,46
Óleo_99	ID#02	6,51	0,06835	-11,65	0,00397	-24,01	0,00012	-39,21
Óleo_100	ID#02	6,44	0,07849	-11,05	0,00344	-24,63	0,00010	-40,00
Óleo_101	ID#02	7,86	0,05418	-12,66	0,00459	-23,38	0,00011	-39,59
Óleo_102	ID#02	5,28	0,05645	-12,48	0,00282	-25,50	0,00011	-39,59
Óleo_103	ID#02	8,53	0,04922	-13,08	0,00380	-24,20	0,00007	-41,55
Óleo_104	ID#02	3,47	0,05433	-12,65	0,00237	-26,25	0,00025	-36,02
Óleo_105	ID#02	4,99	0,05693	-12,45	0,00308	-25,11	0,00020	-36,99
Óleo_106	ID#02	5,93	0,06909	-11,61	0,00363	-24,40	0,00015	-38,24
Óleo_107	ID#02	3,96	0,06354	-11,97	0,00239	-26,22	0,00014	-38,54
Óleo_108	ID#02	6,69	0,06931	-11,59	0,00397	-24,01	0,00024	-36,20
Óleo_109	ID#02	4,46	0,06551	-11,84	0,00300	-25,23	0,00013	-38,86
Óleo_110	ID#02	4,87	0,11661	-9,33	0,00370	-24,32	0,00021	-36,78
Óleo_111	ID#02	3,68	0,11721	-9,31	0,00328	-24,84	0,00026	-35,85
Óleo_112	ID#02	26,30	0,07576	-11,21	0,01066	-19,72	0,00532	-22,74
Óleo_113	ID#02	4,87	0,07466	-11,27	0,00344	-24,63	0,00014	-38,54
Óleo_114	ID#02	4,70	0,06670	-11,76	0,00239	-26,22	0,00039	-34,09

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Óleo_115	ID#02	FQ2W	20/09/2009	12:11:39	3X3	469	2875	19,96	Refined Lee	0,15679253
Óleo_116	ID#02	FQ2W	20/09/2009	12:11:39	3X3	479	2892	19,94	Refined Lee	0,21039497
Óleo_117	ID#02	FQ2W	20/09/2009	12:11:39	3X3	476	2857	19,98	Refined Lee	0,15961372
Óleo_118	ID#02	FQ2W	20/09/2009	12:11:39	3X3	476	2840	19,99	Refined Lee	0,16720920
Óleo_119	ID#02	FQ2W	20/09/2009	12:11:39	3X3	446	2814	20,02	Refined Lee	0,18522135
Óleo_120	ID#02	FQ2W	20/09/2009	12:11:39	3X3	448	2769	20,06	Refined Lee	0,24338108
Óleo_121	ID#02	FQ2W	20/09/2009	12:11:39	3X3	458	2780	20,05	Refined Lee	0,22037760
Óleo_122	ID#02	FQ2W	20/09/2009	12:11:39	3X3	439	2777	20,06	Refined Lee	0,20431858
Óleo_123	ID#02	FQ2W	20/09/2009	12:11:39	3X3	449	2750	20,08	Refined Lee	0,18739149
Óleo_124	ID#02	FQ2W	20/09/2009	12:11:39	3X3	488	2977	19,85	Refined Lee	0,14919705
Óleo_125	ID#02	FQ2W	20/09/2009	12:11:39	3X3	475	2792	20,04	Refined Lee	0,15983073
Óleo_126	ID#02	FQ2W	20/09/2009	12:11:39	3X3	471	2909	19,92	Refined Lee	0,18587240
Óleo_127	ID#02	FQ2W	20/09/2009	12:11:39	3X3	456	2801	20,03	Refined Lee	0,19346788
Óleo_128	ID#02	FQ2W	20/09/2009	12:11:39	3X3	478	2756	20,08	Refined Lee	0,22037760
Óleo_129	ID#02	FQ2W	20/09/2009	12:11:39	3X3	480	2737	20,10	Refined Lee	0,20214844
Óleo_130	ID#02	FQ2W	20/09/2009	12:11:39	3X3	478	2717	20,12	Refined Lee	0,22970920
Óleo_131	ID#02	FQ2W	20/09/2009	12:11:39	3X3	507	2714	20,12	Refined Lee	0,26204427
Óleo_132	ID#02	FQ2W	20/09/2009	12:11:39	3X3	470	2724	20,11	Refined Lee	0,26573351
Óleo_133	ID#02	FQ2W	20/09/2009	12:11:39	3X3	437	2704	20,13	Refined Lee	0,21907552
Óleo_134	ID#02	FQ2W	20/09/2009	12:11:39	3X3	446	2739	20,09	Refined Lee	0,19368490
Óleo_135	ID#02	FQ2W	20/09/2009	12:11:39	3X3	484	2951	19,88	Refined Lee	0,17154948
Óleo_136	ID#02	FQ2W	20/09/2009	12:11:39	3X3	450	2730	20,10	Refined Lee	0,22493490
Óleo_137	ID#02	FQ2W	20/09/2009	12:11:39	3X3	447	2701	20,13	Refined Lee	0,20996094
Óleo_138	ID#02	FQ2W	20/09/2009	12:11:39	3X3	456	2667	20,17	Refined Lee	0,19216580
Óleo_139	ID#02	FQ2W	20/09/2009	12:11:39	3X3	434	2660	20,17	Refined Lee	0,21365017
Óleo_140	ID#02	FQ2W	20/09/2009	12:11:39	3X3	467	2655	20,18	Refined Lee	0,21690538
Óleo_141	ID#02	FQ2W	20/09/2009	12:11:39	3X3	426	2588	20,25	Refined Lee	0,21039497
Óleo_142	ID#02	FQ2W	20/09/2009	12:11:39	3X3	446	2597	20,24	Refined Lee	0,24338108
Óleo_143	ID#02	FQ2W	20/09/2009	12:11:39	3X3	423	2616	20,22	Refined Lee	0,19064670
Óleo_144	ID#02	FQ2W	20/09/2009	12:11:39	3X3	420	2577	20,26	Refined Lee	0,20128038
Óleo_145	ID#02	FQ2W	20/09/2009	12:11:39	3X3	460	2606	20,23	Refined Lee	0,23556858
Óleo_146	ID#02	FQ2W	20/09/2009	12:11:39	3X3	482	2919	19,91	Refined Lee	0,18674045
Óleo_147	ID#02	FQ2W	20/09/2009	12:11:39	3X3	494	2595	20,24	Refined Lee	0,16547309
Óleo_148	ID#02	FQ2W	20/09/2009	12:11:39	3X3	489	2609	20,23	Refined Lee	0,17437066
Óleo_149	ID#02	FQ2W	20/09/2009	12:11:39	3X3	256	2703	20,13	Refined Lee	0,21864149
Óleo_150	ID#02	FQ2W	20/09/2009	12:11:39	3X3	472	2685	20,15	Refined Lee	0,20062934
Óleo_151	ID#02	FQ2W	20/09/2009	12:11:39	3X3	466	2573	20,26	Refined Lee	0,19411892
Óleo_152	ID#02	FQ2W	20/09/2009	12:11:39	3X3	544	2555	20,28	Refined Lee	0,25075955

ANEXO 1 - BANCO DE DADOS DA	CLASSES DE AMOSTR	AS DA IMAGEM ID#02
-----------------------------	-------------------	--------------------

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Óleo_115	ID#02	6.47	0,08110	-10,91	0,00317	-24,99	0,00023	-36,38
Óleo_116	ID#02	6,30	0,09357	-10,29	0,00535	-22,72	0,00030	-35,23
Óleo_117	ID#02	5,30	0,07611	-11,19	0,00336	-24,74	0,00018	-37,45
Óleo_118	ID#02	6,49	0,08348	-10,78	0,00383	-24,17	0,00017	-37,70
Óleo_119	ID#02	5,26	0,06637	-11,78	0,00404	-23,94	0,00016	-37,96
Óleo_120	ID#02	7,18	0,04569	-13,40	0,00348	-24,58	0,00013	-38,86
Óleo_121	ID#02	6,94	0,04994	-13,02	0,00426	-23,71	0,00015	-38,24
Óleo_122	ID#02	7,51	0,05239	-12,81	0,00470	-23,28	0,00019	-37,21
Óleo_123	ID#02	7,72	0,05577	-12,54	0,00312	-25,06	0,00014	-38,54
Óleo_124	ID#02	5,73	0,06878	-11,63	0,00370	-24,32	0,00022	-36,58
Óleo_125	ID#02	4,81	0,06024	-12,20	0,00323	-24,91	0,00014	-38,54
Óleo_126	ID#02	5,81	0,06779	-11,69	0,00502	-22,99	0,00025	-36,02
Óleo_127	ID#02	6,67	0,06860	-11,64	0,00462	-23,35	0,00009	-40,46
Óleo_128	ID#02	6,65	0,06245	-12,04	0,00384	-24,16	0,00016	-37,96
Óleo_129	ID#02	8,39	0,05059	-12,96	0,00306	-25,14	0,00013	-38,86
Óleo_130	ID#02	8,51	0,03310	-14,80	0,00368	-24,34	0,00017	-37,70
Óleo_131	ID#02	11,59	0,03922	-14,06	0,00392	-24,07	0,00017	-37,70
Óleo_132	ID#02	10,28	0,05257	-12,79	0,00492	-23,08	0,00012	-39,21
Óleo_133	ID#02	6,65	0,04788	-13,20	0,00340	-24,69	0,00016	-37,96
Óleo_134	ID#02	6,14	0,05585	-12,53	0,00332	-24,79	0,00020	-36,99
Óleo_135	ID#02	4,64	0,06603	-11,80	0,00357	-24,47	0,00016	-37,96
Óleo_136	ID#02	9,54	0,05067	-12,95	0,00403	-23,95	0,00019	-37,21
Óleo_137	ID#02	9,05	0,04858	-13,14	0,00364	-24,39	0,00012	-39,21
Óleo_138	ID#02	6,18	0,05379	-12,69	0,00298	-25,26	0,00014	-38,54
Óleo_139	ID#02	7,00	0,03462	-14,61	0,00214	-26,70	0,00018	-37,45
Óleo_140	ID#02	8,23	0,04184	-13,78	0,00423	-23,74	0,00013	-38,86
Óleo_141	ID#02	6,90	0,03514	-14,54	0,00423	-23,74	0,00011	-39,59
Óleo_142	ID#02	7,92	0,04172	-13,80	0,00304	-25,17	0,00036	-34,44
Óleo_143	ID#02	5,54	0,04625	-13,35	0,00272	-25,65	0,00010	-40,00
Óleo_144	ID#02	7,22	0,05526	-12,58	0,00422	-23,75	0,00013	-38,86
Óleo_145	ID#02	7,90	0,05047	-12,97	0,00673	-21,72	0,00012	-39,21
Óleo_146	ID#02	5,26	0,09888	-10,05	0,00514	-22,89	0,00018	-37,45
Óleo_147	ID#02	4,76	0,04262	-13,70	0,00248	-26,06	0,00010	-40,00
Óleo_148	ID#02	4,91	0,05327	-12,74	0,00361	-24,42	0,00016	-37,96
Óleo_149	ID#02	8,17	0,05607	-12,51	0,00456	-23,41	0,00013	-38,86
Óleo_150	ID#02	7,51	0,06099	-12,15	0,00355	-24,50	0,00015	-38,24
Óleo_151	ID#02	6,79	0,04939	-13,06	0,00367	-24,35	0,00013	-38,86
Óleo_152	ID#02	8,15	0,04333	-13,63	0,00326	-24,87	0,00013	-38,86

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Óleo_153	ID#02	FQ2W	20/09/2009	12:11:39	3X3	568	2535	20,30	Refined Lee	0,23925781
Óleo_154	ID#02	FQ2W	20/09/2009	12:11:39	3X3	555	2579	20,25	Refined Lee	0,17480469
Óleo_155	ID#02	FQ2W	20/09/2009	12:11:39	3X3	591	2527	20,31	Refined Lee	0,17046441
Óleo_156	ID#02	FQ2W	20/09/2009	12:11:39	3X3	565	2498	20,33	Refined Lee	0,16937934
Óleo_157	ID#02	FQ2W	20/09/2009	12:11:39	3X3	485	2923	19,91	Refined Lee	0,17588976
Óleo_158	ID#02	FQ2W	20/09/2009	12:11:39	3X3	585	2490	20,34	Refined Lee	0,15700955
Óleo_159	ID#02	FQ2W	20/09/2009	12:11:39	3X3	584	2522	20,31	Refined Lee	0,20279948
Óleo_160	ID#02	FQ2W	20/09/2009	12:11:39	3X3	610	2506	20,33	Refined Lee	0,20952691
Óleo_161	ID#02	FQ2W	20/09/2009	12:11:39	3X3	516	2614	20,22	Refined Lee	0,17675781
Óleo_162	ID#02	FQ2W	20/09/2009	12:11:39	3X3	499	2572	20,26	Refined Lee	0,20648872
Óleo_163	ID#02	FQ2W	20/09/2009	12:11:39	3X3	598	2566	20,27	Refined Lee	0,18739149
Óleo_164	ID#02	FQ2W	20/09/2009	12:11:39	3X3	517	2674	20,16	Refined Lee	0,15245226
Óleo_165	ID#02	FQ2W	20/09/2009	12:11:39	3X3	489	2693	20,14	Refined Lee	0,18869358
Óleo_166	ID#02	FQ2W	20/09/2009	12:11:39	3X3	553	2703	20,13	Refined Lee	0,19997830
Óleo_167	ID#02	FQ2W	20/09/2009	12:11:39	3X3	500	2735	20,10	Refined Lee	0,19281684
Óleo_168	ID#02	FQ2W	20/09/2009	12:11:39	3X3	479	2905	19,93	Refined Lee	0,20388455
Óleo_169	ID#02	FQ2W	20/09/2009	12:11:39	3X3	446	2625	20,21	Refined Lee	0,22580295
Óleo_170	ID#02	FQ2W	20/09/2009	12:11:39	3X3	435	2485	20,35	Refined Lee	0,16113281
Óleo_171	ID#02	FQ2W	20/09/2009	12:11:39	3X3	256	2434	20,40	Refined Lee	0,18435330
Óleo_172	ID#02	FQ2W	20/09/2009	12:11:39	3X3	437	2428	20,40	Refined Lee	0,18652344
Óleo_173	ID#02	FQ2W	20/09/2009	12:11:39	3X3	399	2433	20,40	Refined Lee	0,21386719
Óleo_174	ID#02	FQ2W	20/09/2009	12:11:39	3X3	409	2437	20,40	Refined Lee	0,13986545
Óleo_175	ID#02	FQ2W	20/09/2009	12:11:39	3X3	455	2446	20,39	Refined Lee	0,21842448
Óleo_176	ID#02	FQ2W	20/09/2009	12:11:39	3X3	374	2855	19,98	Refined Lee	0,22927517
Óleo_177	ID#02	FQ2W	20/09/2009	12:11:39	3X3	370	2827	20,00	Refined Lee	0,14312066
Óleo_178	ID#02	FQ2W	20/09/2009	12:11:39	3X3	494	2461	20,37	Refined Lee	0,21234809
Óleo_179	ID#02	FQ2W	20/09/2009	12:11:39	3X3	466	2979	19,85	Refined Lee	0,14225260
Óleo_180	ID#02	FQ2W	20/09/2009	12:11:39	3X3	489	2455	20,38	Refined Lee	0,17805990
Óleo_181	ID#02	FQ2W	20/09/2009	12:11:39	3X3	383	2440	20,39	Refined Lee	0,22384983
Óleo_182	ID#02	FQ2W	20/09/2009	12:11:39	3X3	572	2741	20,09	Refined Lee	0,17827691
Óleo_183	ID#02	FQ2W	20/09/2009	12:11:39	3X3	564	2727	20,11	Refined Lee	0,17176649
Óleo_184	ID#02	FQ2W	20/09/2009	12:11:39	3X3	603	2758	20,07	Refined Lee	0,13226997
Óleo_185	ID#02	FQ2W	20/09/2009	12:11:39	3X3	593	2771	20,06	Refined Lee	0,18066406
Óleo_186	ID#02	FQ2W	20/09/2009	12:11:39	3X3	589	2795	20,04	Refined Lee	0,17024740
Óleo_187	ID#02	FQ2W	20/09/2009	12:11:39	3X3	607	2805	20,03	Refined Lee	0,15679253
Óleo_188	ID#02	FQ2W	20/09/2009	12:11:39	3X3	626	2856	19,98	Refined Lee	0,16981337
Óleo_189	ID#02	FQ2W	20/09/2009	12:11:39	3X3	617	2828	20,00	Refined Lee	0,16981337
Óleo_190	ID#02	FQ2W	20/09/2009	12:11:39	3X3	476	2946	19,88	Refined Lee	0,16699219

ANEXO 1 - BANCO DE DADOS DAS (CLASSES DE AMOSTRAS I	DA IMAGEM ID#02
--------------------------------	-----------------------	-----------------

