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A abordagem discreta é empregada para a difusão com retenção para obter a 

equação de quarta ordem, o que sugere a introdução de um segundo fluxo levando à 

associação da teoria bi-fluxo com novos parâmetros: fração β e coeficiente de 

reatividade R. O objetivo desta tese é explorar a Embora comparando o comportamento 

da concentração e os dois fluxos com o modelo clássico, principalmente pelo método de 

elementos finitos de Galerkin. Mostra-se que o processo pode ser acelerado ou 

retardado dependendo da relação entre R e β, para o meio isotrópico. Dependendo da 

definição do segundo fluxo em função desses parâmetros e da relação β= β(R), o 

comportamento inesperado aumentando a concentração logo após a introdução de um 

impulso inicial que se opõe à tendência natural de dispersão, pode se desenvolver em 

uma recuperação restrita. O coeficiente de reatividade R considerado como um atrator 

variando no espaço e no tempo de acordo com uma lei de difusão é proposto para 

simular caixa de nutrientes atraindo partículas biológicas. Finalmente, são apresentados 

dois casos típicos de difusão não-linear que representam dinâmicas de reações químicas. 

O modelo bi-fluxo tende a regularizar as soluções. 
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Advisor: Luiz Bevilacqua 
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The discrete approach is employed for diffusion with retention to obtain the 

fourth order equation, which suggests the introduction of second flux leading to bi-flux 

theory association with new parameters: fraction β and reactivity coefficient R. The 

purpose of this thesis is to explore the bi-flux theory though comparing the behavior of 

concentration and the two fluxes with the classical model mainly by Galerkin finite 

element method. It is shown that the process may be accelerated or delayed depending 

on the relation between R and β, for isotropic medium. Depending on the definition of 

the second flux as function of these parameters and the relation β= β(R), unexpected 

behavior increasing the concentration just after the introduction of an initial pulse 

opposing the natural tendency to disperse, can develop on a restricted regains. 

Reactivity coefficient R considered as an attractor varying in space and time according 

to a diffusion law is proposed to simulate nutrient box attracting biological particles. 

Finally two typical cases of non-linear diffusion representing dynamics of chemical 

reactions are presented. The bi-flux model tends to regularize the solutions. 
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Chapter 1 

 

Introduction  

 

The initial motivation leading to the diffusion approach presented here was a 

population dynamics problem firstly reported by the LNCC group working in applied 

mathematics and computational modeling. The motivation was the analysis of 

population dynamics and its impact on ecological questions (Simas, 2012). For sake of 

completeness we will present in this section the main steps leading to diffusion with 

retention for one-dimensional space R
1
.   

An important problem for the rivers in the Amazon region is the invasion by 

exotic species that tends to disrupt the ecological equilibrium of the region. That is, we 

may think of a given population marching to occupy a certain territory. To make the 

model more realistic consider two clusters of individuals composing the invading group. 

The warriors whose mission is to fight to conquer new areas and a second group 

consisting of individuals in charge of settle down. Therefore we may think of two 

different groups moving with different speeds as shown in Fig.1.1. 

 

 

 

 

 

 

 

         In order to model this type of behavior it was used a discrete approach. Assume 

the scattering process consisting of an invading population with the purpose to settle 

down. It is possible to consider at least two ways to model the invasion strategy. If the 

invasion progress along a corridor in just one direction the process is equivalent to a 

wave front. If, however, the invading population find a weak point in the middle of the 

native population the invasion can be modelled like a diffusion process. This case may 

Fig.1.1. Invading population occupying a given 

field 

warriors
warriors

colonizers

colonizers



2 

 

happen in cases of tumors spreading in a living organism. Fig. 1.2 displays these two 

invading processes. 

 

 

           The different processes of mass transport considering retention was discussed in 

(Bevilacqua L., etal.,2011a). Retention introduced in the process intended to take into 

account the colonizers moving slowly to settle down on the new territory makes the 

main difference in the analytical expression for the wave and diffusion problems.   

 

Fig.1.2. Two possible invasion procedures. (a) wave front, (b) spreading 

from a given point 

(a) (b) 

Fig.1.3. Evolution of the diffusing process. (a) without retention, (b) with partial 

retention. The fraction k of the contents is retained while the complement (1-k) is 

equally distributed to the right and left cells, β=1-k. 
  