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV		
Óleo_153	ID#02	7,88	0,03446	-14,63	0,00305	-25,16	0,00016	-37,96		
Óleo_154	ID#02	6,46	0,04612	-13,36	0,00325	-24,88	0,00013	-38,86		
Óleo_155	ID#02	4,64	0,03972	-14,01	0,00195	-27,10	0,00010	-40,00		
Óleo_156	ID#02	5,09	0,05769	-12,39	0,00365	-24,38	0,00014	-38,54		
Óleo_157	ID#02	4,70	0,07702	-11,13	0,00367	-24,35	0,00017	-37,70		
Óleo_158	ID#02	7,26	0,07659	-11,16	0,00375	-24,26	0,00013	-38,86		
Óleo_159	ID#02	8,41	0,04823	-13,17	0,00402	-23,96	0,00020	-36,99		
Óleo_160	ID#02	8,21	0,05339	-12,73	0,00404	-23,94	0,00011	-39,59		
Óleo_161	ID#02	7,28	0,06315	-12,00	0,00319	-24,96	0,00012	-39,21		
Óleo_162	ID#02	7,47	0,05815	-12,35	0,00486	-23,13	0,00008	-40,97		
Óleo_163	ID#02	5,81	0,04495	-13,47	0,00308	-25,11	0,00008	-40,97		
Óleo_164	ID#02	6,26	0,08370	-10,77	0,00328	-24,84	0,00023	-36,38		
Óleo_165	ID#02	6,04	0,06168	-12,10	0,00424	-23,73	0,00012	-39,21		
Óleo_166	ID#02	7,00	0,05744	-12,41	0,00405	-23,93	0,00021	-36,78		
Óleo_167	ID#02	7,53	0,07578	-11,20	0,00404	-23,94	0,00034	-34,69		
Óleo_168	ID#02	6,90	0,07158	-11,45	0,00498	-23,03	0,00016	-37,96		
Óleo_169	ID#02	6,44	0,08244	-10,84	0,00344	-24,63	0,00074	-31,31		
Óleo_170	ID#02	4,27	0,06193	-12,08	0,00313	-25,04	0,00010	-40,00		
Óleo_171	ID#02	6,40	0,04190	-13,78	0,00237	-26,25	0,00012	-39,21		
Óleo_172	ID#02	6,81	0,05939	-12,26	0,00186	-27,30	0,00013	-38,86		
Óleo_173	ID#02	7,96	0,05144	-12,89	0,00438	-23,59	0,00013	-38,86		
Óleo_174	ID#02	6,53	0,05461	-12,63	0,00197	-27,06	0,00008	-40,97		
Óleo_175	ID#02	8,90	0,05155	-12,88	0,00432	-23,65	0,00009	-40,46		
Óleo_176	ID#02	7,63	0,06772	-11,69	0,00527	-22,78	0,00060	-32,22		
Óleo_177	ID#02	4,54	0,12047	-9,19	0,00354	-24,51	0,00030	-35,23		
Óleo_178	ID#02	6,03	0,05258	-12,79	0,00321	-24,93	0,00016	-37,96		
Óleo_179	ID#02	4,01	0,08308	-10,81	0,00354	-24,51	0,00020	-36,99		
Óleo_180	ID#02	5,13	0,05776	-12,38	0,00275	-25,61	0,00012	-39,21		
Óleo_181	ID#02	8,29	0,06011	-12,21	0,00524	-22,81	0,00013	-38,86		
Óleo_182	ID#02	7,10	0,05333	-12,73	0,00346	-24,61	0,00021	-36,78		
Óleo_183	ID#02	5,85	0,06016	-12,21	0,00285	-25,45	0,00012	-39,21		
Óleo_184	ID#02	6,38	0,06541	-11,84	0,00328	-24,84	0,00019	-37,21		
Óleo_185	ID#02	6,24	0,06028	-12,20	0,00326	-24,87	0,00014	-38,54		
Óleo_186	ID#02	5,99	0,10463	-9,80	0,00384	-24,16	0,00021	-36,78		
Óleo_187	ID#02	5,05	0,07265	-11,39	0,00404	-23,94	0,00019	-37,21		
Óleo_188	ID#02	6,51	0,07717	-11,13	0,00452	-23,45	0,00013	-38,86		
Óleo_189	ID#02	5,19	0,09873	-10,06	0,00449	-23,48	0,00019	-37,21		
Óleo_190	ID#02	5,54	0,08033	-10,95	0,00418	-23,79	0,00021	-36,78		
AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
---------------	--------	----------------------	--------------------	-------------------------------	----------------------	--------------------------	---------------------------	-----------------------------	-------------	------------
Óleo_191	ID#02	FQ2W	20/09/2009	12:11:39	3X3	632	2813	20,02	Refined Lee	0,13552517
Óleo_192	ID#02	FQ2W	20/09/2009	12:11:39	3X3	606	2783	20,05	Refined Lee	0,15983073
Óleo_193	ID#02	FQ2W	20/09/2009	12:11:39	3X3	641	2950	19,88	Refined Lee	0,17567274
Óleo_194	ID#02	FQ2W	20/09/2009	12:11:39	3X3	630	2878	19,95	Refined Lee	0,15049913
Óleo_195	ID#02	FQ2W	20/09/2009	12:11:39	3X3	641	2929	19,90	Refined Lee	0,17003038
Óleo_196	ID#02	FQ2W	20/09/2009	12:11:39	3X3	714	2865	19,97	Refined Lee	0,17914497
Óleo_197	ID#02	FQ2W	20/09/2009	12:11:39	3X3	652	2882	19,95	Refined Lee	0,19194878
Óleo_198	ID#02	FQ2W	20/09/2009	12:11:39	3X3	494	2644	20,19	Refined Lee	0,17263455
Óleo_199	ID#02	FQ2W	20/09/2009	12:11:39	3X3	545	2399	20,43	Refined Lee	0,16699219
Óleo_200	ID#02	FQ2W	20/09/2009	12:11:39	3X3	318	2722	20,11	Refined Lee	0,13509115
Plataforma_1	ID#02	FQ2W	20/09/2009	12:11:39	3X3	377	2878	19,95	Refined Lee	0,87641059
Plataforma_2	ID#02	FQ2W	20/09/2009	12:11:39	3X3	392	2873	19,96	Refined Lee	0,72623698
Plataforma_3	ID#02	FQ2W	20/09/2009	12:11:39	3X3	421	2886	19,95	Refined Lee	0,80327691
Plataforma_4	ID#02	FQ2W	20/09/2009	12:11:39	3X3	429	2888	19,94	Refined Lee	0,84190538
Plataforma_5	ID#02	FQ2W	20/09/2009	12:11:39	3X3	510	2838	19,99	Refined Lee	0,51855469
Plataforma_6	ID#02	FQ2W	20/09/2009	12:11:39	3X3	514	2830	20,00	Refined Lee	0,74511719
Plataforma_7	ID#02	FQ2W	20/09/2009	12:11:39	3X3	524	2827	20,00	Refined Lee	0,72233073
Plataforma_8	ID#02	FQ2W	20/09/2009	12:11:39	3X3	529	2829	20,00	Refined Lee	0,60427517
Plataforma_9	ID#02	FQ2W	20/09/2009	12:11:39	3X3	536	2829	20,00	Refined Lee	0,72623698
Plataforma_10	ID#02	FQ2W	20/09/2009	12:11:39	3X3	539	2825	20,01	Refined Lee	0,66265191
Plataforma_11	ID#02	FQ2W	20/09/2009	12:11:39	3X3	236	2942	19,89	Refined Lee	0,67632378
Plataforma_12	ID#02	FQ2W	20/09/2009	12:11:39	3X3	391	2881	19,95	Refined Lee	0,84016927
Plataforma_13	ID#02	FQ2W	20/09/2009	12:11:39	3X3	155	2891	19,94	Refined Lee	0,82584635
Plataforma_14	ID#02	FQ2W	20/09/2009	12:11:39	3X3	100	2856	19,98	Refined Lee	0,78895399
Plataforma_15	ID#02	FQ2W	20/09/2009	12:11:39	3X3	90	2853	19,98	Refined Lee	0,76291233
Plataforma_16	ID#02	FQ2W	20/09/2009	12:11:39	3X3	86	2860	19,97	Refined Lee	0,90332031
Plataforma_17	ID#02	FQ2W	20/09/2009	12:11:39	3X3	82	2852	19,98	Refined Lee	0,72992622
Plataforma_18	ID#02	FQ2W	20/09/2009	12:11:39	3X3	89	2848	19,98	Refined Lee	0,78005642
Plataforma_19	ID#02	FQ2W	20/09/2009	12:11:39	3X3	75	2857	19,97	Refined Lee	0,78114149
Plataforma_20	ID#02	FQ2W	20/09/2009	12:11:39	3X3	140	2666	20,17	Refined Lee	0,57845052
Plataforma_21	ID#02	FQ2W	20/09/2009	12:11:39	3X3	93	2728	20,10	Refined Lee	0,46278212
Plataforma_22	ID#02	FQ2W	20/09/2009	12:11:39	3X3	143	2656	20,18	Refined Lee	0,57693142
Plataforma_23	ID#02	FQ2W	20/09/2009	12:11:39	3X3	390	2886	19,95	Refined Lee	0,76204427
Plataforma_24	ID#02	FQ2W	20/09/2009	12:11:39	3X3	258	2567	20,27	Refined Lee	0,78483073
Plataforma_25	ID#02	FQ2W	20/09/2009	12:11:39	3X3	281	2569	20,26	Refined Lee	0,59754774
Plataforma_26	ID#02	FQ2W	20/09/2009	12:11:39	3X3	230	2556	20,28	Refined Lee	0,78049045
Plataforma_27	ID#02	FQ2W	20/09/2009	12:11:39	3X3	247	2561	20,27	Refined Lee	0,82150608
Plataforma_28	ID#02	FQ2W	20/09/2009	12:11:39	3X3	253	2565	20,27	Refined Lee	0,84082031

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Óleo_191	ID#02	4,64	0,09575	-10,19	0,00246	-26,09	0,00021	-36,78
Óleo_192	ID#02	5,36	0,08707	-10,60	0,00440	-23,57	0,00015	-38,24
Óleo_193	ID#02	5,32	0,07699	-11,14	0,00375	-24,26	0,00019	-37,21
Óleo_194	ID#02	7,72	0,07307	-11,36	0,00409	-23,88	0,00020	-36,99
Óleo_195	ID#02	5,89	0,07540	-11,23	0,00321	-24,93	0,00015	-38,24
Óleo_196	ID#02	5,69	0,07151	-11,46	0,00393	-24,06	0,00025	-36,02
Óleo_197	ID#02	7,22	0,08172	-10,88	0,00368	-24,34	0,00025	-36,02
Óleo_198	ID#02	5,36	0,05770	-12,39	0,00305	-25,16	0,00015	-38,24
Óleo_199	ID#02	6,03	0,07892	-11,03	0,00379	-24,21	0,00013	-38,86
Óleo_200	ID#02	4,89	0,11509	-9,39	0,00425	-23,72	0,00024	-36,20
Plataforma_1	ID#02	45,62	0,67771	-1,69	0,61594	-2,10	0,27431	-5,62
Plataforma_2	ID#02	32,31	0,44791	-3,49	0,19503	-7,10	0,06136	-12,12
Plataforma_3	ID#02	53,94	0,58081	-2,36	0,69903	-1,56	0,13780	-8,61
Plataforma_4	ID#02	45,48	0,57487	-2,40	0,32592	-4,87	0,13729	-8,62
Plataforma_5	ID#02	20,91	0,55721	-2,54	0,09747	-10,11	0,02911	-15,36
Plataforma_6	ID#02	39,48	0,54486	-2,64	0,25044	-6,01	0,08500	-10,71
Plataforma_7	ID#02	30,05	0,46084	-3,36	0,25908	-5,87	0,09642	-10,16
Plataforma_8	ID#02	23,45	0,62147	-2,07	0,18676	-7,29	0,03130	-15,04
Plataforma_9	ID#02	36,20	0,61779	-2,09	0,05019	-12,99	0,03148	-15,02
Plataforma_10	ID#02	27,78	0,42014	-3,77	0,17191	-7,65	0,03300	-14,81
Plataforma_11	ID#02	27,92	0,42860	-3,68	0,10842	-9,65	0,07020	-11,54
Plataforma_12	ID#02	42,49	0,61752	-2,09	0,26755	-5,73	0,11384	-9,44
Plataforma_13	ID#02	39,03	0,78667	-1,04	0,35192	-4,54	0,29178	-5,35
Plataforma_14	ID#02	45,87	0,62461	-2,04	0,54788	-2,61	0,08221	-10,85
Plataforma_15	ID#02	40,22	0,72744	-1,38	0,52027	-2,84	0,10179	-9,92
Plataforma_16	ID#02	22,71	0,56592	-2,47	0,18589	-7,31	0,07734	-11,12
Plataforma_17	ID#02	33,78	0,59038	-2,29	0,23506	-6,29	0,10312	-9,87
Plataforma_18	ID#02	38,92	0,46929	-3,29	0,27680	-5,58	0,07639	-11,17
Plataforma_19	ID#02	56,03	0,85302	-0,69	125,99400	21,00	0,17840	-7,49
Plataforma_20	ID#02	20,83	0,39107	-4,08	0,05900	-12,29	0,04339	-13,63
Plataforma_21	ID#02	15,01	0,75066	-1,25	0,03337	-14,77	0,02809	-15,51
Plataforma_22	ID#02	20,63	0,47627	-3,22	0,04921	-13,08	0,07030	-11,53
Plataforma_23	ID#02	34,29	0,47286	-3,25	0,14550	-8,37	0,13998	-8,54
Plataforma_24	ID#02	39,83	0,83489	-0,78	0,31694	-4,99	0,17193	-7,65
Plataforma_25	ID#02	22,78	0,45992	-3,37	0,02414	-16,17	0,08949	-10,48
Plataforma_26	ID#02	39,33	0,50027	-3,01	0,42867	-3,68	0,10480	-9,80
Plataforma_27	ID#02	39,21	0,51855	-2,85	0,20945	-6,79	0,09225	-10,35
Plataforma_28	ID#02	44,17	0,53841	-2,69	0,38959	-4,09	0,06122	-12,13

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Plataforma_29	ID#02	FQ2W	20/09/2009	12:11:39	3X3	250	2581	20,25	Refined Lee	0,85861545
Plataforma_30	ID#02	FQ2W	20/09/2009	12:11:39	3X3	552	2658	20,18	Refined Lee	0,86338976
Plataforma_31	ID#02	FQ2W	20/09/2009	12:11:39	3X3	676	2717	20,12	Refined Lee	0,63487413
Plataforma_32	ID#02	FQ2W	20/09/2009	12:11:39	3X3	562	1550	21,25	Refined Lee	0,68695747
Plataforma_33	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1283	1836	20,98	Refined Lee	0,76833767
Plataforma_34	ID#02	FQ2W	20/09/2009	12:11:39	3X3	397	2882	19,95	Refined Lee	0,75661892
Plataforma_35	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1540	1837	20,98	Refined Lee	0,88161892
Plataforma_36	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1265	2086	20,74	Refined Lee	0,75618490
Plataforma_37	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1272	2084	20,74	Refined Lee	0,80262587
Plataforma_38	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1265	2081	20,75	Refined Lee	0,80588108
Plataforma_39	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1265	2074	20,75	Refined Lee	0,81608073
Plataforma_40	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1276	2085	20,74	Refined Lee	0,62120226
Plataforma_41	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1269	2070	20,75	Refined Lee	0,77376302
Plataforma_42	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1270	2065	20,76	Refined Lee	0,78287760
Plataforma_43	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1281	2084	20,74	Refined Lee	0,65896267
Plataforma_44	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1287	2085	20,74	Refined Lee	0,45106337
Plataforma_45	ID#02	FQ2W	20/09/2009	12:11:39	3X3	391	2891	19,94	Refined Lee	0,73079427
Plataforma_46	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1278	2064	20,76	Refined Lee	0,46907552
Plataforma_47	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1777	1541	21,26	Refined Lee	0,71516927
Plataforma_48	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1763	1532	21,27	Refined Lee	0,83582899
Plataforma_49	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1785	1514	21,29	Refined Lee	0,77267795
Plataforma_50	ID#02	FQ2W	20/09/2009	12:11:39	3X3	111	2474	20,36	Refined Lee	0,76052517
Plataforma_51	ID#02	FQ2W	20/09/2009	12:11:39	3X3	156	2411	20,42	Refined Lee	0,57693142
Plataforma_52	ID#02	FQ2W	20/09/2009	12:11:39	3X3	113	2468	20,36	Refined Lee	0,79177517
Plataforma_53	ID#02	FQ2W	20/09/2009	12:11:39	3X3	106	2464	20,37	Refined Lee	0,80957031
Plataforma_54	ID#02	FQ2W	20/09/2009	12:11:39	3X3	113	2461	20,37	Refined Lee	0,77289497
Plataforma_55	ID#02	FQ2W	20/09/2009	12:11:39	3X3	29	2325	20,51	Refined Lee	0,42740885
Plataforma_56	ID#02	FQ2W	20/09/2009	12:11:39	3X3	401	2883	19,95	Refined Lee	0,76855469
Plataforma_57	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1658	2809	20,02	Refined Lee	0,47384983
Plataforma_58	ID#02	FQ2W	20/09/2009	12:11:39	3X3	441	2619	20,22	Refined Lee	0,74837240
Plataforma_59	ID#02	FQ2W	20/09/2009	12:11:39	3X3	553	3192	19,63	Refined Lee	0,64637587
Plataforma_60	ID#02	FQ2W	20/09/2009	12:11:39	3X3	551	3201	19,62	Refined Lee	0,52897135
Plataforma_61	ID#02	FQ2W	20/09/2009	12:11:39	3X3	543	3187	19,64	Refined Lee	0,62228733
Plataforma_62	ID#02	FQ2W	20/09/2009	12:11:39	3X3	560	3195	19,63	Refined Lee	0,58300781
Plataforma_63	ID#02	FQ2W	20/09/2009	12:11:39	3X3	566	3197	19,63	Refined Lee	0,73882378
Plataforma_64	ID#02	FQ2W	20/09/2009	12:11:39	3X3	547	3188	19,64	Refined Lee	0,77159288
Plataforma_65	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1559	3078	19,75	Refined Lee	0,42827691
Plataforma_66	ID#02	FQ2W	20/09/2009	12:11:39	3X3	741	2904	19,93	Refined Lee	0,59082031

ANEXO 1 - BANCO DE DADOS DAS	CLASSES DE AMOSTRAS	DA IMAGEM ID#02
------------------------------	---------------------	-----------------