(a) (b) 
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For sake of introduction let us examine the evolution of the mass transfer with a discrete 

approach. Figure 1.3 shows the mass distribution in a given time for a cell chain, 

without retention (a) and with partial retention (b). For the case indicated in Fig.1.3(a) 

there is no retention and all the contents contained in a cell n is equally distribute to the 

left and to the right. We are assuming for all cases symmetric distribution  

          Consider the classical problem free of retention Fig.1.3-a. The mass distribution 

for cells  n-1, n, n+1 for time t-1 an t is clearly given in the expressions (1.1-a) and (1.1-

b).  
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The right hand side written for the time 1t  and rearranging the terms gives: 
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Recalling that 11

2 2   kkkk ffff , the above equation reads: 
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Recalling the difference 
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  and the relationship for the second order 

difference  3121
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
 the above equation gives: 
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Taking the limits 0x , 0t , we obtain  
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                                                        (1.2) 

 

Let    20

2
mLx  and  2

0 mTt  then   0

2

0

2

2 TLtxK   where 0L , 1L  and 0T  

are scale factors, mLx 0  and 
2

0 mTt   are element size and time interval 

respectively. Note that the derivation of the fundamental equation suggests that the time 

interval Δt for numerical calculation should me much smaller than the size adopted for 

the space elements Δx.  

The classical diffusion coefficient is given by 22KD  . Equation (1.9) is the 

classical Fick´s equation for diffusion in isotropic media considering a single flux. 

There are other methods to derive this equation, as the random walk method inspired by 

the Brownian motion (Edelstein-Keshet, 1997; Zauderer, 1989). 

As will be shown in the next chapter if we consider the retention process a new 

equation is obtained, namely a fourth order equation(Bevilacqua, et al. 2011a).; 
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q
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









  

Note that we have now two terms on the right hand side suggesting that the 

process consists of two fluxes interconnected by the parameter β. If β=1, we recover the 

classical equation meaning that there is just one flux. For β≠1, secondary flux comes in. 

The discrete approach leads to an equation that describes nicely the presence of  

secondary flux in the diffusion process. A new constant R also appears automatically in 

the derivation process.  

For the sake of completeness, it is interesting to say that for the case shown in 

Fig.1.2-a, if there is no retention the discrete approach leads to the classical wave 

equation: 
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q
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Where c is the wave speed. Considering retention a new equation is obtained involving 

two fluxes as in the diffusion process and two new parameters β and K3.  
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x

q
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q
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


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




3

3

3 1  

A more detailed discussion may be found in Bevilacqua et al. (2011a). 

The main purpose of this thesis is to study the anomalous diffusion process that is 

governed by a fourth order equation, which will be derived using a discrete formulation 

similar as that presented above.  

 Given that the theory is new, several research branches are opened. The main 

purpose of this thesis is not to concentrate on a specific topic but to open the door for 

several research lines showing the challenges posed by this new theory. As a matter of 

fact as the analysis was in progress several questions came out which are new. So, one 

of the intentions of this work is to pose problems based on the case studies presented.  

 For the diffusion on a one-dimensional substratum, it is shown that negative 

value of the concentration develops after a pulse, Dirac function, at the origin. For mass 

transfer this behavior is only valid in the presence of a initial layer of material from 

which matter can be recruited. It was shown that the negative value of the solution 

appears only after a given slenderness of the initial conditions reached. This result 

opens a very interesting research field in mathematics. Also since the phenomenological 

considerations sustaining the theory require that the contents spreading on the given 

medium is homogeneous, that is, all particles are of the same nature the bi-flux appears 

due to the presence of different energy states. A short formulation of some fundamental 

hypothesis concerning energy distribution among the particles considering only kinetic 

energy is presented in chapter 6.    

It was also derived the bi-flux diffusion equation for the plane. It is the simple 

case where the mass transfer for two orthogonal directions is the same. It is shown that 

the same type of singularity, or anomaly, with negative values of the concentration may 

appear at the corners of a rectangular domain.  

Most interesting is the case of diffusion in anisotropic media. Two new problems 

are posed. The first concerns the relationship between R and β. It has been suggested 

through the analysis of an inverse problems by Silva Neto et al. 2013, that these two 

coefficients are related. There is however no clue that could be used to propose a given 

relationship. The only restriction imposed by the fundamental hypothesis is that as R 

increases β should decrease. The second challenge is the definition of the secondary 

flux when the fraction β is function of x. A discussion of the influence of β(x) on the 

solution was presented. The influence of the definition of the secondary flux on the 

solution for anisotropic media is discussed through some examples. It was shown that 
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for a given class of problems, after an initial particle distribution around the origin, the 

concentration increases instead of decreasing as expected. This phenomenon is related 

to the presence of a strong variation of R which apparently acts as an attractor. It is an 

acceptable process for the behavior of living organisms deployed on a medium with 

nutrients concentrated around a given point. The case with the reactivity coefficient R 

function of time for anisotropic media, that is R=R(x,y,t) was also explored. 