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Plataforma_29	ID#02	46,14	0,41915	-3,78	0,23739	-6,25	0,18570	-7,31
Plataforma_30	ID#02	43,33	0,75562	-1,22	0,35296	-4,52	0,75715	-1,21
Plataforma_31	ID#02	25,32	0,50487	-2,97	0,10804	-9,66	0,05911	-12,28
Plataforma_32	ID#02	27,55	0,70926	-1,49	0,10065	-9,97	0,01828	-17,38
Plataforma_33	ID#02	36,61	0,61935	-2,08	0,16202	-7,90	0,10060	-9,97
Plataforma_34	ID#02	36,16	0,85212	-0,69	0,47162	-3,26	0,08483	-10,71
Plataforma_35	ID#02	48,53	0,42504	-3,72	0,31229	-5,05	0,12874	-8,90
Plataforma_36	ID#02	39,23	0,71271	-1,47	0,46507	-3,32	0,13054	-8,84
Plataforma_37	ID#02	41,65	0,68423	-1,65	0,75866	-1,20	0,20588	-6,86
Plataforma_38	ID#02	40,89	0,43965	-3,57	0,31196	-5,06	0,10828	-9,65
Plataforma_39	ID#02	42,51	0,60825	-2,16	0,46020	-3,37	0,14443	-8,40
Plataforma_40	ID#02	27,00	0,54458	-2,64	0,06151	-12,11	0,01636	-17,86
Plataforma_41	ID#02	35,54	0,36898	-4,33	0,17450	-7,58	0,09859	-10,06
Plataforma_42	ID#02	36,28	0,45636	-3,41	0,14729	-8,32	0,23184	-6,35
Plataforma_43	ID#02	27,33	0,37972	-4,21	0,15495	-8,10	0,04648	-13,33
Plataforma_44	ID#02	16,59	0,45914	-3,38	0,03906	-14,08	0,01065	-19,73
Plataforma_45	ID#02	29,83	0,68671	-1,63	0,19271	-7,15	0,17962	-7,46
Plataforma_46	ID#02	16,12	0,45429	-3,43	0,02106	-16,77	0,04374	-13,59
Plataforma_47	ID#02	56,44	0,55682	-2,54	0,63414	-1,98	0,04209	-13,76
Plataforma_48	ID#02	48,41	0,51961	-2,84	0,39645	-4,02	0,28546	-5,44
Plataforma_49	ID#02	35,34	185,24600	22,68	0,19150	-7,18	0,69984	-1,55
Plataforma_50	ID#02	42,72	0,83017	-0,81	0,49567	-3,05	0,09499	-10,22
Plataforma_51	ID#02	21,18	0,52221	-2,82	0,03197	-14,95	0,03994	-13,99
Plataforma_52	ID#02	44,64	0,43858	-3,58	0,42981	-3,67	0,06429	-11,92
Plataforma_53	ID#02	40,54	0,54254	-2,66	0,34646	-4,60	0,09034	-10,44
Plataforma_54	ID#02	37,69	0,43206	-3,64	0,21917	-6,59	0,04031	-13,95
Plataforma_55	ID#02	17,69	0,40336	-3,94	0,00315	-25,02	0,00027	-35,69
Plataforma_56	ID#02	38,02	0,87912	-0,56	0,28629	-5,43	0,09582	-10,19
Plataforma_57	ID#02	15,93	0,46505	-3,33	0,04560	-13,41	0,03780	-14,23
Plataforma_58	ID#02	33,08	0,34713	-4,60	0,07618	-11,18	0,05820	-12,35
Plataforma_59	ID#02	24,89	0,75443	-1,22	0,31268	-5,05	0,09045	-10,44
Plataforma_60	ID#02	19,68	0,65251	-1,85	0,16942	-7,71	0,08712	-10,60
Plataforma_61	ID#02	25,97	0,52005	-2,84	0,20441	-6,89	0,04518	-13,45
Plataforma_62	ID#02	22,98	0,43651	-3,60	0,08037	-10,95	0,01845	-17,34
Plataforma_63	ID#02	38,25	0,43184	-3,65	0,37559	-4,25	0,06999	-11,55
Plataforma_64	ID#02	37,47	0,44280	-3,54	0,69024	-1,61	0,22550	-6,47
Plataforma_65	ID#02	14,27	0,56994	-2,44	0,03355	-14,74	0,02968	-15,28
Plataforma_66	ID#02	23,70	0,53594	-2,71	0,10467	-9,80	0,14922	-8,26

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Plataforma_67	ID#02	FQ2W	20/09/2009	12:11:39	3X3	413	2887	19,94	Refined Lee	0,76529948
Plataforma_68	ID#02	FQ2W	20/09/2009	12:11:39	3X3	723	2899	19,93	Refined Lee	0,87315538
Plataforma_69	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1544	1835	20,98	Refined Lee	0,91373698
Plataforma_70	ID#02	FQ2W	20/09/2009	12:11:39	3X3	107	2860	19,97	Refined Lee	0,80588108
Plataforma_71	ID#02	FQ2W	20/09/2009	12:11:39	3X3	234	2557	20,28	Refined Lee	0,77137587
Plataforma_72	ID#02	FQ2W	20/09/2009	12:11:39	3X3	242	2559	20,27	Refined Lee	0,77137587
Plataforma_73	ID#02	FQ2W	20/09/2009	12:11:39	3X3	424	2875	19,96	Refined Lee	0,74837240
Plataforma_74	ID#02	FQ2W	20/09/2009	12:11:39	3X3	398	2875	19,96	Refined Lee	0,64550781
Plataforma_75	ID#02	FQ2W	20/09/2009	12:11:39	3X3	381	2879	19,95	Refined Lee	0,82237413
Mar_1	ID#02	FQ2W	20/09/2009	12:11:39	3X3	957	2689	20,14	Refined Lee	0,11664497
Mar_2	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1139	2139	20,69	Refined Lee	0,08604601
Mar_3	ID#02	FQ2W	20/09/2009	12:11:39	3X3	253	3614	19,19	Refined Lee	0,12966580
Mar_4	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1368	1928	20,89	Refined Lee	0,09277344
Mar_5	ID#02	FQ2W	20/09/2009	12:11:39	3X3	831	3019	19,81	Refined Lee	0,07411024
Mar_6	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1338	2592	20,24	Refined Lee	0,07259115
Mar_7	ID#02	FQ2W	20/09/2009	12:11:39	3X3	816	2837	19,99	Refined Lee	0,11208767
Mar_8	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1436	2318	20,51	Refined Lee	0,08365885
Mar_9	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1268	2413	20,42	Refined Lee	0,11512587
Mar_10	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1528	2722	20,11	Refined Lee	0,08821615
Mar_11	ID#02	FQ2W	20/09/2009	12:11:39	3X3	968	1514	21,29	Refined Lee	0,08843316
Mar_12	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1723	2769	20,06	Refined Lee	0,10167101
Mar_13	ID#02	FQ2W	20/09/2009	12:11:39	3X3	691	3178	19,65	Refined Lee	0,09906684
Mar_14	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1972	2756	20,08	Refined Lee	0,07845052
Mar_15	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1693	2460	20,37	Refined Lee	0,08582899
Mar_16	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1231	2357	20,47	Refined Lee	0,07150608
Mar_17	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1038	1814	21,00	Refined Lee	0,11555990
Mar_18	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1012	2921	19,91	Refined Lee	0,10145399
Mar_19	ID#02	FQ2W	20/09/2009	12:11:39	3X3	2103	2188	20,64	Refined Lee	0,09407552
Mar_20	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1627	2389	20,44	Refined Lee	0,09060330
Mar_21	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1212	2706	20,13	Refined Lee	0,12141927
Mar_22	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1137	2511	20,32	Refined Lee	0,09299045
Mar_23	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1774	2540	20,29	Refined Lee	0,08474392
Mar_24	ID#02	FQ2W	20/09/2009	12:11:39	3X3	2182	2513	20,32	Refined Lee	0,12510851
Mar_25	ID#02	FQ2W	20/09/2009	12:11:39	3X3	2210	2781	20,05	Refined Lee	0,08865017
Mar_26	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1580	2049	20,78	Refined Lee	0,08951823
Mar_27	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1255	2786	20,05	Refined Lee	0,08257378
Mar_28	ID#02	FQ2W	20/09/2009	12:11:39	3X3	2043	2989	19,84	Refined Lee	0,09537760
Mar_29	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1831	3092	19,73	Refined Lee	0,11143663

ANEXO 1 - BANCO DE DADOS DAS	CLASSES DE AMOSTRAS	DA IMAGEM ID#02
------------------------------	---------------------	-----------------

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Plataforma_67	ID#02	42,80	0,68270	-1,66	100,50700	20,02	0,08082	-10,92
Plataforma_68	ID#02	44,07	100,01800	20,00	0,59620	-2,25	0,18230	-7,39
Plataforma_69	ID#02	48,15	0,38081	-4,19	0,26944	-5,70 0,20399		-6,90
Plataforma_70	ID#02	45,01	0,70191	-1,54	0,53988	-2,68	0,19455	-7,11
Plataforma_71	ID#02	37,94	0,56565	-2,47	0,27390	-5,62	0,06360	-11,97
Plataforma_72	ID#02	34,13	0,44216	-3,54	0,16131	-7,92	0,09550	-10,20
Plataforma_73	ID#02	35,83	0,45620	-3,41	0,11948	-9,23	0,04009	-13,97
Plataforma_74	ID#02	26,65	0,39932	-3,99	0,08630	-10,64	0,07489	-11,26
Plataforma_75	ID#02	41,79	0,89770	-0,47	0,43791	-3,59	0,07848	-11,05
Mar_1	ID#02	3,74	0,15880	-7,99	0,00567	-22,46	0,00031	-35,09
Mar_2	ID#02	3,54	0,25388	-5,95	0,00368	-24,34	0,00018	-37,45
Mar_3	ID#02	4,35	0,25135	-6,00	0,00692	-21,60	0,00073	-31,37
Mar_4	ID#02	2,98	0,17382	-7,60	0,00360	-24,44	0,00078	-31,08
Mar_5	ID#02	2,98	0,33346	-4,77	0,00490	-23,10	0,00039	-34,09
Mar_6	ID#02	2,06	0,21804	-6,61	0,00382	-24,18	0,00026	-35,85
Mar_7	ID#02	5,15	0,21083	-6,76	0,00535	-22,72	0,00027	-35,69
Mar_8	ID#02	3,25	0,22276	-6,52	0,00264	-25,78	0,00037	-34,32
Mar_9	ID#02	3,97	0,19763	-7,04	0,00581	-22,36	0,00024	-36,20
Mar_10	ID#02	3,35	0,21682	-6,64	0,00411	-23,86	0,00036	-34,44
Mar_11	ID#02	3,86	0,27743	-5,57	0,00212	-26,74	0,00033	-34,81
Mar_12	ID#02	4,27	0,21384	-6,70	0,00457	-23,40	0,00038	-34,20
Mar_13	ID#02	3,23	0,22857	-6,41	0,00490	-23,10	0,00036	-34,44
Mar_14	ID#02	3,49	0,29273	-5,34	0,00470	-23,28	0,00023	-36,38
Mar_15	ID#02	2,86	0,23651	-6,26	0,00290	-25,38	0,00037	-34,32
Mar_16	ID#02	3,29	0,26780	-5,72	0,00420	-23,77	0,00031	-35,09
Mar_17	ID#02	4,37	0,16791	-7,75	0,00340	-24,69	0,00039	-34,09
Mar_18	ID#02	4,83	0,36391	-4,39	0,00402	-23,96	0,00041	-33,87
Mar_19	ID#02	4,58	0,20977	-6,78	0,00454	-23,43	0,00030	-35,23
Mar_20	ID#02	4,27	0,19208	-7,17	0,00442	-23,55	0,00023	-36,38
Mar_21	ID#02	4,33	0,18022	-7,44	0,00557	-22,54	0,00034	-34,69
Mar_22	ID#02	3,29	0,22067	-6,56	0,00350	-24,56	0,00036	-34,44
Mar_23	ID#02	3,62	0,22627	-6,45	0,00467	-23,31	0,00026	-35,85
Mar_24	ID#02	3,13	0,14793	-8,30	0,00527	-22,78	0,00046	-33,37
Mar_25	ID#02	3,94	0,22975	-6,39	0,00348	-24,58	0,00042	-33,77
Mar_26	ID#02	2,43	0,25096	-6,00	0,00415	-23,82	0,00041	-33,87
Mar_27	ID#02	3,88	0,26032	-5,84	0,00513	-22,90	0,00034	-34,69
Mar_28	ID#02	5,71	0,20516	-6,88	0,00560	-22,52	0,00043	-33,67
Mar_29	ID#02	4,52	0,28836	-5,40	0,00729	-21,37	0,00044	-33,57

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Mar_30	ID#02	FQ2W	20/09/2009	12:11:39	3X3	2263	3081	19,75	Refined Lee	0,10991753
Mar_31	ID#02	FQ2W	20/09/2009	12:11:39	3X3	2325	3343	19,48	Refined Lee	0,13161892
Mar_32	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1468	3182	19,64	Refined Lee	0,09385851
Mar_33	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1023	3157	19,67	Refined Lee	0,09147135
Mar_34	ID#02	FQ2W	20/09/2009	12:11:39	3X3	949	2123	20,70	Refined Lee	0,09255642
Mar_35	ID#02	FQ2W	20/09/2009	12:11:39	3X3	2105	3222	19,60	Refined Lee	0,08127170
Mar_36	ID#02	FQ2W	20/09/2009	12:11:39	3X3	2164	3479	19,33	Refined Lee	0,10753038
Mar_37	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1240	3294	19,53	Refined Lee	0,09407552
Mar_38	ID#02	FQ2W	20/09/2009	12:11:39	3X3	304	3266	19,55	Refined Lee	0,10492622
Mar_39	ID#02	FQ2W	20/09/2009	12:11:39	3X3	143	3477	19,33	Refined Lee	0,10883247
Mar_40	ID#02	FQ2W	20/09/2009	12:11:39	3X3	471	3639	19,16	Refined Lee	0,15744358
Mar_41	ID#02	FQ2W	20/09/2009	12:11:39	3X3	845	3498	19,31	Refined Lee	0,10405816
Mar_42	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1897	3374	19,44	Refined Lee	0,11208767
Mar_43	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1647	3608	19,20	Refined Lee	0,13617622
Mar_44	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1482	3435	19,38	Refined Lee	0,10818142
Mar_45	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1941	2357	20,47	Refined Lee	0,10622830
Mar_46	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1657	3251	19,57	Refined Lee	0,11013455
Mar_47	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1178	3608	19,20	Refined Lee	0,08691406
Mar_48	ID#02	FQ2W	20/09/2009	12:11:39	3X3	521	2186	20,64	Refined Lee	0,09819878
Mar_49	ID#02	FQ2W	20/09/2009	12:11:39	3X3	144	1883	20,94	Refined Lee	0,08930122
Mar_50	ID#02	FQ2W	20/09/2009	12:11:39	3X3	320	1536	21,27	Refined Lee	0,08235677
Mar_51	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1007	3416	19,40	Refined Lee	0,09689670
Mar_52	ID#02	FQ2W	20/09/2009	12:11:39	3X3	2314	2236	20,59	Refined Lee	0,08452691
Mar_53	ID#02	FQ2W	20/09/2009	12:11:39	3X3	620	230	22,46	Refined Lee	0,14073351
Mar_54	ID#02	FQ2W	20/09/2009	12:11:39	3X3	642	3497	19,31	Refined Lee	0,12120226
Mar_55	ID#02	FQ2W	20/09/2009	12:11:39	3X3	993	1235	21,55	Refined Lee	0,09385851
Mar_56	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1082	2462	20,37	Refined Lee	0,08843316
Mar_57	ID#02	FQ2W	20/09/2009	12:11:39	3X3	898	2367	20,46	Refined Lee	0,11490885
Mar_58	ID#02	FQ2W	20/09/2009	12:11:39	3X3	149	3136	19,69	Refined Lee	0,12250434
Mar_59	ID#02	FQ2W	20/09/2009	12:11:39	3X3	316	2072	20,75	Refined Lee	0,09255642
Mar_60	ID#02	FQ2W	20/09/2009	12:11:39	3X3	245	890	21,86	Refined Lee	0,09407552
Mar_61	ID#02	FQ2W	20/09/2009	12:11:39	3X3	86	1639	21,17	Refined Lee	0,08604601
Mar_62	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1163	1705	21,11	Refined Lee	0,09733073
Mar_63	ID#02	FQ2W	20/09/2009	12:11:39	3X3	562	1892	20,93	Refined Lee	0,09798177
Mar_64	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1572	2934	19,90	Refined Lee	0,09863281
Mar_65	ID#02	FQ2W	20/09/2009	12:11:39	3X3	378	378	22,32	Refined Lee	0,12380642
Mar_66	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1898	3618	19,19	Refined Lee	0,11512587
Mar_67	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1397	2898	19,93	Refined Lee	0,10275608

ANEXO 1 - BANCO DE DADOS DAS	CLASSES DE AMOSTRAS	5 DA IMAGEM ID#02
------------------------------	---------------------	-------------------

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Mar_30	ID#02	5,40	0,18568	-7,31	0,00515	-22,88	0,00027	-35,69
Mar_31	ID#02	4,81	0,25645	-5,91	0,00641	-21,93	0,00046	-33,37
Mar_32	ID#02	4,52	0,25085	-6,01	0,00523	-22,81	0,00040	-33,98
Mar_33	ID#02	4,64	0,21402	-6,70	0,00588	-22,31	0,00036	-34,44
Mar_34	ID#02	5,26	0,20962	-6,79	0,00428	-23,69	0,00031	-35,09
Mar_35	ID#02	3,60	0,19392	-7,12	0,00359	-24,45	0,00042	-33,77
Mar_36	ID#02	4,64	0,26009	-5,85	0,00687	-21,63	0,00064	-31,94
Mar_37	ID#02	3,66	0,31239	-5,05	0,00554	-22,56	0,00046	-33,37
Mar_38	ID#02	3,47	0,20700	-6,84	0,00517	-22,87	0,00050	-33,01
Mar_39	ID#02	3,13	0,22390	-6,50	0,00524	-22,81	0,00051	-32,92
Mar_40	ID#02	5,89	0,28427	-5,46	0,00674	-21,71	0,00122	-29,14
Mar_41	ID#02	4,83	0,28269	-5,49	0,00632	-21,99	0,00035	-34,56
Mar_42	ID#02	3,54	0,24928	-6,03	0,00509	-22,93	0,00027	-35,69
Mar_43	ID#02	6,03	0,18988	-7,22	0,00659	-21,81	0,00077	-31,14
Mar_44	ID#02	3,88	0,22446	-6,49	0,00669	-21,75	0,00033	-34,81
Mar_45	ID#02	4,33	0,22604	-6,46	0,00571	-22,43	0,00034	-34,69
Mar_46	ID#02	5,91	0,21771	-6,62	0,00706	-21,51	0,00034	-34,69
Mar_47	ID#02	2,84	0,37639	-4,24	0,00399	-23,99	0,00089	-30,51
Mar_48	ID#02	3,35	0,21011	-6,78	0,00389	-24,10	0,00043	-33,67
Mar_49	ID#02	4,01	0,17200	-7,64	0,00368	-24,34	0,00033	-34,81
Mar_50	ID#02	3,60	0,20514	-6,88	0,00245	-26,11	0,00023	-36,38
Mar_51	ID#02	3,56	0,25330	-5,96	0,00574	-22,41	0,00080	-30,97
Mar_52	ID#02	2,92	0,22502	-6,48	0,00516	-22,87	0,00021	-36,78
Mar_53	ID#02	4,70	0,10740	-9,69	0,00288	-25,41	0,00137	-28,63
Mar_54	ID#02	4,60	0,20928	-6,79	0,00563	-22,49	0,00071	-31,49
Mar_55	ID#02	4,01	0,16459	-7,84	0,00278	-25,56	0,00039	-34,09
Mar_56	ID#02	3,58	0,26053	-5,84	0,00413	-23,84	0,00033	-34,81
Mar_57	ID#02	4,37	0,15322	-8,15	0,00462	-23,35	0,00031	-35,09
Mar_58	ID#02	4,62	0,20173	-6,95	0,00708	-21,50	0,00068	-31,67
Mar_59	ID#02	2,98	0,17197	-7,65	0,00373	-24,28	0,00043	-33,67
Mar_60	ID#02	2,69	0,20943	-6,79	0,00284	-25,47	0,00072	-31,43
Mar_61	ID#02	3,62	0,16291	-7,88	0,00345	-24,62	0,00035	-34,56
Mar_62	ID#02	3,23	0,18185	-7,40	0,00329	-24,83	0,00019	-37,21
Mar_63	ID#02	2,98	0,14049	-8,52	0,00411	-23,86	0,00036	-34,44
Mar_64	ID#02	4,38	0,19604	-7,08	0,00415	-23,82	0,00037	-34,32
Mar_65	ID#02	3,72	0,16044	-7,95	0,00374	-24,27	0,00071	-31,49
Mar_66	ID#02	4,37	0,30051	-5,22	0,00670	-21,74	0,00060	-32,22
Mar_67	ID#02	4,50	0,19648	-7,07	0,00546	-22,63	0,00039	-34,09

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Mar_68	ID#02	FQ2W	20/09/2009	12:11:39	3X3	844	3263	19,56	Refined Lee	0,09559462
Mar_69	ID#02	FQ2W	20/09/2009	12:11:39	3X3	895	1939	20,88	Refined Lee	0,07389323
Mar_70	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1376	3657	19,14	Refined Lee	0,13226997
Mar_71	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1967	2571	20,26	Refined Lee	0,09559462
Mar_72	ID#02	FQ2W	20/09/2009	12:11:39	3X3	438	3285	19,54	Refined Lee	0,08843316
Mar_73	ID#02	FQ2W	20/09/2009	12:11:39	3X3	2339	2649	20,18	Refined Lee	0,10405816
Mar_74	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1807	2081	20,74	Refined Lee	0,11512587
Mar_75	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1214	3023	19,81	Refined Lee	0,08734809
Falso_Alvo_1	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1240	813	21,93	Refined Lee	0,28917101
Falso_Alvo_2	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1268	949	21,81	Refined Lee	0,27463108
Falso_Alvo_3	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1198	989	21,77	Refined Lee	0,42654080
Falso_Alvo_4	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1245	983	21,78	Refined Lee	0,43587240
Falso_Alvo_5	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1234	979	21,78	Refined Lee	0,59472656
Falso_Alvo_6	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1203	1003	21,76	Refined Lee	0,52810330
Falso_Alvo_7	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1203	1029	21,74	Refined Lee	0,48621962
Falso_Alvo_8	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1214	1027	21,74	Refined Lee	0,32649740
Falso_Alvo_9	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1208	1042	21,72	Refined Lee	0,28483073
Falso_Alvo_10	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1729	118	22,55	Refined Lee	0,34841580
Falso_Alvo_11	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1811	84	22,58	Refined Lee	0,50271267
Falso_Alvo_12	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1246	787	21,96	Refined Lee	0,24945747
Falso_Alvo_13	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1753	1472	21,33	Refined Lee	0,52506510
Falso_Alvo_14	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1819	1447	21,35	Refined Lee	0,26638455
Falso_Alvo_15	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1833	1458	21,34	Refined Lee	0,24924045
Falso_Alvo_16	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1845	1419	21,38	Refined Lee	0,26356337
Falso_Alvo_17	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1877	1415	21,38	Refined Lee	0,30631510
Falso_Alvo_18	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1862	1473	21,32	Refined Lee	0,25379774
Falso_Alvo_19	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1859	1457	21,34	Refined Lee	0,27463108
Falso_Alvo_20	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1843	1447	21,35	Refined Lee	0,34906684
Falso_Alvo_21	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1888	1431	21,36	Refined Lee	0,33778212
Falso_Alvo_22	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1760	1493	21,31	Refined Lee	0,49338108
Falso_Alvo_23	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1257	799	21,95	Refined Lee	0,31586372
Falso_Alvo_24	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1767	1473	21,32	Refined Lee	0,26464844
Falso_Alvo_25	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1805	1474	21,32	Refined Lee	0,28721788
Falso_Alvo_26	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1860	1439	21,36	Refined Lee	0,30696615
Falso_Alvo_27	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1766	1441	21,35	Refined Lee	0,29806858
Falso_Alvo_28	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1715	1706	21,10	Refined Lee	0,28070747
Falso_Alvo_29	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1725	1731	21,08	Refined Lee	0,32953559
Falso_Alvo_30	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1759	1689	21,12	Refined Lee	0,28548177

ANEXO 1 - BANCO DE DADOS DAS	CLASSES DE AMOSTRAS	DA IMAGEM ID#02
------------------------------	---------------------	-----------------

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Mar_68	ID#02	3,82	0,23085	-6,37	0,00533	-22,73	0,00045	-33,47
Mar_69	ID#02	2,90	0,21791	-6,62	0,00305	-25,16	0,00032	-34,95
Mar_70	ID#02	4,91	0,25616	-5,91	0,00687	-21,63	0,00114	-29,43
Mar_71	ID#02	3,78	0,13465	-8,71	0,00487	-23,12	0,00035	-34,56
Mar_72	ID#02	2,76	0,29574	-5,29	0,00610	-22,15	0,00052	-32,84
Mar_73	ID#02	5,44	0,20708	-6,84	0,00428	-23,69	0,00034	-34,69
Mar_74	ID#02	4,50	0,11388	-9,44	0,00434	-23,63	0,00030	-35,23
Mar_75	ID#02	3,56	0,19227	-7,16	0,00381	-24,19	0,00026	-35,85
Falso_Alvo_1	ID#02	12,65	0,02085	-16,81	0,00208	-26,82	0,00021	-36,78
Falso_Alvo_2	ID#02	9,11	0,02385	-16,23	0,00123	-29,10	0,00022	-36,58
Falso_Alvo_3	ID#02	16,51	0,01029	-19,88	0,00227	-26,44	0,00018	-37,45
Falso_Alvo_4	ID#02	16,55	0,01189	-19,25	0,00225	-26,48	0,00025	-36,02
Falso_Alvo_5	ID#02	26,06	0,00568	-22,46	0,00192	-27,17	0,00023	-36,38
Falso_Alvo_6	ID#02	23,66	0,00997	-20,01	0,00321	-24,93	0,00023	-36,38
Falso_Alvo_7	ID#02	20,26	0,01132	-19,46	0,00344	-24,63	0,00032	-34,95
Falso_Alvo_8	ID#02	11,36	0,02584	-15,88	0,00225	-26,48	0,00025	-36,02
Falso_Alvo_9	ID#02	11,32	0,02789	-15,55	0,00203	-26,93	0,00018	-37,45
Falso_Alvo_10	ID#02	13,41	0,04017	-13,96	0,00312	-25,06	0,00146	-28,36
Falso_Alvo_11	ID#02	18,88	0,02713	-15,67	0,00380	-24,20	0,00165	-27,83
Falso_Alvo_12	ID#02	11,01	0,02848	-15,45	0,00195	-27,10	0,00029	-35,38
Falso_Alvo_13	ID#02	21,85	0,00662	-21,79	0,00159	-27,99	0,00015	-38,24
Falso_Alvo_14	ID#02	9,27	0,02236	-16,51	0,00216	-26,66	0,00020	-36,99
Falso_Alvo_15	ID#02	7,74	0,02967	-15,28	0,00174	-27,59	0,00017	-37,70
Falso_Alvo_16	ID#02	8,12	0,02073	-16,83	0,00177	-27,52	0,00013	-38,86
Falso_Alvo_17	ID#02	13,58	0,02079	-16,82	0,00258	-25,88	0,00015	-38,24
Falso_Alvo_18	ID#02	7,69	0,02687	-15,71	0,00198	-27,03	0,00008	-40,97
Falso_Alvo_19	ID#02	8,39	0,02469	-16,07	0,00166	-27,80	0,00016	-37,96
Falso_Alvo_20	ID#02	12,65	0,01928	-17,15	0,00211	-26,76	0,00013	-38,86
Falso_Alvo_21	ID#02	10,81	0,01417	-18,49	0,00176	-27,54	0,00013	-38,86
Falso_Alvo_22	ID#02	17,82	0,01190	-19,24	0,00178	-27,50	0,00048	-33,19
Falso_Alvo_23	ID#02	10,79	0,02133	-16,71	0,00122	-29,14	0,00030	-35,23
Falso_Alvo_24	ID#02	9,44	0,02106	-16,77	0,00149	-28,27	0,00015	-38,24
Falso_Alvo_25	ID#02	10,03	0,02684	-15,71	0,00210	-26,78	0,00018	-37,45
Falso_Alvo_26	ID#02	10,24	0,02313	-16,36	0,00101	-29,96	0,00012	-39,21
Falso_Alvo_27	ID#02	11,47	0,01840	-17,35	0,00168	-27,75	0,00018	-37,45
Falso_Alvo_28	ID#02	10,87	0,02674	-15,73	0,00293	-25,33	0,00016	-37,96
Falso_Alvo_29	ID#02	12,94	0,02091	-16,80	0,00222	-26,54	0,00013	-38,86
Falso_Alvo_30	ID#02	9,13	0,02656	-15,76	0,00225	-26,48	0,00020	-36,99

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Falso_Alvo_31	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1744	1663	21,14	Refined Lee	0,23122830
Falso_Alvo_32	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1730	1711	21,10	Refined Lee	0,38183594
Falso_Alvo_33	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1765	1707	21,10	Refined Lee	0,30609809
Falso_Alvo_34	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1267	828	21,92	Refined Lee	0,33279080
Falso_Alvo_35	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1749	1732	21,08	Refined Lee	0,29741753
Falso_Alvo_36	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1727	1645	21,26	Refined Lee	0,21668837
Falso_Alvo_37	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1716	1658	21,15	Refined Lee	0,24967448
Falso_Alvo_38	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1832	1685	21,12	Refined Lee	0,20041233
Falso_Alvo_39	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1842	1652	21,16	Refined Lee	0,23969184
Falso_Alvo_40	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1711	1634	21,17	Refined Lee	0,23795573
Falso_Alvo_41	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1935	1831	20,99	Refined Lee	0,20605469
Falso_Alvo_42	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1876	1604	21,20	Refined Lee	0,19867622
Falso_Alvo_43	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1661	1636	21,17	Refined Lee	0,23904080
Falso_Alvo_44	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1787	1620	21,19	Refined Lee	0,27332899
Falso_Alvo_45	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1223	934	21,82	Refined Lee	0,54416233
Falso_Alvo_46	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1995	1814	21,00	Refined Lee	0,19867622
Falso_Alvo_47	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1679	1695	21,11	Refined Lee	0,20518663
Falso_Alvo_48	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1928	1380	21,41	Refined Lee	0,17003038
Falso_Alvo_49	ID#02	FQ2W	20/09/2009	12:11:39	3X3	2306	1677	21,13	Refined Lee	0,27115885
Falso_Alvo_50	ID#02	FQ2W	20/09/2009	12:11:39	3X3	2302	1707	21,10	Refined Lee	0,29828559
Falso_Alvo_51	ID#02	FQ2W	20/09/2009	12:11:39	3X3	2313	1694	21,12	Refined Lee	0,35145399
Falso_Alvo_52	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1686	136	22,54	Refined Lee	0,35970052
Falso_Alvo_53	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1781	108	22,56	Refined Lee	0,43457031
Falso_Alvo_54	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1752	100	22,57	Refined Lee	0,43847656
Falso_Alvo_55	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1771	70	22,60	Refined Lee	0,48448351
Falso_Alvo_56	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1204	959	21,80	Refined Lee	0,38075087
Falso_Alvo_57	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1820	48	22,62	Refined Lee	0,48600260
Falso_Alvo_58	ID#02	FQ2W	20/09/2009	12:11:39	3X3	2395	1863	20,96	Refined Lee	0,20952691
Falso_Alvo_59	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1206	877	21,88	Refined Lee	0,23730469
Falso_Alvo_60	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1275	814	21,93	Refined Lee	0,28548177
Falso_Alvo_61	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1212	799	21,95	Refined Lee	0,23752170
Falso_Alvo_62	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1255	820	21,93	Refined Lee	0,33083767
Falso_Alvo_63	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1273	765	21,98	Refined Lee	0,24793837
Falso_Alvo_64	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1251	916	21,84	Refined Lee	0,31174045
Falso_Alvo_65	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1219	1011	21,75	Refined Lee	0,34516059
Falso_Alvo_66	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1218	990	21,77	Refined Lee	0,59667969
Falso_Alvo_67	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1216	951	21,81	Refined Lee	0,33365885
Falso_Alvo_68	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1223	968	21,79	Refined Lee	0,65896267

ANEXO 1 - BANG	CO DE DADOS DAS	CLASSES DE AMOSTRAS	S DA IMAGEM ID#02
----------------	-----------------	---------------------	-------------------

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Falso_Alvo_31	ID#02	8,39	0,03090	-15,10	0,00176	-27,54	0,00013	-38,86
Falso_Alvo_32	ID#02	13,51	0,01234	-19,09	0,00260	-25,85	0,00009	-40,46
Falso_Alvo_33	ID#02	11,06	0,02936	-15,32	0,00235	-26,29	0,00014	-38,54
Falso_Alvo_34	ID#02	11,81	0,02125	-16,73	0,00192	-27,17	0,00036	-34,44
Falso_Alvo_35	ID#02	10,28	0,03012	-15,21	0,00311	-25,07	0,00015	-38,24
Falso_Alvo_36	ID#02	8,92	0,03012	-15,21	0,00244	-26,13	0,00009	-40,46
Falso_Alvo_37	ID#02	9,95	0,02932	-15,33	0,00277	-25,58	0,00016	-37,96
Falso_Alvo_38	ID#02	8,04	0,03933	-14,05	0,00224	-26,50	0,00015	-38,24
Falso_Alvo_39	ID#02	9,19	0,03029	-15,19	0,00238	-26,23	0,00017	-37,70
Falso_Alvo_40	ID#02	8,64	0,02259	-16,46	0,00223	-26,52	0,00010	-40,00
Falso_Alvo_41	ID#02	9,50	0,04257	-13,71	0,00290	-25,38	0,00020	-36,99
Falso_Alvo_42	ID#02	9,50	0,03338	-14,77	0,00261	-25,83	0,00013	-38,86
Falso_Alvo_43	ID#02	6,87	0,03304	-14,81	0,00215	-26,68	0,00018	-37,45
Falso_Alvo_44	ID#02	8,76	0,02985	-15,25	0,00288	-25,41	0,00013	-38,86
Falso_Alvo_45	ID#02	22,33	0,00606	-22,18	0,00249	-26,04	0,00024	-36,20
Falso_Alvo_46	ID#02	7,28	0,04371	-13,59	0,00308	-25,11	0,00016	-37,96
Falso_Alvo_47	ID#02	6,65	0,03500	-14,56	0,00225	-26,48	0,00009	-40,46
Falso_Alvo_48	ID#02	5,42	0,03690	-14,33	0,00122	-29,14	0,00028	-35,53
Falso_Alvo_49	ID#02	11,30	0,02594	-15,86	0,00239	-26,22	0,00010	-40,00
Falso_Alvo_50	ID#02	9,78	0,02623	-15,81	0,00260	-25,85	0,00010	-40,00
Falso_Alvo_51	ID#02	13,70	0,01583	-18,01	0,00323	-24,91	0,00010	-40,00
Falso_Alvo_52	ID#02	12,43	0,03832	-14,17	0,00254	-25,95	0,00125	-29,03
Falso_Alvo_53	ID#02	14,93	0,02669	-15,74	0,00253	-25,97	0,00174	-27,59
Falso_Alvo_54	ID#02	15,34	0,02603	-15,85	0,00273	-25,64	0,00168	-27,75
Falso_Alvo_55	ID#02	15,73	0,02447	-16,11	0,00248	-26,06	0,00152	-28,18
Falso_Alvo_56	ID#02	13,06	0,01152	-19,39	0,00207	-26,84	0,00021	-36,78
Falso_Alvo_57	ID#02	18,64	0,02170	-16,64	0,00298	-25,26	0,00182	-27,40
Falso_Alvo_58	ID#02	8,60	0,03367	-14,73	0,00244	-26,13	0,00012	-39,21
Falso_Alvo_59	ID#02	9,33	0,03485	-14,58	0,00181	-27,42	0,00028	-35,53
Falso_Alvo_60	ID#02	10,19	0,01741	-17,59	0,00195	-27,10	0,00029	-35,38
Falso_Alvo_61	ID#02	11,40	0,02428	-16,15	0,00191	-27,19	0,00027	-35,69
Falso_Alvo_62	ID#02	13,64	0,01471	-18,32	0,00187	-27,28	0,00021	-36,78
Falso_Alvo_63	ID#02	7,29	0,02769	-15,58	0,00195	-27,10	0,00039	-34,09
Falso_Alvo_64	ID#02	11,10	0,01349	-18,70	0,00178	-27,50	0,00024	-36,20
Falso_Alvo_65	ID#02	12,51	0,01599	-17,96	0,00245	-26,11	0,00022	-36,58
Falso_Alvo_66	ID#02	26,51	0,00426	-23,71	0,00239	-26,22	0,00019	-37,21
Falso_Alvo_67	ID#02	14,01	0,02283	-16,41	0,00277	-25,58	0,00029	-35,38
Falso_Alvo_68	ID#02	33,90	0,00389	-24,10	0,00235	-26,29	0,00018	-37,45