Finally two typical non-linear problems extensively discussed in the literature 

were also solved under the perspective of the bi-flux approach.   

The flow chart below shows the connection among the several sections of the 

thesis. It is important to insist that the main contribution of this work is to open new 

research lines showing through numerical solutions the different types of behavior for 

the bi-flux diffusion process. Also the several possibilities opened for the behavior in 

anisotropic media depending on the relation β=f(R(x,y)) and the on the definition of the 

secondary flux. It is also interesting the Gray-Scott problem regularization obtained 

with the bi-flux approach.  

We think that the discussions on the influence of the reactivity constant R and 

the flux distribution β are important starting points for modeling several types of 

phenomenon particularly in biology. The solutions presented for some typical situations 

are stimulating for further analysis.  

Finally it is important to say that the solution were developed with the Galerkin 

finite element method using Hermite polynomials for the fourth order equation and 

Lagrange polynomials when the fourth order equation is decomposed into two second 

order equations in the spatial space and the Euler backward difference in the temporal 

space. The nonlinear Galerkin finite element method is used to obtain the solution in the 

spatial space for non-linear case, also the Euler backward difference in the temporal 

space. Details on the numerical integration are presented in the appendix.  
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Chapter 2 

 

The anomalous diffusion model and 

the bi-flux theory 

 

2.1. Institution of the fundamental equations 
 

Let us proceed as in the previous chapter. Consider the problem of diffusion in an 

isotropic medium. The discrete model is similar to the one introduced before except that 

now a fraction of the contents remains temporarily trapped in each cell while the 

remaining part is distributed equally to the right and to the left preserving symmetry in 

the distribution. Consider the same discretization as proposed before that is a sequence 

of m cells arranged in a chain along the x-axis Fig.2.1.  

         For the sake of completeness we will reproduce here the procedure introduced in 

Bevilacqua et al. (2011a). Let k  represent the fraction retained at each time step. 

Consequently the remaining part k1 will be equally distributed to the right and to 

the left cells. The corresponding discrete equations are (Bevilacqua et al., 2011a.):  
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Following the same procedure as in 

Bevilacqua et al. (2011a). let us 

introduce Eq.2.1-a into Eq.2.1-b to get: 

 

 t-Δt 

t+Δt 

Fig.2.1. Diffusion with retention 1D case 

t 
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Subtracting 
t

nq given by Eq.2.1-a we get successively: 
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From which follows the discrete form of the difference equation: 
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        The Eq.2.2-e satisfies the requirements  imposed by the limits of k , namely, k=0 

classical diffusion and 1k stationary solution. Rewriting Eq.2.2-e to get a finite 

difference equation we get: 

 

     
 

 
 

tt

nn

tt

n

x

xO

x

q
x

x

q
kxkt

t

q











































2

3

2

2
2

4

4
4

2

1

4

1
1  

 

Now with  
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where 0L , 1L and 0T are scale factors and mLmLx 10  ,and mTt 0 are the cell 

size and the time interval respectively. Substituting these in the above relations, we 

obtain: 
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14 4TLK  and if  txq ,  is a sufficiently smooth function of x and t
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Now with  k 1 and using the classical notation for the diffusion coefficient 

DK 2  and introducing a new coefficient RK 4  we get: 
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         The fourth order term with negative sign introduces the effect of retention. Clearly 

this term comes in naturally, without any artificial assumption, as an immediate 

consequence of the temporary retention imposed by the redistribution law. We would 

like to call the attention that similar equations can be obtained by introducing non-linear 

effects on the Fick’s law (D’Angelo, 2003). These equations however are derived to 

consider other physical phenomena and hardly could be associated to the retention 

effect. The retention of the fraction (1− β) withtin the interval Δt generates the 

secondary flux. It is a kind of leaking effect at each time step Δt. 

 

         For the 2D case, we will follow a similar process to reach the fourth order model. 