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Falso_Alvo_69	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1248	963	21,80	Refined Lee	0,34429253
Falso_Alvo_70	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1234	956	21,80	Refined Lee	0,66547309
Falso_Alvo_71	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1242	938	21,82	Refined Lee	0,59950087
Falso_Alvo_72	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1234	916	21,84	Refined Lee	0,35883247
Falso_Alvo_73	ID#02	FQ2W	20/09/2009	12:11:39	3X3	2273	1663	21,14	Refined Lee	0,24055990
Falso_Alvo_74	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1257	937	21,82	Refined Lee	0,36664497
Falso_Alvo_75	ID#02	FQ2W	20/09/2009	12:11:39	3X3	1205	977	21,78	Refined Lee	0,53895399

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Falso_Alvo_69	ID#02	11,22	0,01790	-17,47	0,00155	-28,10	0,00013	-38,86
Falso_Alvo_70	ID#02	35,69	0,00356	-24,49	0,00258	-25,88	0,00018	-37,45
Falso_Alvo_71	ID#02	25,34	0,00541	-22,67	0,00106	-29,75	0,00024	-36,20
Falso_Alvo_72	ID#02	15,85	0,01508	-18,22	0,00215	-26,68	0,00014	-38,54
Falso_Alvo_73	ID#02	9,19	0,03609	-14,43	0,00238	-26,23	0,00013	-38,86
Falso_Alvo_74	ID#02	17,14	0,01690	-17,72	0,00247	-26,07	0,00032	-34,95
Falso_Alvo_75	ID#02	26,81	0,00862	-20,64	0,00245	-26,11	0,00020	-36,99

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Óleo_1	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1639	4014	35,70	Refined Lee	0,86273872
Óleo_2	ID#04	FQ15W	01/03/2011	00:16:08	3X3	283	1777	34,62	Refined Lee	0,72797309
Óleo_3	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2283	2814	35,12	Refined Lee	0,89095052
Óleo_4	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2246	2812	35,12	Refined Lee	0,82996962
Óleo_5	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2204	2746	35,09	Refined Lee	0,84993490
Óleo_6	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2232	2776	35,11	Refined Lee	0,82519531
Óleo_7	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2141	2716	35,08	Refined Lee	0,89420573
Óleo_8	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2115	2767	35,10	Refined Lee	0,77376302
Óleo_9	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2066	2783	35,11	Refined Lee	0,78114149
Óleo_10	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2024	2554	35,00	Refined Lee	0,86794705
Óleo_11	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2089	2549	35,00	Refined Lee	0,85427517
Óleo_12	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2122	2508	34,98	Refined Lee	0,72428385
Óleo_13	ID#04	FQ15W	01/03/2011	00:16:08	3X3	433	1986	34,72	Refined Lee	0,64095052
Óleo_14	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2158	2474	34,96	Refined Lee	0,83908420
Óleo_15	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2206	2493	34,97	Refined Lee	0,80978733
Óleo_16	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2162	2663	35,05	Refined Lee	0,84884983
Óleo_17	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2236	2519	34,98	Refined Lee	0,84168837
Óleo_18	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2246	2368	34,91	Refined Lee	0,91091580
Óleo_19	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2079	2368	34,91	Refined Lee	0,84407552
Óleo_20	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2110	2322	34,89	Refined Lee	0,90115017
Óleo_21	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2109	2266	34,86	Refined Lee	0,94346788
Óleo_22	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2158	2322	34,89	Refined Lee	0,87163628
Óleo_23	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2209	2346	34,90	Refined Lee	0,92111545
Óleo_24	ID#04	FQ15W	01/03/2011	00:16:08	3X3	552	1766	34,61	Refined Lee	0,72276476
Óleo_25	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2167	2370	34,91	Refined Lee	0,87944878
Óleo_26	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1969	2492	34,97	Refined Lee	0,89268663
Óleo_27	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2150	2207	34,83	Refined Lee	0,87402344
Óleo_28	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1815	2312	34,88	Refined Lee	0,79459635
Óleo_29	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1954	2571	35,01	Refined Lee	0,86404080
Óleo_30	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2020	2662	35,05	Refined Lee	0,68869358
Óleo_31	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1957	2734	35,09	Refined Lee	0,82389323
Óleo_32	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1921	2689	35,06	Refined Lee	0,90549045
Óleo_33	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1888	2643	35,04	Refined Lee	0,88465712
Óleo_34	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1504	3987	35,68	Refined Lee	0,61013455
Óleo_35	ID#04	FQ15W	01/03/2011	00:16:08	3X3	568	1935	34,70	Refined Lee	0,79589844
Óleo_36	ID#04	FQ15W	01/03/2011	00:16:08	3X3	321	1682	34,57	Refined Lee	0,87445747
Óleo_37	ID#04	FQ15W	01/03/2011	00:16:08	3X3	137	1258	34,36	Refined Lee	0,72775608
Óleo_38	ID#04	FQ15W	01/03/2011	00:16:08	3X3	149	1270	34,37	Refined Lee	0,73014323

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Óleo_1	ID#04	41,98	0,00090	-30,45757491	0,00033	-34,81	0,00031	-35,09
Óleo_2	ID#04	29,01	0,00453	-23,43901798	0,00105	-29,79	0,00083	-30,81
Óleo_3	ID#04	50,50	0,00112	-29,50781977	0,00085	-30,71	0,00028	-35,53
Óleo_4	ID#04	45,62	0,00127	-28,96196279	0,00139	-28,57	0,00028	-35,53
Óleo_5	ID#04	49,23	0,00097	-30,13228266	0,00101	-29,96	0,00020	-36,99
Óleo_6	ID#04	44,91	0,00142	-28,47711656	0,00077	-31,14	0,00025	-36,02
Óleo_7	ID#04	44,37	0,00111	-29,54677021	0,00064	-31,94	0,00048	-33,19
Óleo_8	ID#04	36,46	0,00121	-29,1721463	0,00074	-31,31	0,00031	-35,09
Óleo_9	ID#04	47,08	0,00161	-27,93174124	0,00193	-27,14	0,00027	-35,69
Óleo_10	ID#04	43,94	0,00091	-30,40958608	0,00055	-32,60	0,00026	-35,85
Óleo_11	ID#04	43,54	0,00111	-29,54677021	0,00061	-32,15	0,00026	-35,85
Óleo_12	ID#04	29,60	0,00155	-28,09668302	0,00040	-33,98	0,00022	-36,58
Óleo_13	ID#04	27,06	0,00175	-27,56961951	0,00037	-34,32	0,00019	-37,21
Óleo_14	ID#04	45,58	0,00085	-30,70581074	0,00075	-31,25	0,00022	-36,58
Óleo_15	ID#04	41,20	0,00104	-29,82966661	0,00064	-31,94	0,00021	-36,78
Óleo_16	ID#04	46,67	0,00083	-30,80921908	0,00069	-31,61	0,00020	-36,99
Óleo_17	ID#04	39,21	0,00088	-30,55517328	0,00057	-32,44	0,00025	-36,02
Óleo_18	ID#04	45,85	0,00064	-31,93820026	0,00031	-35,09	0,00019	-37,21
Óleo_19	ID#04	40,40	0,00093	-30,31517051	0,00068	-31,67	0,00026	-35,85
Óleo_20	ID#04	46,69	0,00073	-31,3667714	0,00036	-34,44	0,00026	-35,85
Óleo_21	ID#04	50,81	0,00052	-32,83996656	0,00049	-33,10	0,00027	-35,69
Óleo_22	ID#04	43,04	0,00058	-32,36572006	0,00055	-32,60	0,00019	-37,21
Óleo_23	ID#04	47,22	0,00090	-30,45757491	0,00066	-31,80	0,00031	-35,09
Óleo_24	ID#04	30,69	0,00126	-28,99629455	0,00042	-33,77	0,00033	-34,81
Óleo_25	ID#04	44,25	0,00094	-30,26872146	0,00059	-32,29	0,00019	-37,21
Óleo_26	ID#04	46,79	0,00068	-31,67491087	0,00076	-31,19	0,00024	-36,20
Óleo_27	ID#04	42,53	0,00074	-31,3076828	0,00039	-34,09	0,00031	-35,09
Óleo_28	ID#04	36,38	0,00096	-30,17728767	0,00040	-33,98	0,00027	-35,69
Óleo_29	ID#04	46,28	0,00111	-29,54677021	0,00078	-31,08	0,00025	-36,02
Óleo_30	ID#04	34,01	0,00248	-26,05548319	0,00120	-29,21	0,00022	-36,58
Óleo_31	ID#04	38,76	0,00119	-29,24453039	0,00061	-32,15	0,00026	-35,85
Óleo_32	ID#04	48,06	0,00078	-31,07905397	0,00071	-31,49	0,00027	-35,69
Óleo_33	ID#04	46,79	0,00078	-31,07905397	0,00068	-31,67	0,00021	-36,78
Óleo_34	ID#04	27,22	0,00183	-27,3754891	0,00046	-33,37	0,00034	-34,69
Óleo_35	ID#04	37,59	0,00232	-26,34512015	0,00061	-32,15	0,00055	-32,60
Óleo_36	ID#04	40,89	0,00120	-29,20818754	0,00058	-32,37	0,00030	-35,23
Óleo_37	ID#04	30,75	0,00204	-26,90369833	0,00068	-31,67	0,00030	-35,23
Óleo_38	ID#04	31,12	0,00131	-28,82728704	0,00042	-33,77	0,00030	-35,23

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Óleo_39	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1748	2342	34,90	Refined Lee	0,93717448
Óleo_40	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1681	2167	34,81	Refined Lee	0,85601128
Óleo_41	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1648	2055	34,76	Refined Lee	0,83018663
Óleo_42	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1652	2012	34,74	Refined Lee	0,90766059
Óleo_43	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1927	1959	34,71	Refined Lee	0,82801649
Óleo_44	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1625	1864	34,66	Refined Lee	0,94954427
Óleo_45	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1632	1821	34,64	Refined Lee	0,90961372
Óleo_46	ID#04	FQ15W	01/03/2011	00:16:08	3X3	271	1450	34,46	Refined Lee	0,80935330
Óleo_47	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1527	1703	34,58	Refined Lee	0,87250434
Óleo_48	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1608	1755	34,61	Refined Lee	0,85861545
Óleo_49	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1587	1674	34,57	Refined Lee	0,92892795
Óleo_50	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1560	1647	34,56	Refined Lee	0,92220052
Óleo_51	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1644	1610	34,54	Refined Lee	0,90896267
Óleo_52	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1653	1565	34,52	Refined Lee	0,90332031
Óleo_53	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1579	1465	34,47	Refined Lee	0,96213108
Óleo_54	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1603	1496	34,48	Refined Lee	0,93695747
Óleo_55	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1609	1434	34,45	Refined Lee	0,97124566
Óleo_56	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1592	1564	34,51	Refined Lee	0,93478733
Óleo_57	ID#04	FQ15W	01/03/2011	00:16:08	3X3	318	1642	34,55	Refined Lee	0,78157552
Óleo_58	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1527	1308	34,39	Refined Lee	0,92241753
Óleo_59	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1583	1362	34,41	Refined Lee	0,94802517
Óleo_60	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1580	1316	34,39	Refined Lee	0,91417101
Óleo_61	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1462	1225	34,35	Refined Lee	0,92285156
Óleo_62	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1491	939	34,20	Refined Lee	0,94346788
Óleo_63	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1332	1134	34,30	Refined Lee	0,93977865
Óleo_64	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1314	733	34,10	Refined Lee	0,98361545
Óleo_65	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1314	544	34,00	Refined Lee	0,96842448
Óleo_66	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1362	680	34,07	Refined Lee	0,95735677
Óleo_67	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1425	1068	34,27	Refined Lee	0,84667969
Óleo_68	ID#04	FQ15W	01/03/2011	00:16:08	3X3	284	1584	34,52	Refined Lee	0,91503906
Óleo_69	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1461	1002	34,23	Refined Lee	0,96603733
Óleo_70	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1428	956	34,21	Refined Lee	0,96017795
Óleo_71	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1389	727	34,10	Refined Lee	0,97319878
Óleo_72	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1336	601	34,03	Refined Lee	0,96408420
Óleo_73	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1282	423	33,94	Refined Lee	0,92198351
Óleo_74	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1565	1062	34,26	Refined Lee	0,93695747
Óleo_75	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1387	884	34,18	Refined Lee	0,89116753
Óleo_76	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1854	2501	34,97	Refined Lee	0,89963108

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Óleo_39	ID#04	50,28	0,00034	-34,68521083	0,00032	-34,95	0,00024	-36,20
Óleo_40	ID#04	43,43	0,00087	-30,60480747	0,00041	-33,87	0,00052	-32,84
Óleo_41	ID#04	35,75	0,00063	-32,00659451	0,00029	-35,38	0,00019	-37,21
Óleo_42	ID#04	44,70	0,00080	-30,96910013	0,00030	-35,23	0,00026	-35,85
Óleo_43	ID#04	39,58	0,00085	-30,70581074	0,00037	-34,32	0,00024	-36,20
Óleo_44	ID#04	48,13	0,00064	-31,93820026	0,00041	-33,87	0,00028	-35,53
Óleo_45	ID#04	47,45	0,00050	-33,01029996	0,00028	-35,53	0,00020	-36,99
Óleo_46	ID#04	38,25	0,00116	-29,35542011	0,00040	-33,98	0,00030	-35,23
Óleo_47	ID#04	44,29	0,00089	-30,50609993	0,00046	-33,37	0,00031	-35,09
Óleo_48	ID#04	39,64	0,00066	-31,80456064	0,00039	-34,09	0,00028	-35,53
Óleo_49	ID#04	47,24	0,00060	-32,2184875	0,00033	-34,81	0,00037	-34,32
Óleo_50	ID#04	43,97	0,00064	-31,93820026	0,00033	-34,81	0,00024	-36,20
Óleo_51	ID#04	44,76	0,00080	-30,96910013	0,00037	-34,32	0,00029	-35,38
Óleo_52	ID#04	46,47	0,00066	-31,80456064	0,00044	-33,57	0,00023	-36,38
Óleo_53	ID#04	49,76	0,00053	-32,7572413	0,00046	-33,37	0,00040	-33,98
Óleo_54	ID#04	49,33	0,00053	-32,7572413	0,00049	-33,10	0,00021	-36,78
Óleo_55	ID#04	51,38	0,00052	-32,83996656	0,00043	-33,67	0,00050	-33,01
Óleo_56	ID#04	49,37	0,00072	-31,42667504	0,00058	-32,37	0,00033	-34,81
Óleo_57	ID#04	35,52	0,00164	-27,85156152	0,00060	-32,22	0,00026	-35,85
Óleo_58	ID#04	44,85	0,00131	-28,82728704	0,00049	-33,10	0,00044	-33,57
Óleo_59	ID#04	50,28	0,00050	-33,01029996	0,00054	-32,68	0,00036	-34,44
Óleo_60	ID#04	46,85	0,00077	-31,13509275	0,00045	-33,47	0,00030	-35,23
Óleo_61	ID#04	48,56	0,00064	-31,93820026	0,00064	-31,94	0,00024	-36,20
Óleo_62	ID#04	49,31	0,00088	-30,55517328	0,00050	-33,01	0,00041	-33,87
Óleo_63	ID#04	46,61	0,00099	-30,04364805	0,00050	-33,01	0,00045	-33,47
Óleo_64	ID#04	53,47	0,00102	-29,91399828	0,00076	-31,19	0,00066	-31,80
Óleo_65	ID#04	50,21	0,00103	-29,87162775	0,00069	-31,61	0,00055	-32,60
Óleo_66	ID#04	50,21	0,00103	-29,87162775	0,00060	-32,22	0,00082	-30,86
Óleo_67	ID#04	39,78	0,00107	-29,70616222	0,00040	-33,98	0,00040	-33,98
Óleo_68	ID#04	44,93	0,00079	-31,02372909	0,00064	-31,94	0,00045	-33,47
Óleo_69	ID#04	52,35	0,00059	-32,29147988	0,00044	-33,57	0,00047	-33,28
Óleo_70	ID#04	50,07	0,00067	-31,73925197	0,00081	-30,92	0,00033	-34,81
Óleo_71	ID#04	52,10	0,00089	-30,50609993	0,00048	-33,19	0,00060	-32,22
Óleo_72	ID#04	51,51	0,00109	-29,62573502	0,00066	-31,80	0,00070	-31,55
Óleo_73	ID#04	46,22	0,00127	-28,96196279	0,00071	-31,49	0,00058	-32,37
Óleo_74	ID#04	47,90	0,00067	-31,73925197	0,00040	-33,98	0,00050	-33,01
Óleo_75	ID#04	45,24	0,00130	-28,86056648	0,00074	-31,31	0,00024	-36,20
Óleo_76	ID#04	46,10	0,00083	-30,80921908	0,00046	-33,37	0,00025	-36,02

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Óleo_77	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1823	2417	34,93	Refined Lee	0,89355469
Óleo_78	ID#04	FQ15W	01/03/2011	00:16:08	3X3	939	1588	34,53	Refined Lee	0,79155816
Óleo_79	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1041	1771	34,62	Refined Lee	0,86990017
Óleo_80	ID#04	FQ15W	01/03/2011	00:16:08	3X3	591	1828	34,65	Refined Lee	0,89203559
Óleo_81	ID#04	FQ15W	01/03/2011	00:16:08	3X3	610	1802	34,63	Refined Lee	0,95062934
Óleo_82	ID#04	FQ15W	01/03/2011	00:16:08	3X3	433	941	34,20	Refined Lee	0,95692274
Óleo_83	ID#04	FQ15W	01/03/2011	00:16:08	3X3	626	1375	34,42	Refined Lee	0,73339844
Óleo_84	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1825	2466	34,96	Refined Lee	0,92089844
Óleo_85	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1238	267	33,86	Refined Lee	0,98383247
Óleo_86	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1303	490	33,98	Refined Lee	0,94715712
Óleo_87	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1201	134	33,80	Refined Lee	0,94064670
Óleo_88	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1256	320	33,89	Refined Lee	0,95930990
Óleo_89	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1440	916	34,19	Refined Lee	0,97384983
Óleo_90	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1045	1667	34,57	Refined Lee	0,81738281
Óleo_91	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1426	870	34,17	Refined Lee	0,92610677
Óleo_92	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1380	823	34,14	Refined Lee	0,96343316
Óleo_93	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1344	778	34,12	Refined Lee	0,96473524
Óleo_94	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1470	1118	34,29	Refined Lee	0,93391927
Óleo_95	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1501	1049	34,26	Refined Lee	0,95670573
Óleo_96	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1391	1162	34,32	Refined Lee	0,93999566
Óleo_97	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1426	1157	34,31	Refined Lee	0,97363281
Óleo_98	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1554	1279	34,37	Refined Lee	0,91438802
Óleo_99	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1601	1384	34,43	Refined Lee	0,91569010
Óleo_100	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1600	1204	34,34	Refined Lee	0,95865885
Óleo_101	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1040	1611	34,54	Refined Lee	0,81586372
Óleo_102	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1525	1258	34,36	Refined Lee	0,97102865
Óleo_103	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1527	1210	34,34	Refined Lee	0,86555990
Óleo_104	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1496	1224	34,35	Refined Lee	0,91655816
Óleo_105	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1466	1182	34,33	Refined Lee	0,98274740
Óleo_106	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1496	1166	34,32	Refined Lee	0,92415365
Óleo_107	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1601	1594	34,53	Refined Lee	0,90983073
Óleo_108	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1586	1638	34,55	Refined Lee	0,95887587
Óleo_109	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1553	1692	34,58	Refined Lee	0,94780816
Óleo_110	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1433	1119	34,29	Refined Lee	0,91178385
Óleo_111	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1394	1124	34,30	Refined Lee	0,86078559
Óleo_112	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1589	3966	35,67	Refined Lee	0,86382378
Óleo_113	ID#04	FQ15W	01/03/2011	00:16:08	3X3	985	1544	34,50	Refined Lee	0,76247830
Óleo_114	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1567	1025	34,25	Refined Lee	0,91851128

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Óleo_77	ID#04	46,08	0,00081	-30,91514981	0,00050	-33,01	0,00023	-36,38
Óleo_78	ID#04	35,85	0,00118	-29,28117993	0,00087	-30,60	0,00026	-35,85
Óleo_79	ID#04	42,96	0,00198	-27,0333481	0,00103	-29,87	0,00037	-34,32
Óleo_80	ID#04	45,58	0,00090	-30,45757491	0,00073	-31,37	0,00039	-34,09
Óleo_81	ID#04	48,92	0,00060	-32,2184875	0,00035	-34,56	0,00028	-35,53
Óleo_82	ID#04	52,98	0,00091	-30,40958608	0,00083	-30,81	0,00038	-34,20
Óleo_83	ID#04	33,15	0,00258	-25,88380294	0,00055	-32,60	0,00040	-33,98
Óleo_84	ID#04	49,21	0,00062	-32,07608311	0,00053	-32,76	0,00035	-34,56
Óleo_85	ID#04	54,81	0,00127	-28,96196279	0,00118	-29,28	0,00117	-29,32
Óleo_86	ID#04	49,15	0,00079	-31,02372909	0,00066	-31,80	0,00074	-31,31
Óleo_87	ID#04	48,23	0,00175	-27,56961951	0,00069	-31,61	0,00129	-28,89
Óleo_88	ID#04	50,54	0,00153	-28,15308569	0,00093	-30,32	0,00074	-31,31
Óleo_89	ID#04	52,33	0,00063	-32,00659451	0,00063	-32,01	0,00046	-33,37
Óleo_90	ID#04	39,05	0,00162	-27,90484985	0,00080	-30,97	0,00039	-34,09
Óleo_91	ID#04	44,91	0,00095	-30,22276395	0,00066	-31,80	0,00046	-33,37
Óleo_92	ID#04	49,95	0,00083	-30,80921908	0,00057	-32,44	0,00058	-32,37
Óleo_93	ID#04	50,11	0,00094	-30,26872146	0,00063	-32,01	0,00063	-32,01
Óleo_94	ID#04	45,89	0,00087	-30,60480747	0,00055	-32,60	0,00035	-34,56
Óleo_95	ID#04	54,29	0,00047	-33,27902142	0,00048	-33,19	0,00041	-33,87
Óleo_96	ID#04	48,90	0,00072	-31,42667504	0,00062	-32,08	0,00033	-34,81
Óleo_97	ID#04	51,92	0,00060	-32,2184875	0,00048	-33,19	0,00051	-32,92
Óleo_98	ID#04	44,54	0,00074	-31,3076828	0,00055	-32,60	0,00041	-33,87
Óleo_99	ID#04	47,94	0,00052	-32,83996656	0,00058	-32,37	0,00023	-36,38
Óleo_100	ID#04	49,62	0,00089	-30,50609993	0,00076	-31,19	0,00052	-32,84
Óleo_101	ID#04	38,33	0,00170	-27,69551079	0,00082	-30,86	0,00036	-34,44
Óleo_102	ID#04	51,08	0,00061	-32,14670165	0,00028	-35,53	0,00035	-34,56
Óleo_103	ID#04	44,50	0,00080	-30,96910013	0,00047	-33,28	0,00027	-35,69
Óleo_104	ID#04	48,62	0,00079	-31,02372909	0,00052	-32,84	0,00026	-35,85
Óleo_105	ID#04	53,17	0,00054	-32,6760624	0,00041	-33,87	0,00040	-33,98
Óleo_106	ID#04	45,05	0,00102	-29,91399828	0,00046	-33,37	0,00053	-32,76
Óleo_107	ID#04	46,47	0,00071	-31,48741651	0,00041	-33,87	0,00026	-35,85
Óleo_108	ID#04	51,40	0,00052	-32,83996656	0,00039	-34,09	0,00036	-34,44
Óleo_109	ID#04	49,27	0,00050	-33,01029996	0,00042	-33,77	0,00030	-35,23
Óleo_110	ID#04	46,77	0,00087	-30,60480747	0,00059	-32,29	0,00030	-35,23
Óleo_111	ID#04	46,79	0,00093	-30,31517051	0,00049	-33,10	0,00039	-34,09
Óleo_112	ID#04	41,79	0,00080	-30,96910013	0,00055	-32,60	0,00023	-36,38
Óleo_113	ID#04	35,05	0,00165	-27,82516056	0,00088	-30,56	0,00039	-34,09
Óleo_114	ID#04	45,79	0,00086	-30,65501549	0,00047	-33,28	0,00068	-31,67

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Óleo_115	ID#04	FQ15W	01/03/2011	00:16:08	3X3	947	1454	34,46	Refined Lee	0,61404080
Óleo_116	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1095	1892	34,68	Refined Lee	0,83604601
Óleo_117	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1066	1994	34,73	Refined Lee	0,90983073
Óleo_118	ID#04	FQ15W	01/03/2011	00:16:08	3X3	458	1914	34,69	Refined Lee	0,79546441
Óleo_119	ID#04	FQ15W	01/03/2011	00:16:08	3X3	985	2025	34,74	Refined Lee	0,88140191
Óleo_120	ID#04	FQ15W	01/03/2011	00:16:08	3X3	617	1475	34,47	Refined Lee	0,79177517
Óleo_121	ID#04	FQ15W	01/03/2011	00:16:08	3X3	547	1289	34,38	Refined Lee	0,63943142
Óleo_122	ID#04	FQ15W	01/03/2011	00:16:08	3X3	473	1226	34,35	Refined Lee	0,86078559
Óleo_123	ID#04	FQ15W	01/03/2011	00:16:08	3X3	400	883	34,18	Refined Lee	0,89811198
Óleo_124	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1674	4119	35,74	Refined Lee	0,67654080
Óleo_125	ID#04	FQ15W	01/03/2011	00:16:08	3X3	428	987	34,23	Refined Lee	0,86165365
Óleo_126	ID#04	FQ15W	01/03/2011	00:16:08	3X3	325	882	34,17	Refined Lee	0,83213976
Óleo_127	ID#04	FQ15W	01/03/2011	00:16:08	3X3	345	776	34,12	Refined Lee	0,94476997
Óleo_128	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1235	2045	34,75	Refined Lee	0,85188802
Óleo_129	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1304	2074	34,77	Refined Lee	0,78786892
Óleo_130	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1344	2125	34,79	Refined Lee	0,60883247
Óleo_131	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1030	2045	34,75	Refined Lee	0,94042969
Óleo_132	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1284	2148	34,80	Refined Lee	0,79915365
Óleo_133	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1355	1939	34,70	Refined Lee	0,83257378
Óleo_134	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1388	2110	34,78	Refined Lee	0,56000434
Óleo_135	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1676	4169	35,77	Refined Lee	0,71430122
Óleo_136	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1355	2246	34,85	Refined Lee	0,75466580
Óleo_137	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1131	2011	34,73	Refined Lee	0,80523003
Óleo_138	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1072	1927	34,69	Refined Lee	0,77832031
Óleo_139	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1163	2109	34,78	Refined Lee	0,81825087
Óleo_140	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2237	3390	35,40	Refined Lee	0,89811198
Óleo_141	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2170	3347	35,38	Refined Lee	0,86903212
Óleo_142	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2102	3305	35,36	Refined Lee	0,86968316
Óleo_143	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1932	3120	35,27	Refined Lee	0,75944010
Óleo_144	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2040	3256	35,34	Refined Lee	0,82454427
Óleo_145	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2234	3165	35,29	Refined Lee	0,85753038
Óleo_146	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1429	3952	35,67	Refined Lee	0,64963108
Óleo_147	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2214	3303	35,36	Refined Lee	0,87575955
Óleo_148	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2206	3330	35,37	Refined Lee	0,89073351
Óleo_149	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2985	3566	35,48	Refined Lee	0,74772135
Óleo_150	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3090	3776	35,58	Refined Lee	0,69867622
Óleo_151	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3195	953	34,21	Refined Lee	0,86599392
Óleo_152	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3344	970	34,22	Refined Lee	0,89398872

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Óleo_115	ID#04	26,73	0,00212	-26,73664139	0,00049	-33,10	0,00033	-34,81
Óleo_116	ID#04	44,25	0,00106	-29,74694135	0,00075	-31,25	0,00029	-35,38
Óleo_117	ID#04	47,22	0,00111	-29,54677021	0,00056	-32,52	0,00030	-35,23
Óleo_118	ID#04	36,69	0,00153	-28,15308569	0,00075	-31,25	0,00041	-33,87
Óleo_119	ID#04	44,42	0,00082	-30,86186148	0,00043	-33,67	0,00034	-34,69
Óleo_120	ID#04	35,67	0,00240	-26,19788758	0,00075	-31,25	0,00043	-33,67
Óleo_121	ID#04	27,45	0,00373	-24,28291168	0,00089	-30,51	0,00039	-34,09
Óleo_122	ID#04	41,18	0,00206	-26,8613278	0,00075	-31,25	0,00074	-31,31
Óleo_123	ID#04	43,80	0,00164	-27,85156152	0,00076	-31,19	0,00055	-32,60
Óleo_124	ID#04	32,14	0,00162	-27,90484985	0,00049	-33,10	0,00020	-36,99
Óleo_125	ID#04	43,82	0,00181	-27,42321425	0,00110	-29,59	0,00054	-32,68
Óleo_126	ID#04	40,24	0,00151	-28,21023053	0,00079	-31,02	0,00060	-32,22
Óleo_127	ID#04	51,04	0,00071	-31,48741651	0,00054	-32,68	0,00088	-30,56
Óleo_128	ID#04	40,46	0,00095	-30,22276395	0,00049	-33,10	0,00025	-36,02
Óleo_129	ID#04	35,73	0,00145	-28,38631998	0,00062	-32,08	0,00026	-35,85
Óleo_130	ID#04	23,33	0,00208	-26,81936665	0,00044	-33,57	0,00028	-35,53
Óleo_131	ID#04	50,28	0,00059	-32,29147988	0,00055	-32,60	0,00016	-37,96
Óleo_132	ID#04	35,32	0,00155	-28,09668302	0,00057	-32,44	0,00028	-35,53
Óleo_133	ID#04	38,90	0,00080	-30,96910013	0,00051	-32,92	0,00029	-35,38
Óleo_134	ID#04	27,26	0,00369	-24,32973634	0,00064	-31,94	0,00032	-34,95
Óleo_135	ID#04	31,71	0,00193	-27,14442691	0,00104	-29,83	0,00038	-34,20
Óleo_136	ID#04	34,11	0,00231	-26,3638802	0,00065	-31,87	0,00029	-35,38
Óleo_137	ID#04	41,65	0,00125	-29,03089987	0,00058	-32,37	0,00029	-35,38
Óleo_138	ID#04	37,47	0,00139	-28,569852	0,00054	-32,68	0,00030	-35,23
Óleo_139	ID#04	43,62	0,00193	-27,14442691	0,00139	-28,57	0,00027	-35,69
Óleo_140	ID#04	52,55	0,00080	-30,96910013	0,00096	-30,18	0,00028	-35,53
Óleo_141	ID#04	50,17	0,00103	-29,87162775	0,00127	-28,96	0,00033	-34,81
Óleo_142	ID#04	52,78	0,00115	-29,3930216	0,00110	-29,59	0,00027	-35,69
Óleo_143	ID#04	35,44	0,00170	-27,69551079	0,00089	-30,51	0,00037	-34,32
Óleo_144	ID#04	41,55	0,00118	-29,28117993	0,00073	-31,37	0,00022	-36,58
Óleo_145	ID#04	47,98	0,00122	-29,13640169	0,00114	-29,43	0,00032	-34,95
Óleo_146	ID#04	28,99	0,00154	-28,12479279	0,00049	-33,10	0,00028	-35,53
Óleo_147	ID#04	50,42	0,00082	-30,86186148	0,00109	-29,63	0,00022	-36,58
Óleo_148	ID#04	47,45	0,00074	-31,3076828	0,00096	-30,18	0,00024	-36,20
Óleo_149	ID#04	36,01	0,00104	-29,82966661	0,00057	-32,44	0,00029	-35,38
Óleo_150	ID#04	32,49	0,00166	-27,79891912	0,00055	-32,60	0,00024	-36,20
Óleo_151	ID#04	40,89	0,00122	-29,13640169	0,00075	-31,25	0,00074	-31,31
Óleo_152	ID#04	44,05	0,00168	-27,74690718	0,00100	-30,00	0,00038	-34,20

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Óleo_153	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3271	798	34,13	Refined Lee	0,88530816
Óleo_154	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3240	682	34,07	Refined Lee	0,88422309
Óleo_155	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3474	1319	34,39	Refined Lee	0,81803385
Óleo_156	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3304	1100	34,28	Refined Lee	0,81651476
Óleo_157	ID#04	FQ15W	01/03/2011	00:16:08	3X3	28	554	34,01	Refined Lee	0,91243490
Óleo_158	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2756	3290	35,35	Refined Lee	0,87988281
Óleo_159	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2775	3334	35,37	Refined Lee	0,91569010
Óleo_160	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2797	3268	35,34	Refined Lee	0,89898003
Óleo_161	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2834	3296	35,36	Refined Lee	0,93023003
Óleo_162	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2859	3243	35,33	Refined Lee	0,97384983
Óleo_163	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2646	3165	35,29	Refined Lee	0,81412760
Óleo_164	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2719	3205	35,31	Refined Lee	0,87380642
Óleo_165	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2879	3188	35,30	Refined Lee	0,87619358
Óleo_166	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2739	3173	35,30	Refined Lee	0,80826823
Óleo_167	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2803	3089	35,26	Refined Lee	0,91569010
Óleo_168	ID#04	FQ15W	01/03/2011	00:16:08	3X3	24	1026	34,25	Refined Lee	0,79503038
Óleo_169	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2853	3072	35,25	Refined Lee	0,90418837
Óleo_170	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2823	3016	35,22	Refined Lee	0,93825955
Óleo_171	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2791	3012	35,22	Refined Lee	0,92632378
Óleo_172	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2758	3040	35,23	Refined Lee	0,86816406
Óleo_173	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2733	2914	35,17	Refined Lee	0,89898003
Óleo_174	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2808	2959	35,19	Refined Lee	0,87641059
Óleo_175	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2725	2852	35,14	Refined Lee	0,92220052
Óleo_176	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2638	3110	35,27	Refined Lee	0,87337240
Óleo_177	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2839	3347	35,38	Refined Lee	0,90093316
Óleo_178	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2698	2829	35,13	Refined Lee	0,92654080
Óleo_179	ID#04	FQ15W	01/03/2011	00:16:08	3X3	257	1513	34,49	Refined Lee	0,77441406
Óleo_180	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2691	2755	35,10	Refined Lee	0,93630642
Óleo_181	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2633	2779	35,11	Refined Lee	0,90093316
Óleo_182	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2619	2426	34,94	Refined Lee	0,88747830
Óleo_183	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2458	2355	34,90	Refined Lee	0,93023003
Óleo_184	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2397	2340	34,90	Refined Lee	0,89507378
Óleo_185	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2595	2794	35,12	Refined Lee	0,91655816
Óleo_186	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2483	2764	35,10	Refined Lee	0,92588976
Óleo_187	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2546	2803	35,12	Refined Lee	0,89876302
Óleo_188	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2517	2792	35,11	Refined Lee	0,93804253
Óleo_189	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2390	2776	35,11	Refined Lee	0,89029948
Óleo_190	ID#04	FQ15W	01/03/2011	00:16:08	3X3	321	1738	34,60	Refined Lee	0,73708767