Initially let us write the exchange relationship between the neighboring cells. We may 

write: 
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Reducing the right hand side of equation (2.4-b) to time (t-1) leads successively to: 

 

Fig.2.2. Diffusion with retention 2D case 
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Simplifying the equation above, we can obtain: 
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On the right side of the equation, rearrange each term to lead to the sum of several 

convenient difference terms 
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Then, recall  
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for the cell  1, mn . For the other cells, the equation is very similar except for the 

corresponding cells indices. With the above notation the equation will be written as: 
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Adding similar terms the equation is reduced to: 
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Rewriting the equation above to obtain a finite difference form of a differential equation 

we will get: 
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Where, yxs   

Take the limits as 0s , 0t , we obtain  

 

   qRqD
t

q





 1                                            (2.9) 

 

 

where β, D, R represent, respectively, the fraction of elements in the primary flux, the 

diffusion coefficient and the reactivity coefficient. The coefficients D and R are the 

limiting values of    ts
ts




4lim
2

0,
 and    ts

ots



16lim

4

,
. The Eq. 2.9 is the 

anomalous diffusion model for a two dimensional domain. For 0 , the system 

becomes stationary, and for 1 , the system reduces to the classical diffusion model 

in two dimensions. 
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2.2. The Bi-flux theory 

 

The results obtained from the discrete approach for 1-D and 2-D strongly suggest 

the existence of a secondary flux corresponding to the fourth order derivative of the 

concentration. With the presence of the secondary flux the mass conservation principle 

leads to an equation valid for a continuum. Now it is not difficult to propose a new law 

for the secondary flux. Indeed, the generalization of the proposition advanced in 

Bevilacqua et al. (2013), for a two dimensional domain reads:  

PROPOSITION: Suppose a two-dimensional diffusion process consisting of N particles 

moving in a homogeneous, isotropic supporting medium according to the Fick´s law. If 

a fraction     1Nf  of the diffusing particles is temporarily delayed along their 

trajectories due to some mechanical,biological, physical, chemical or physicochemical 

interaction with the medium, that doesn’t disturb the diffusion coefficient D, the 

governing equation must include a fourth order differential term of the form: 

    tyxqR ,,1    

where R  is a material constant, β the fraction of the particles in the Fickian or primary 

flux, with 10    constant, and  tyxq ,, stands for the particle concentration in the 

medium.    

The operator Δ is  
   

2

2

2

2

yx 







  for a two dimensional domain. 

For one dimensional problem  
4

4

x

q
q




  

  Before stating the laws that govern retention it is worthwhile describing some 

basic ideas sustaining the formulation that will be introduced later on. Scientists and 

particularly engineers have frequently to deal with a class of problems that behind an 

apparent simplicity hide complex events. A problem with hidden complexity results 

from the simultaneous convergence of several phenomena involving a relatively large 

number of transformation processes. Most of the problems belonging to that class 

appearing in engineering practice require the determination of certain variables, that we 

will call here macro-state variables, representing complex physical, chemical or 

physicochemical interactions at micro scales. For the engineering point of view, within 

certain limits, it is not necessary to analyze the phenomenon at the smallest possible 

scale, since often the basic phenomena are not yet fully understood. It suffices knowing 

the behavior of the macro-state variables. That is, for a problem with hidden 

complexity, in several circumstances, the main task is to determine the relationship 

among the input variables and the output variables flowing in and out of a “black box”. 

As a matter of fact the microstate phenomena related to the classical diffusion problem 

has been analyzed in detail since the beginning of the last century with the pioneering 

works of Einstein (1905) and Smoluchowski (1916).  
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The delayed diffusion process however requires the introduction of an extended 

energy state where the kinetic energy may include the spin energy of the particles which 

are not considered in the classical theories as far as we know. Only recently, particularly 

with the observation of fluctuations in the diffusion processes (Bustamante, et al. 2005) 

and the presence of self-excited particles, new theories are taken into consideration 

(Riedel, et al. 2015). The determination of a method or a theory adequate to establish 

the behavior of the macro-variables is by no means an easy task. The main difficulty 

arises from the fact that the theory must play a unification role. That is, the theory must 

as far as possible translate with a relatively simple set of rules and laws the response of 

the macro-state variables to the perturbations introduced in the system under 

consideration. More than that, a successful theory should give adequate response to 

several similar phenomena belonging to the same class. For instance, dispersion of gas, 

liquid or solid particles in different supporting media should be accurately modeled by 

the same theoretical framework because they belong to the same class of problems 

independently of the particle nature and of the medium. The macro-variable for this 

class of phenomenon is the particle concentration denoted by  tq ,x . The theory 

proposed in this paper is derived from the following ideal process: 