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Óleo_153	ID#04	45,95	0,00122	-29,13640169	0,00070	-31,55	0,00041	-33,87
Óleo_154	ID#04	42,02	0,00172	-27,64471553	0,00076	-31,19	0,00077	-31,14
Óleo_155	ID#04	41,34	0,00162	-27,90484985	0,00164	-27,85	0,00038	-34,20
Óleo_156	ID#04	37,63	0,00157	-28,04100348	0,00076	-31,19	0,00040	-33,98
Óleo_157	ID#04	51,26	0,00155	-28,09668302	0,00140	-28,54	0,00099	-30,04
Óleo_158	ID#04	46,18	0,00096	-30,17728767	0,00071	-31,49	0,00036	-34,44
Óleo_159	ID#04	45,03	0,00083	-30,80921908	0,00041	-33,87	0,00046	-33,37
Óleo_160	ID#04	46,59	0,00094	-30,26872146	0,00061	-32,15	0,00039	-34,09
Óleo_161	ID#04	51,83	0,00066	-31,80456064	0,00071	-31,49	0,00034	-34,69
Óleo_162	ID#04	53,25	0,00058	-32,36572006	0,00056	-32,52	0,00044	-33,57
Óleo_163	ID#04	42,67	0,00136	-28,66461092	0,00095	-30,22	0,00036	-34,44
Óleo_164	ID#04	46,77	0,00084	-30,75720714	0,00071	-31,49	0,00025	-36,02
Óleo_165	ID#04	44,38	0,00094	-30,26872146	0,00053	-32,76	0,00025	-36,02
Óleo_166	ID#04	44,25	0,00112	-29,50781977	0,00081	-30,92	0,00025	-36,02
Óleo_167	ID#04	48,97	0,00200	-26,98970004	0,00129	-28,89	0,00067	-31,74
Óleo_168	ID#04	36,06	0,00191	-27,18966633	0,00074	-31,31	0,00034	-34,69
Óleo_169	ID#04	49,01	0,00099	-30,04364805	0,00054	-32,68	0,00024	-36,20
Óleo_170	ID#04	51,01	0,00053	-32,7572413	0,00067	-31,74	0,00024	-36,20
Óleo_171	ID#04	51,18	0,00073	-31,3667714	0,00073	-31,37	0,00037	-34,32
Óleo_172	ID#04	41,32	0,00113	-29,46921557	0,00058	-32,37	0,00036	-34,44
Óleo_173	ID#04	46,57	0,00072	-31,42667504	0,00039	-34,09	0,00024	-36,20
Óleo_174	ID#04	47,80	0,00098	-30,08773924	0,00086	-30,66	0,00023	-36,38
Óleo_175	ID#04	50,91	0,00055	-32,59637311	0,00039	-34,09	0,00029	-35,38
Óleo_176	ID#04	45,50	0,00106	-29,74694135	0,00066	-31,80	0,00035	-34,56
Óleo_177	ID#04	49,27	0,00078	-31,07905397	0,00052	-32,84	0,00024	-36,20
Óleo_178	ID#04	52,37	0,00058	-32,36572006	0,00058	-32,37	0,00024	-36,20
Óleo_179	ID#04	34,27	0,00139	-28,569852	0,00070	-31,55	0,00043	-33,67
Óleo_180	ID#04	51,30	0,00051	-32,92429824	0,00061	-32,15	0,00024	-36,20
Óleo_181	ID#04	48,66	0,00076	-31,19186408	0,00046	-33,37	0,00026	-35,85
Óleo_182	ID#04	44,62	0,00054	-32,6760624	0,00036	-34,44	0,00015	-38,24
Óleo_183	ID#04	49,99	0,00049	-33,0980392	0,00038	-34,20	0,00020	-36,99
Óleo_184	ID#04	45,77	0,00068	-31,67491087	0,00045	-33,47	0,00022	-36,58
Óleo_185	ID#04	44,78	0,00059	-32,29147988	0,00044	-33,57	0,00042	-33,77
Óleo_186	ID#04	48,56	0,00069	-31,61150909	0,00041	-33,87	0,00035	-34,56
Óleo_187	ID#04	53,82	0,00046	-33,37242168	0,00057	-32,44	0,00021	-36,78
Óleo_188	ID#04	59,72	0,00041	-33,87216143	0,00061	-32,15	0,00023	-36,38
Óleo_189	ID#04	49,17	0,00087	-30,60480747	0,00074	-31,31	0,00036	-34,44
Óleo_190	ID#04	37,41	0,00156	-28,06875402	0,00077	-31,14	0,00036	-34,44

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Óleo_191	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2427	2764	35,10	Refined Lee	0,90353733
Óleo_192	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2336	2362	34,91	Refined Lee	0,92697483
Óleo_193	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2458	2635	35,04	Refined Lee	0,92089844
Óleo_194	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2382	2704	35,07	Refined Lee	0,90831163
Óleo_195	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2353	2668	35,05	Refined Lee	0,85709635
Óleo_196	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2295	2672	35,06	Refined Lee	0,89919705
Óleo_197	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2356	2759	35,10	Refined Lee	0,88878038
Óleo_198	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2268	2557	35,00	Refined Lee	0,79720052
Óleo_199	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2330	2646	35,04	Refined Lee	0,86121962
Óleo_200	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2296	2835	35,13	Refined Lee	0,86794705
Plataforma_1	ID#04	FQ15W	01/03/2011	00:16:08	3X3	461	1277	34,37	Refined Lee	0,78982205
Plataforma_2	ID#04	FQ15W	01/03/2011	00:16:08	3X3	261	1771	34,62	Refined Lee	0,85622830
Plataforma_3	ID#04	FQ15W	01/03/2011	00:16:08	3X3	570	1889	34,68	Refined Lee	0,80957031
Plataforma_4	ID#04	FQ15W	01/03/2011	00:16:08	3X3	582	1888	34,67	Refined Lee	0,86382378
Plataforma_5	ID#04	FQ15W	01/03/2011	00:16:08	3X3	8	618	34,04	Refined Lee	0,95540365
Plataforma_6	ID#04	FQ15W	01/03/2011	00:16:08	3X3	574	1909	34,68	Refined Lee	0,76790365
Plataforma_7	ID#04	FQ15W	01/03/2011	00:16:08	3X3	710	3068	35,25	Refined Lee	0,80783420
Plataforma_8	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1147	2149	34,80	Refined Lee	0,65136719
Plataforma_9	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1166	2124	34,79	Refined Lee	0,89355469
Plataforma_10	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1145	2129	34,79	Refined Lee	0,83148872
Plataforma_11	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1017	1741	34,60	Refined Lee	0,94433594
Plataforma_12	ID#04	FQ15W	01/03/2011	00:16:08	3X3	463	1264	34,37	Refined Lee	0,87641059
Plataforma_13	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1030	1783	34,62	Refined Lee	0,80110677
Plataforma_14	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1028	1729	34,60	Refined Lee	0,92415365
Plataforma_15	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1022	1694	34,58	Refined Lee	0,66959635
Plataforma_16	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1376	2131	34,79	Refined Lee	0,73144531
Plataforma_17	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1355	2279	34,87	Refined Lee	0,88292101
Plataforma_18	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1506	2444	34,95	Refined Lee	0,88856337
Plataforma_19	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1333	1837	34,65	Refined Lee	0,79806858
Plataforma_20	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1810	3074	35,25	Refined Lee	0,80305990
Plataforma_21	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2314	1869	34,67	Refined Lee	0,92285156
Plataforma_22	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1921	3289	35,35	Refined Lee	0,81065538
Plataforma_23	ID#04	FQ15W	01/03/2011	00:16:08	3X3	419	830	34,15	Refined Lee	0,88617622
Plataforma_24	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2063	2698	35,07	Refined Lee	0,79785156
Plataforma_25	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2050	2715	35,08	Refined Lee	0,92697483
Plataforma_26	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2002	2828	35,13	Refined Lee	0,94997830
Plataforma_27	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2017	2838	35,14	Refined Lee	0,84993490
Plataforma_28	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1829	2671	35,06	Refined Lee	0,77853733

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Óleo_191	ID#04	47,55	0,00081	-30,91514981	0,00055	-32,60	0,00022	-36,58
Óleo_192	ID#04	48,80	0,00044	-33,56547324	0,00047	-33,28	0,00021	-36,78
Óleo_193	ID#04	47,61	0,00066	-31,80456064	0,00041	-33,87	0,00030	-35,23
Óleo_194	ID#04	53,08	0,00060	-32,2184875	0,00091	-30,41	0,00033	-34,81
Óleo_195	ID#04	47,63	0,00064	-31,93820026	0,00054	-32,68	0,00026	-35,85
Óleo_196	ID#04	46,26	0,00118	-29,28117993	0,00076	-31,19	0,00043	-33,67
Óleo_197	ID#04	47,29	0,00103	-29,87162775	0,00068	-31,67	0,00028	-35,53
Óleo_198	ID#04	37,33	0,00146	-28,35647144	0,00054	-32,68	0,00022	-36,58
Óleo_199	ID#04	41,01	0,00137	-28,63279433	0,00060	-32,22	0,00036	-34,44
Óleo_200	ID#04	56,83	0,00088	-30,55517328	0,00134	-28,73	0,00026	-35,85
Plataforma_1	ID#04	52,94	0,05494	-12,60111345	0,07947	-11,00	0,01774	-17,51
Plataforma_2	ID#04	56,30	0,34682	-4,598958661	0,47492	-3,23	0,23409	-6,31
Plataforma_3	ID#04	56,77	0,60005	-2,218125599	131,85900	21,20	0,29206	-5,35
Plataforma_4	ID#04	47,53	0,29131	-5,356446068	0,26506	-5,77	0,09410	-10,26
Plataforma_5	ID#04	51,85	0,64551	-1,900970254	0,28146	-5,51	0,51113	-2,91
Plataforma_6	ID#04	53,31	0,43832	-3,582087126	0,48886	-3,11	0,10193	-9,92
Plataforma_7	ID#04	48,25	0,44798	-3,487413746	0,25063	-6,01	0,28647	-5,43
Plataforma_8	ID#04	72,12	0,51289	-2,899757684	156,52900	21,95	0,79897	-0,97
Plataforma_9	ID#04	55,09	0,29875	-5,24692086	0,40569	-3,92	0,23900	-6,22
Plataforma_10	ID#04	65,97	0,72010	-1,426071891	151,79400	21,81	0,68326	-1,65
Plataforma_11	ID#04	51,36	0,39765	-4,004990132	0,27556	-5,60	0,20483	-6,89
Plataforma_12	ID#04	56,51	0,43942	-3,571201803	0,63112	-2,00	0,22525	-6,47
Plataforma_13	ID#04	57,10	0,41035	-3,868455622	0,86834	-0,61	0,30993	-5,09
Plataforma_14	ID#04	49,48	0,52431	-2,80411859	0,38277	-4,17	0,20841	-6,81
Plataforma_15	ID#04	28,21	0,85218	-0,694686626	0,10131	-9,94	0,11312	-9,46
Plataforma_16	ID#04	62,22	0,14877	-8,27484637	0,32431	-4,89	0,10166	-9,93
Plataforma_17	ID#04	58,31	0,43764	-3,588829906	0,90293	-0,44	0,36410	-4,39
Plataforma_18	ID#04	49,52	0,07075	-11,50273556	0,07693	-11,14	0,04896	-13,10
Plataforma_19	ID#04	50,91	0,31251	-5,051360811	0,58997	-2,29	0,69695	-1,57
Plataforma_20	ID#04	44,42	0,03295	-14,82144581	0,00699	-21,56	0,00288	-25,41
Plataforma_21	ID#04	45,30	123,11000	20,90293331	0,32958	-4,82	0,28436	-5,46
Plataforma_22	ID#04	62,74	0,31625	-4,999694658	0,35609	-4,48	0,06571	-11,82
Plataforma_23	ID#04	49,21	0,36047	-4,431308735	0,28449	-5,46	0,14604	-8,36
Plataforma_24	ID#04	67,43	0,36701	-4,353221023	0,93367	-0,30	0,28047	-5,52
Plataforma_25	ID#04	55,30	0,55207	-2,580058522	0,97139	-0,13	0,24521	-6,10
Plataforma_26	ID#04	55,89	0,74001	-1,307624115	100,04300	20,00	0,85667	-0,67
Plataforma_27	ID#04	58,39	0,46913	-3,287067938	0,58792	-2,31	0,25137	-6,00
Plataforma_28	ID#04	67,08	0,29073	-5,365101517	0,92186	-0,35	0,42872	-3,68

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Plataforma_29	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1840	2649	35,05	Refined Lee	0,89963108
Plataforma_30	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1878	3028	35,23	Refined Lee	0,65115017
Plataforma_31	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1876	3001	35,22	Refined Lee	0,67003038
Plataforma_32	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2017	2461	34,95	Refined Lee	0,92871094
Plataforma_33	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2234	2872	35,15	Refined Lee	0,82953559
Plataforma_34	ID#04	FQ15W	01/03/2011	00:16:08	3X3	429	1014	34,24	Refined Lee	0,68804253
Plataforma_35	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2271	2902	35,17	Refined Lee	0,96104601
Plataforma_36	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2260	2870	35,15	Refined Lee	0,81456163
Plataforma_37	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2280	2865	35,15	Refined Lee	0,85319010
Plataforma_38	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2313	2859	35,15	Refined Lee	0,77528212
Plataforma_39	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2161	3092	35,26	Refined Lee	0,90657552
Plataforma_40	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2161	3078	35,25	Refined Lee	0,93305122
Plataforma_41	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2612	3252	35,33	Refined Lee	0,91612413
Plataforma_42	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2643	3250	35,33	Refined Lee	0,88530816
Plataforma_43	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2671	3243	35,33	Refined Lee	0,91351997
Plataforma_44	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2698	3233	35,33	Refined Lee	0,79546441
Plataforma_45	ID#04	FQ15W	01/03/2011	00:16:08	3X3	118	1293	34,38	Refined Lee	0,83192274
Plataforma_46	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2899	3293	35,35	Refined Lee	0,90679253
Plataforma_47	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2467	3244	35,33	Refined Lee	0,77723524
Plataforma_48	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3053	3619	35,51	Refined Lee	0,81781684
Plataforma_49	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3139	3027	35,23	Refined Lee	0,86881510
Plataforma_50	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2812	3061	35,24	Refined Lee	0,90353733
Plataforma_51	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2216	3433	35,42	Refined Lee	0,89095052
Plataforma_52	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2186	3445	35,43	Refined Lee	0,81911892
Plataforma_53	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3039	3614	35,51	Refined Lee	0,82758247
Plataforma_54	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2959	2784	35,11	Refined Lee	0,93044705
Plataforma_55	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2566	2811	35,12	Refined Lee	0,94151476
Plataforma_56	ID#04	FQ15W	01/03/2011	00:16:08	3X3	587	1493	34,48	Refined Lee	0,82758247
Plataforma_57	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2664	3558	35,48	Refined Lee	0,85449219
Plataforma_58	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3362	1020	34,24	Refined Lee	0,96408420
Plataforma_59	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3455	1361	34,41	Refined Lee	0,90440538
Plataforma_60	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3460	1389	34,43	Refined Lee	0,88118490
Plataforma_61	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3398	1408	34,44	Refined Lee	0,78830295
Plataforma_62	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3658	1116	34,29	Refined Lee	0,94390191
Plataforma_63	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3119	1242	34,36	Refined Lee	0,87489149
Plataforma_64	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3352	991	34,23	Refined Lee	0,83778212
Plataforma_65	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2182	1141	34,30	Refined Lee	0,73838976
Plataforma_66	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1554	4049	35,71	Refined Lee	0,89203559

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Plataforma_29	ID#04	55,79	0,14245	-8,463375464	0,14232	-8,47	0,12316	-9,10
Plataforma_30	ID#04	70,58	0,15490	-8,099485822	0,95291	-0,21	0,23501	-6,29
Plataforma_31	ID#04	63,21	0,05455	-12,63205245	0,15654	-8,05	0,00867	-20,62
Plataforma_32	ID#04	53,17	0,19221	-7,162240213	0,17544	-7,56	0,09187	-10,37
Plataforma_33	ID#04	61,46	0,31165	-5,063328688	0,79358	-1,00	0,20402	-6,90
Plataforma_34	ID#04	64,23	0,29260	-5,337256782	0,68155	-1,67	0,17527	-7,56
Plataforma_35	ID#04	53,76	0,81349	-0,896477814	100,97400	20,04	0,42664	-3,70
Plataforma_36	ID#04	58,00	0,71568	-1,452811192	107,16800	20,30	0,36554	-4,37
Plataforma_37	ID#04	63,37	0,69780	-1,562690349	200,77400	23,03	0,46005	-3,37
Plataforma_38	ID#04	59,37	0,49221	-3,078495672	102,29200	20,10	0,20402	-6,90
Plataforma_39	ID#04	60,13	0,09694	-10,13496985	0,12327	-9,09	0,06636	-11,78
Plataforma_40	ID#04	51,06	0,16487	-7,828583621	0,71588	-1,45	0,21881	-6,60
Plataforma_41	ID#04	47,63	163,66600	22,13958468	0,74941	-1,25	0,79659	-0,99
Plataforma_42	ID#04	50,69	0,77593	-1,101774566	0,50268	-2,99	0,25153	-5,99
Plataforma_43	ID#04	56,10	0,84345	-0,739406574	117,20100	20,69	0,53479	-2,72
Plataforma_44	ID#04	68,94	0,84274	-0,743063921	157,60000	21,98	0,35896	-4,45
Plataforma_45	ID#04	66,53	0,36973	-4,321153092	0,88272	-0,54	0,49330	-3,07
Plataforma_46	ID#04	54,70	0,43793	-3,585953028	0,36770	-4,35	0,59911	-2,22
Plataforma_47	ID#04	60,65	0,31182	-5,060960328	0,46617	-3,31	0,18824	-7,25
Plataforma_48	ID#04	46,69	0,27030	-5,681539543	0,14215	-8,47	0,04800	-13,19
Plataforma_49	ID#04	55,58	0,21129	-6,751210569	0,28204	-5,50	0,10898	-9,63
Plataforma_50	ID#04	55,17	0,34220	-4,657199948	0,57207	-2,43	0,31370	-5,03
Plataforma_51	ID#04	56,38	0,49915	-3,017689246	0,59099	-2,28	0,33417	-4,76
Plataforma_52	ID#04	58,53	0,37676	-4,239352118	0,58224	-2,35	0,30563	-5,15
Plataforma_53	ID#04	57,24	0,49488	-3,055000973	0,93179	-0,31	0,16642	-7,79
Plataforma_54	ID#04	52,12	0,07123	-11,47337056	0,05188	-12,85	0,02732	-15,64
Plataforma_55	ID#04	53,25	0,18294	-7,376913253	0,15854	-8,00	0,13316	-8,76
Plataforma_56	ID#04	54,68	0,36667	-4,357246214	0,42595	-3,71	0,12563	-9,01
Plataforma_57	ID#04	61,81	0,15950	-7,972393126	0,13759	-8,61	0,07155	-11,45
Plataforma_58	ID#04	51,28	0,09799	-10,08818242	0,08024	-10,96	0,06839	-11,65
Plataforma_59	ID#04	51,90	0,13542	-8,683171905	0,08683	-10,61	0,09877	-10,05
Plataforma_60	ID#04	60,36	0,35926	-4,445911344	0,74896	-1,26	0,50753	-2,95
Plataforma_61	ID#04	56,65	0,26281	-5,803581138	0,83256	-0,80	0,09672	-10,14
Plataforma_62	ID#04	53,19	0,17492	-7,571605313	0,13945	-8,56	0,16149	-7,92
Plataforma_63	ID#04	50,01	0,10661	-9,722020566	0,07815	-11,07	0,08748	-10,58
Plataforma_64	ID#04	57,37	0,72026	-1,425107033	0,78594	-1,05	0,07951	-11,00
Plataforma_65	ID#04	64,50	0,27332	-5,633285879	0,55553	-2,55	0,09247	-10,34
Plataforma_66	ID#04	46,83	0,38457	-4,150245977	0,19803	-7,03	0,15665	-8,05