        Consider a collection of particles immersed in some medium and moving in a 

preferred direction driven by repulsion forces such that they displace from high 

concentration regions towards low concentration regions free from constraints. The 

motion is not subjected to any critical barrier that could induce a significant perturbation 

in the process. Under this circumstance it is plausible to admit that the average speed of 

the particles is proportional to the concentration gradient, the particles being driven 

from regions with high concentration levels, strong repulsive forces, to regions with low 

concentration levels, weak repulsive forces. This is the fundamental idea supporting 

Fick´s law. For the one dimensional problem in a homogeneous medium the absolute 

value of the diffusion speed may be defined as   xtxqD  , where D  is the diffusion 

coefficient.   

        The diffusion coefficient cannot be considered as a parameter characterizing a 

single well defined physicochemical phenomenon. It is instead a coefficient associate to 

an ideal event that simulates satisfactorily a wide range of phenomena. The diffusion 

coefficient may have different physical interpretations depending on the particular 

phenomenon under consideration. Another way to see this methodology is to consider a 

“black box” that transforms input variables into output variables according to well 

established laws irrespectively from the physics that may be going on inside the box. In 

this sense the Fick´s law is a des-complexification process. Note that we are also 

considering the diffusion process at large including, for example, knowledge diffusion 

and capital flow.   

        Now suppose that other events interfere in the diffusion mechanism. In this case 

the law must be modified accordingly. For instance, the effects of sources or sinks in a 

diffusion process cannot be modeled by some artificial modification of the flow velocity 

or distorting the interpretation of the diffusion coefficient. A new term is necessary to 

be incorporated in the governing equation. Diffusion with sinks or sources belongs to a 

different class of phenomena.  
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        To avoid possible misunderstandings referring to more complex diffusion 

problems, we would like to remark that it is possible within a same class of phenomena 

to improve the respective laws incorporating extra terms. For the case of diffusion, for 

instance, Fick´s law may be extended to incorporate non-linear terms adjusting 

theoretical results better to more accurate observations. This means that the driving 

forces inducing the particles motion cannot be related only to the gradient of the 

concentration but requires the consideration of higher order terms. This is a refinement 

of the theoretical framework, but the basic event remains the same, belonging to the 

class of diffusion problems without taking into account any other phenomenon as 

retention for instance.    

        If however there is some essential modification of the phenomenology governing a 

given process, it is necessary to review the theoretical framework to find some universal 

model adequate to des-complexify the corresponding class of phenomenon. 

Unfortunately, not seldom, it is found in the literature attempts to extend a theory fitted 

to represent a given class of events to a new phenomenological class. The results are 

certainly not universal and may fail to express a reliable response of the macro-state 

variables. This is the case of diffusion with delaying effect. Delay in the diffusion 

process cannot be adequately modeled by Fick´s law or any refinement of the classical 

diffusion law. Diffusion with delay, provided that the diffusion coefficient remains 

constant, belongs to another class of phenomena. A new suitable law could be stated 

axiomatically. Better would be to find a kind of universal event that may encompass a 

large number of phenomena and provide a consistent evaluation of the macro-state 

variables.  

 

2.2.1. The secondary flux and the mass conservation principle 

 

        The results obtained up to now in our investigation allow for the introduction of a 

new scattering law. We have already seen that the discrete approach introduces a fourth 

order term in the classical diffusion equation. Now this term can be associated to a 

secondary flux. Indeed the retained fraction of particles  1 remains in the cell n for a 

small time interval t . After this period of time there is a different amount of particles 

retained in the same cell n. This means that the successive change in contents of a 

general cell n induces an evolutionary process associated to the retention assumption. 

Therefore, it is plausible to assume that the fourth order term is associated to a 

secondary flux. Following the similar assumption taken to introduce the Fick´s law that 

is: 
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 
a)-(2.10                                                

,
1 x

x

txq
D eΨ




  

 

We may write for the secondary flux (Bevilacqua et al. 2013), 

 

 
b)-(2.10                                           

,
3

3

2 x
x

txq
R eΨ




   

 

Where xe  is unit vector for the x  axis. This proposal was first put forward in 

Bevilacqua et al. (2013). We assume here that we have an isotropic process, that is, all 

parameters are independent of x and y in a two dimensional domain. We will discuss 

later in chapter 3 the case for anisotropic media.  

         For this case, the expression for the first flux, obeying the Fick´s law, can be 

written as: 

     ,,1 tyxqDΨ with    
   

y
yx

eex








  

 

The secondary flux is not well defined a priori by the results obtained with the discrete 

approach. Although for isotropic media the order of the differential operator is not 

important, it will make a crucial difference for anisotropic media. Therefore we 

introduce here three possible expressions: 

 

        ,,,,1

2 tyxqtyxR  Ψ  

       ,,,,2

2 tyxqtyxR  Ψ  

       ,,,,3

2 tyxqtyxR  Ψ  

with  
   

2

2

2

2

yx 







  

         The equations above show clearly the existence of two different diffusion 

processes. From the Eq.2.9, it is possible to see that particles belonging to the fraction β 

follow the classical Fick´s law, it is the primary flux that is called Ψ1 and particles 



19 

 

belonging to the fraction (1−β) follow a new law, it is the secondary flux that is called 
i

2Ψ , 3,2,1i . 

         Now with the considerations above it is possible to derive the generalized equation 

from the classical mass conservation principle. Indeed if we assume the two laws for the 

flux rates with Ψ1 corresponding to the fraction of particles β diffusing according to 

Fick´s law and i

2Ψ , 3,2,1i  ruling the complementary fraction (1−β), the mass 

conservation principle gives: 

 

   
                                0,1

,,
21 





V

yx

i

V

dsds
t

tqttq
ee.ΨΨ

xx
  

 

D is the diffusion coefficient and R we call reactivity coefficient. Both in general may 

be functions of x  an t . And for 2Rx : 

 

         (2.12a)                                 1 qRqD
t

q





  

         (2.12b)                                 1 qRqD
t

q





  

          (2.12c)                                 1 qRqD
t

q





  

 

 

The physical meaning of the primary flux is well known, namely, the particle 

concentration distribution tends to smooth out along the space variable. The particles 

move from higher concentration regions toward lower concentration regions. The 

secondary flux is concerned with the curvature variation of the concentration 

distribution. Recall that the curvature of the function  txq , is proportional to the second 

derivative  22 xq   of the concentration.  Therefore the secondary flux grows with the 

variation of the second derivative. 

         In this section we have represented the one dimensional equation and utilizing the 

same discrete method have derived one two dimension model intended to describe 

anomalous diffusion processes. The next section is devoted to the investigation of some 

simple examples. Initially we will consider all the parameters constant.  
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It is convenient at this stage to make some comments regarding the boundary 

conditions. Four boundary conditions are necessary to define the problem on a finite 

domain. There are four kinds of boundary conditions. Three are easy to understand, 

namely: 

1. The value of the concentration   qtyxq
yx


,
,,   

2. The primary flux   1,1 ,, ΨΨ 
yx

tyx  

3. The secondary flux    2,2 ,, ΨΨ 
yx

tyx  

The fourth acceptable boundary condition is related to the second derivative of the 

concentration. It is admissible, at least theoretically to impose as boundary condition: 

  qtyxq
yx


,

,,    

The physical interpretation is still not completely clarified. However from the results 

that we have obtained, and will be presented in the sequel, this condition is related to 

the curvature of the concentration profile. At least for one case related to the deposition 

of thin films, molecular beam epitaxy (MBE) (Barabási et al. 1995) the curvature plays 

a key role in the process. For our problem the role of the curvature needs to be further 

explored although there are indications that particles may tend to converge to regions 

with higher curvature in anisotropic media. 

 

2.3 Test of the numerical solution 

     
        The development of this work is strongly dependent on the numerical solution of 

the fourth order partial differential equation for the bi-flux theory. Therefore it is 

convenient to present the solution for a fundamental case with brief description of the 

method used and a convergence test. Let us consider the equation:     

    

 
        tyxqRtyxqD

t

tyxq
,,1,,

,,





            (2.13) 

The variable q(x,y,t) is defined in    1,1x1,1  . The diffusion coefficient is D=0.1, 

the reactivity coefficient is R=0.01, and the primary fraction β=0.33. The boundary 

conditions are: 

0. 


nq            and           0. 


nq  

The initial condition is given by: 
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     yxyxq  coscos0,,   

The problem has an analytical solution namely: 

     yxetyxq t  coscos,, 515.1  

          First we reduce the fourth order problem to two coupled second order equations. 