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Plataforma_67	ID#04	FQ15W	01/03/2011	00:16:08	3X3	230	1523	34,49	Refined Lee	0,95887587
Plataforma_68	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1515	4300	35,83	Refined Lee	0,83430990
Plataforma_69	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1635	4175	35,77	Refined Lee	0,82758247
Plataforma_70	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1617	4433	35,89	Refined Lee	0,78114149
Plataforma_71	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1816	4432	35,89	Refined Lee	0,78266059
Plataforma_72	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1737	4304	35,83	Refined Lee	0,92003038
Plataforma_73	ID#04	FQ15W	01/03/2011	00:16:08	3X3	717	3633	35,52	Refined Lee	0,98687066
Plataforma_74	ID#04	FQ15W	01/03/2011	00:16:08	3X3	264	1795	34,63	Refined Lee	0,71907552
Plataforma_75	ID#04	FQ15W	01/03/2011	00:16:08	3X3	277	1759	34,61	Refined Lee	0,93326823
Mar_1	ID#04	FQ15W	01/03/2011	00:16:08	3X3	552	3327	35,37	Refined Lee	0,28331163
Mar_2	ID#04	FQ15W	01/03/2011	00:16:08	3X3	802	5537	36,40	Refined Lee	0,50227865
Mar_3	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2536	4888	36,10	Refined Lee	0,35601128
Mar_4	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2652	3996	35,69	Refined Lee	0,22428385
Mar_5	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2036	952	34,21	Refined Lee	0,33279080
Mar_6	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2832	1489	34,48	Refined Lee	0,36686198
Mar_7	ID#04	FQ15W	01/03/2011	00:16:08	3X3	666	472	33,97	Refined Lee	0,39615885
Mar_8	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3427	2674	35,06	Refined Lee	0,29524740
Mar_9	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3584	3025	35,23	Refined Lee	0,33127170
Mar_10	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2984	396	33,93	Refined Lee	0,37141927
Mar_11	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1341	1633	34,55	Refined Lee	0,28461372
Mar_12	ID#04	FQ15W	01/03/2011	00:16:08	3X3	987	3189	35,30	Refined Lee	0,28483073
Mar_13	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2922	5683	36,47	Refined Lee	0,60753038
Mar_14	ID#04	FQ15W	01/03/2011	00:16:08	3X3	322	245	33,85	Refined Lee	0,54915365
Mar_15	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1730	5180	36,24	Refined Lee	0,41308594
Mar_16	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1122	5881	36,56	Refined Lee	0,54307726
Mar_17	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2492	5786	36,51	Refined Lee	0,52766927
Mar_18	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2784	5232	36,26	Refined Lee	0,44802517
Mar_19	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2334	5290	36,29	Refined Lee	0,47840712
Mar_20	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2212	3973	35,68	Refined Lee	0,33279080
Mar_21	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2674	4411	35,88	Refined Lee	0,32215712
Mar_22	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2115	1498	34,48	Refined Lee	0,29090712
Mar_23	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1333	4773	36,05	Refined Lee	0,39420573
Mar_24	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2499	3608	35,50	Refined Lee	0,28396267
Mar_25	ID#04	FQ15W	01/03/2011	00:16:08	3X3	185	3773	35,58	Refined Lee	0,32714844
Mar_26	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1216	2719	35,08	Refined Lee	0,23079427
Mar_27	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3148	4934	36,12	Refined Lee	0,36577691
Mar_28	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1992	4788	36,06	Refined Lee	0,42393663
Mar_29	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1603	5729	36,49	Refined Lee	0,52788628

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Plataforma_67	ID#04	55,91	0,26391	-5,785441533	0,41136	-3,86	0,30321	-5,18
Plataforma_68	ID#04	51,04	0,22478	-6,482423331	0,22394	-6,50	0,07075	-11,50
Plataforma_69	ID#04	61,32	104,41200	20,18750415	152,19400	21,82	0,60281	-2,20
Plataforma_70	ID#04	51,06	0,43265	-3,638632919	0,47390	-3,24	0,10061	-9,97
Plataforma_71	ID#04	58,35	0,12927	-8,885022512	0,20313	-6,92	0,04790	-13,20
Plataforma_72	ID#04	50,48	0,17511	-7,56689052	0,09548	-10,20	0,09380	-10,28
Plataforma_73	ID#04	56,83	0,24673	-6,077780413	0,23691	-6,25	0,32218	-4,92
Plataforma_74	ID#04	70,11	0,11922	-9,236508825	204,77100	23,11	0,51308	-2,90
Plataforma_75	ID#04	57,06	0,34687	-4,598332597	0,53951	-2,68	0,17039	-7,69
Mar_1	ID#04	15,22	0,00723	-21,40861703	0,00070	-31,55	0,00030	-35,23
Mar_2	ID#04	21,44	0,01057	-19,75925013	0,00081	-30,92	0,00085	-30,71
Mar_3	ID#04	17,14	0,00955	-20,19996628	0,00062	-32,08	0,00045	-33,47
Mar_4	ID#04	12,45	0,01383	-18,5917782	0,00071	-31,49	0,00027	-35,69
Mar_5	ID#04	14,78	0,01177	-19,29223537	0,00099	-30,04	0,00050	-33,01
Mar_6	ID#04	17,39	0,00686	-21,63675884	0,00074	-31,31	0,00049	-33,10
Mar_7	ID#04	19,07	0,01113	-19,53504836	0,00121	-29,17	0,00053	-32,76
Mar_8	ID#04	14,03	0,01078	-19,67381239	0,00078	-31,08	0,00039	-34,09
Mar_9	ID#04	15,52	0,00956	-20,19542108	0,00121	-29,17	0,00034	-34,69
Mar_10	ID#04	15,79	0,01450	-18,38631998	0,00121	-29,17	0,00087	-30,60
Mar_11	ID#04	15,50	0,01149	-19,39679971	0,00090	-30,46	0,00036	-34,44
Mar_12	ID#04	14,56	0,00947	-20,23650021	0,00093	-30,32	0,00025	-36,02
Mar_13	ID#04	27,59	0,00415	-23,81951903	0,00101	-29,96	0,00072	-31,43
Mar_14	ID#04	24,95	0,00851	-20,7007044	0,00190	-27,21	0,00090	-30,46
Mar_15	ID#04	20,65	0,00851	-20,7007044	0,00091	-30,41	0,00058	-32,37
Mar_16	ID#04	25,09	0,00793	-21,00726813	0,00143	-28,45	0,00067	-31,74
Mar_17	ID#04	23,02	0,00625	-22,04119983	0,00058	-32,37	0,00072	-31,43
Mar_18	ID#04	21,83	0,00665	-21,77178355	0,00100	-30,00	0,00063	-32,01
Mar_19	ID#04	21,69	0,00829	-20,81445469	0,00112	-29,51	0,00074	-31,31
Mar_20	ID#04	16,14	0,00849	-20,7109231	0,00085	-30,71	0,00032	-34,95
Mar_21	ID#04	13,19	0,00952	-20,21363052	0,00081	-30,92	0,00032	-34,95
Mar_22	ID#04	14,91	0,00978	-20,09661145	0,00073	-31,37	0,00046	-33,37
Mar_23	ID#04	21,55	0,00579	-22,37321436	0,00094	-30,27	0,00034	-34,69
Mar_24	ID#04	15,05	0,01380	-18,60120914	0,00097	-30,13	0,00029	-35,38
Mar_25	ID#04	16,14	0,00788	-21,03473783	0,00069	-31,61	0,00035	-34,56
Mar_26	ID#04	13,84	0,01003	-19,98699067	0,00094	-30,27	0,00036	-34,44
Mar_27	ID#04	16,87	0,01009	-19,96108834	0,00098	-30,09	0,00049	-33,10
Mar_28	ID#04	23,51	0,00620	-22,07608311	0,00091	-30,41	0,00038	-34,20
Mar_29	ID#04	22,04	0,00633	-21,9859629	0,00086	-30,66	0,00040	-33,98

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Mar_30	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3439	5207	36,25	Refined Lee	0,42328559
Mar_31	ID#04	FQ15W	01/03/2011	00:16:08	3X3	950	4315	35,84	Refined Lee	0,27376302
Mar_32	ID#04	FQ15W	01/03/2011	00:16:08	3X3	458	5352	36,32	Refined Lee	0,46516927
Mar_33	ID#04	FQ15W	01/03/2011	00:16:08	3X3	218	5738	36,49	Refined Lee	0,53483073
Mar_34	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1097	3721	35,56	Refined Lee	0,32172309
Mar_35	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1115	5279	36,28	Refined Lee	0,42003038
Mar_36	ID#04	FQ15W	01/03/2011	00:16:08	3X3	187	2216	34,83	Refined Lee	0,26681858
Mar_37	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1849	3853	35,62	Refined Lee	0,25835503
Mar_38	ID#04	FQ15W	01/03/2011	00:16:08	3X3	589	1624	34,54	Refined Lee	0,39941406
Mar_39	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2790	845	34,16	Refined Lee	0,40418837
Mar_40	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3551	1578	34,52	Refined Lee	0,28200955
Mar_41	ID#04	FQ15W	01/03/2011	00:16:08	3X3	977	280	33,87	Refined Lee	0,50857205
Mar_42	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3515	4534	35,94	Refined Lee	0,35427517
Mar_43	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1381	3494	35,45	Refined Lee	0,28049045
Mar_44	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2989	4500	35,92	Refined Lee	0,32931858
Mar_45	ID#04	FQ15W	01/03/2011	00:16:08	3X3	532	4865	36,09	Refined Lee	0,45345052
Mar_46	ID#04	FQ15W	01/03/2011	00:16:08	3X3	973	896	34,18	Refined Lee	0,35362413
Mar_47	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3111	2349	34,90	Refined Lee	0,33973524
Mar_48	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3503	644	34,06	Refined Lee	0,44151476
Mar_49	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2388	263	33,86	Refined Lee	0,51052517
Mar_50	ID#04	FQ15W	01/03/2011	00:16:08	3X3	657	4022	35,70	Refined Lee	0,30891927
Mar_51	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1891	4376	35,87	Refined Lee	0,31087240
Mar_52	ID#04	FQ15W	01/03/2011	00:16:08	3X3	229	3043	35,24	Refined Lee	0,33430990
Mar_53	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1432	5218	36,25	Refined Lee	0,54069010
Mar_54	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3336	4173	35,77	Refined Lee	0,32020399
Mar_55	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3543	5819	36,53	Refined Lee	0,58843316
Mar_56	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1460	3063	35,24	Refined Lee	0,29155816
Mar_57	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3308	154	33,81	Refined Lee	0,53765191
Mar_58	ID#04	FQ15W	01/03/2011	00:16:08	3X3	469	2743	35,09	Refined Lee	0,23925781
Mar_59	ID#04	FQ15W	01/03/2011	00:16:08	3X3	830	2734	35,09	Refined Lee	0,24880642
Mar_60	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3032	1936	34,70	Refined Lee	0,27506510
Mar_61	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3459	3575	35,49	Refined Lee	0,29047309
Mar_62	ID#04	FQ15W	01/03/2011	00:16:08	3X3	532	5913	36,57	Refined Lee	0,53483073
Mar_63	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1629	407	33,93	Refined Lee	0,54980469
Mar_64	ID#04	FQ15W	01/03/2011	00:16:08	3X3	876	4938	36,13	Refined Lee	0,40136719
Mar_65	ID#04	FQ15W	01/03/2011	00:16:08	3X3	1750	2720	35,08	Refined Lee	0,27202691
Mar_66	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3244	5569	36,41	Refined Lee	0,54025608
Mar_67	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3180	3187	35,30	Refined Lee	0,24598524

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Mar_30	ID#04	19,87	0,00882	-20,54531415	0,00092	-30,36	0,00091	-30,41
Mar_31	ID#04	15,19	0,00901	-20,45275209	0,00067	-31,74	0,00049	-33,10
Mar_32	ID#04	20,24	0,00596	-22,2475374	0,00095	-30,22	0,00035	-34,56
Mar_33	ID#04	24,31	0,00824	-20,84072788	0,00104	-29,83	0,00082	-30,86
Mar_34	ID#04	17,08	0,00708	-21,49966742	0,00085	-30,71	0,00030	-35,23
Mar_35	ID#04	21,20	0,00815	-20,88842391	0,00083	-30,81	0,00045	-33,47
Mar_36	ID#04	14,09	0,00912	-20,40005162	0,00054	-32,68	0,00030	-35,23
Mar_37	ID#04	14,64	0,01130	-19,46921557	0,00112	-29,51	0,00030	-35,23
Mar_38	ID#04	18,68	0,00780	-21,07905397	0,00113	-29,47	0,00048	-33,19
Mar_39	ID#04	16,38	0,01008	-19,96539468	0,00110	-29,59	0,00066	-31,80
Mar_40	ID#04	14,09	0,01484	-18,28566099	0,00094	-30,27	0,00044	-33,57
Mar_41	ID#04	21,83	0,01221	-19,13284336	0,00121	-29,17	0,00136	-28,66
Mar_42	ID#04	17,26	0,00945	-20,24568191	0,00084	-30,76	0,00037	-34,32
Mar_43	ID#04	15,50	0,01204	-19,19373513	0,00074	-31,31	0,00033	-34,81
Mar_44	ID#04	14,99	0,00917	-20,37630664	0,00069	-31,61	0,00042	-33,77
Mar_45	ID#04	23,00	0,00592	-22,27678293	0,00115	-29,39	0,00046	-33,37
Mar_46	ID#04	16,63	0,01162	-19,34793872	0,00099	-30,04	0,00057	-32,44
Mar_47	ID#04	16,30	0,00883	-20,54039296	0,00079	-31,02	0,00043	-33,67
Mar_48	ID#04	21,96	0,01145	-19,41194513	0,00165	-27,83	0,00112	-29,51
Mar_49	ID#04	23,17	0,01026	-19,88852639	0,00203	-26,93	0,00076	-31,19
Mar_50	ID#04	16,28	0,00944	-20,25028006	0,00100	-30,00	0,00036	-34,44
Mar_51	ID#04	14,48	0,01097	-19,59793372	0,00070	-31,55	0,00041	-33,87
Mar_52	ID#04	17,00	0,00605	-22,18244625	0,00053	-32,76	0,00026	-35,85
Mar_53	ID#04	25,97	0,00482	-23,16952962	0,00101	-29,96	0,00046	-33,37
Mar_54	ID#04	14,09	0,00968	-20,14124643	0,00082	-30,86	0,00043	-33,67
Mar_55	ID#04	26,06	0,00722	-21,41462802	0,00154	-28,12	0,00073	-31,37
Mar_56	ID#04	17,51	0,00768	-21,1463878	0,00075	-31,25	0,00032	-34,95
Mar_57	ID#04	23,62	0,01676	-17,75725986	0,00265	-25,77	0,00174	-27,59
Mar_58	ID#04	13,56	0,01141	-19,42714356	0,00065	-31,87	0,00023	-36,38
Mar_59	ID#04	11,96	0,01188	-19,25183559	0,00061	-32,15	0,00030	-35,23
Mar_60	ID#04	13,88	0,01047	-19,80053318	0,00071	-31,49	0,00036	-34,44
Mar_61	ID#04	17,18	0,01402	-18,53251986	0,00129	-28,89	0,00034	-34,69
Mar_62	ID#04	23,00	0,00776	-21,10138279	0,00109	-29,63	0,00082	-30,86
Mar_63	ID#04	21,16	0,00703	-21,53044675	0,00124	-29,07	0,00062	-32,08
Mar_64	ID#04	22,39	0,00734	-21,3430394	0,00097	-30,13	0,00047	-33,28
Mar_65	ID#04	13,56	0,01229	-19,10448117	0,00067	-31,74	0,00042	-33,77
Mar_66	ID#04	24,66	0,00651	-21,86419011	0,00097	-30,13	0,00065	-31,87
Mar_67	ID#04	14,54	0,01637	-17,85951321	0,00120	-29,21	0,00044	-33,57

AMOSTRA	IMAGEM	MODO DE AQUISIÇÃO	DATA (dd/mm/aa)	HORA DE AQUISIÇÃO (GMT)	RESOLUÇÃO (pixel)	LINHA (pixel central)	COLUNA (pixel central)	ÂNGULO DE INCIDÊNCIA (°)	FILTRO	Hmédia
Mar_68	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2683	523	33,99	Refined Lee	0,36946615
Mar_69	ID#04	FQ15W	01/03/2011	00:16:08	3X3	3118	1446	34,46	Refined Lee	0,27983941
Mar_70	ID#04	FQ15W	01/03/2011	00:16:08	3X3	159	5123	36,21	Refined Lee	0,35666233
Mar_71	ID#04	FQ15W	01/03/2011	00:16:08	3X3	297	4487	35,92	Refined Lee	0,40483941
Mar_72	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2025	304	33,88	Refined Lee	0,44108073
Mar_73	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2549	1181	34,32	Refined Lee	0,37771267
Mar_74	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2261	4479	35,91	Refined Lee	0,33018663
Mar_75	ID#04	FQ15W	01/03/2011	00:16:08	3X3	2027	5336	36,31	Refined Lee	0,44108073

AMOSTRA	IMAGEM	amédio (°)	I_HH	dB_HH	I_HV	dB_HV	I_VV	dB_VV
Mar_68	ID#04	16,16	0,01393	-18,56048884	0,00090	-30,46	0,00065	-31,87
Mar_69	ID#04	14,42	0,01238	-19,07279355	0,00080	-30,97	0,00046	-33,37
Mar_70	ID#04	18,53	0,01175	-19,29962133	0,00123	-29,10	0,00092	-30,36
Mar_71	ID#04	17,10	0,00683	-21,65579296	0,00092	-30,36	0,00041	-33,87
Mar_72	ID#04	19,25	0,01271	-18,95854449	0,00129	-28,89	0,00092	-30,36
Mar_73	ID#04	16,18	0,00768	-21,1463878	0,00107	-29,71	0,00056	-32,52
Mar_74	ID#04	17,24	0,01012	-19,94819487	0,00089	-30,51	0,00047	-33,28
Mar_75	ID#04	23,60	0,00845	-20,73143291	0,00145	-28,39	0,00051	-32,92