Introducing a new variable    tyxqtyxp ,,,,   the equation (2.13) can be substituted 

by the system: 

 

 
      

   













tyxqtyxp

tyxpRtyxqD
t

tyxq

,,,,

,,1,,
,,


 

 

With the initial and boundary conditions:  

   xx 00, qq                              x   

     xxx 00,0, qqp           x                           

  0,  tq x ,   0,  tp x             on the boundaries 

The solution was obtained with the finite elements method. The mesh is composed by 

quadrangular elements leading to a conformal finite element formulation. Note that all 

2-D problems solved in this thesis are defined on a domain (LxL). The base functions 

are the cubic Hermite polynomials composing the finite element approximation of 

Bogner-Fox-Schmidt (BFS) (Bogner, Fox, and Schmit, 1965). Using the Galerkin 

method to derive the mass [M] and stiffness [K] matrices associated to the variables 

vectors      

 11111111 ,,,,,,,  n

xy

n

y

n

x

n

xyyx qqqqqqqqQ    

 11111111 ,,,,,,,  n

xy

n

y

n

x

n

xyyx ppppppppP   

It is obtained the system: 

 
tt

P

QM

P

Q

MK

KRtKDtM
































 


00

01
1


                       

           For time integration, the Euler backward difference was used to approximate the 

solution q(x,y,t) and p(x,y,t). With the initial conditions  0Q  and 0P  for 0t   the 

solution can be obtained with the platform Matlab. 
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         With the cubic Hermite polynomials (Chien, et al. 2009; Ruckert, 2013) it is 

possible to obtain the approximation of the functions q(x,y,t) and p(x,y,t) with good 

accuracy and higher order derivatives as well.  Firstly, some mathematic definitions of 

the numerical development are represented as below, 

For the one dimensional case the reference interval   1,1-I  is divided into elements of 

equal size, 80;40;20;10;5iN elements succesviley leading to: 

ii Nh 2 , .5,...,1i  

The order of convergence for the numerical method has been computed by the 

expression: 

   2loglog
1 jiji L

h
L

h uuuuOrder


 , .5,...,1i ,  ,2j .  

Where 
ihu is the numerical solution with step size ih , while 21 ii hh  .  

 



N

s

ssLh xuuhuu
1

2

2 ,  ss
sLh xuuuu   max  

Whereu denotes the exact solution and su is the numerical solution on the sth node in 

the mesh hu , N is the total number of nodes in the mesh hu . For the two dimensional 

case, consider the reference domain,     1,1-1,1-   

 



N

s

ssyxLh xuuhhuu
1

2

2  

xh is the length for subdomain on x axis, 
yh is the length for subdomain on y axis.           

The tables below (2.1a,b,c) show the errors in the 
L  and 

2L  norms for  tyxq ,,  the 

first and third derivatives.  

Table 2.1a CPU time, error and order of accuracy of  tyxq ,, with BFS element 

 
N h t  CPU(s) 

L  for q  Order 
2L  for q  Order 

5*5 0.2 4.00e(-2) 0.49 2.37e(-2)  ---- 1.66e(-2) ---- 

10*10 0.1 1.00e(-2) 2.00 5.90e(-3) 2.01 3.50e(-3) 2.25 

20*20 0.05 2.50e(-3) 22.66 1.50e(-3) 1.98 8.05e(-4) 2.12 

40*40 0.025 6.25e(-4) 505.94 3.66e(-4) 2.04 1.90e(-4) 2.08 

80*80 0.0125 1.56e(-4) 12418.23 9.14e(-5) 2.00 4.68e(-5) 2.03 

Final time T=1.0 

 

Table 2.1b CPU time, error and order of accuracy of 
 tyxqx ,,

 with BFS element 
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N h t  CPU(s) 
L  for xq  Order 

2L  for xq  Order 

5*5 0.2 4.00e(-2) 0.49 7.16e(-2)  ---- 4.45e(-2) ---- 

10*10 0.1 1.00e(-2) 2.00 1.85e(-2) 1.95 1.01e(-2) 2.14 

20*20 0.05 2.50e(-3) 22.66 4.60e(-3) 2.01 2.40e(-3) 2.07 

40*40 0.025 6.25e(-4) 505.94 1.10e(-3) 2.06 5.85e(-4) 2.04 

80*80 0.0125 1.56e(-4) 12418.23 2.87e(-4) 1.94 1.45e(-4) 2.01 

Final time T=1.0 

Table 2.1c CPU time, error and order of accuracy of 
 tyxqxxx ,,

 with BFS element 

N h t  CPU(s) 
L  for xxxq  Order 

2L  for xxxq  Order 

5*5 0.2 4.00e(-2) 0.49 1.41  ---- 8.77e(-1) ---- 

10*10 0.1 1.00e(-2) 2.00 3.65e(-1) 1.95 2.00e(-1) 2.13 

20*20 0.05 2.50e(-3) 22.66 9.08e(-2) 2.01 4.76e(-2) 2.07 

40*40 0.025 6.25e(-4) 505.94 2.27e(-2) 2.00 1.16e(-2) 2.04 

80*80 0.0125 1.56e(-4) 12418.23 5.70e(-3) 2.00 2.90e(-3) 2.00 

Final time T=1.0 

The convergence order for the Hermite cubic element is approximately equal 2 for the 

function, the first and second derivatives. The CPU time increases exponentially with 

no expressive gain in the approximation. Therefore it is convenient to define the 

maximum admissible error to reduce the costs in computer time.  

         Fig.2.3a,b show the errors for the function and its first and second derivatives in 

the 
L  and 

2L norms. The higher the derivative order the higher is the error as 

expected. In any case the errors are small indicating that the method leads to a good 

approximation. 

        

         If we don’t need the approximations for higher order derivatives it is possible to 

use the first order bilinear Lagrange polynomials as base functions. The errors in L  

and 
2L  norms are shown in table 2.2.     

 

Fig.2.3a h  vs L  error Fig.2.3b h  vs 2L  error 
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Table 2.2 CPU time, error and order of accuracy of q with Lagrange element 

N h t  CPU(s) 
L  for q  Order 

2L  for q  Order 

5*5 0.2 4.00e(-2) 0.07 6.90e(-3)  ---- 4.80e(-3) ---- 

10*10 0.1 1.00e(-2) 0.23 1.60e(-3) 2.11 9.49e(-4) 2.34 

20*20 0.05 2.50e(-3) 2.31 3.94e(-4) 2.02 2.17e(-4) 2.13 

40*40 0.025 6.25e(-4) 35.76 9.81e(-5) 2.01 5.15e(-5) 2.08 

80*80 00125 1.56e(-4) 652.00 2.45e(-5) 2.00 1.25e(-5) 2.04 

Final time T=1.0 

 

The convergence order for 
L  and 

2L are similar to the results obtained with the cubic 

Hermite element. The CPU time is drastically reduced. So if only the value of the 

function is required, the non-conforming element derived with the Lagrange base 

functions may lead to a considerable spare in computer time. This is however only 

possible under the condition of non-flux at the boundaries. The Fig.2.4a,b show the 

variation of the errors with the element size. The convergence in the 
2L  norm is slightly 

superior compared to the convergence in
L .  

          This test can said to be a good base to accredit the method to be used for the next 

problems. For the bi-flux diffusion problem in anisotropic media the mass and stiffness 

matrices become more complex and it is necessary integration operations considering 

the coefficients R and β as function of the space variables. We will consider D constant 

in the problems discussed here. 

 

 

 

 

Fig.2.4a h vs 
L  error

 
Fig.2.4b h  vs 

2L  error
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Chapter 3 

 

Isotropic diffusion processes 

 

 This section deals with the behavior of some solutions for isotropic diffusion 

problems with time independent parameters to investigate possible deviations from the 

classical approach. That is in which extent the fourth order term perturbs the classical 

solutions. The following two cases are elementary from the analytical point of view but 

very illustrative concerning some possible physical mechanism triggered by the bimodal 

diffusion process. It will be shown that the behavior of the concentration is largely 

influenced by the value of the parameters. The evolution of the concentration may be 

delayed or accelerated in association with the coupling of the three parameters β, D and 

R (Bevilacqua et al. 2013).  

         The third case has no analytical solution. The solution is obtained with the help of 

the Hermite finite element as shown in the appendix. It is presented the behavior of the 

solution for the concentration q(x,y,t) and the specific flow, both the primary and 

secondary. In the next chapter, we will present the convergence test for problems in two 

dimensions. Details on the numerical process may be found in the appendix A.  

 

3.1. Cosine distribution. 

 

         Let us assume that the system is homogenous, all parameters  RD,, are constant 

and the domain of definition is given by    1,01,0  , and 0t . Let us consider the 

problem defined by the set of homogeneous boundary conditions. The boundary 

conditions correspond to no flux, both primary and secondary. Then 

    0,, 




ntyxq ,      0,, 




ntyxq ,   yx, . The initial condition is 

given by:  
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     xxqyxq  2cos2cos0,, 0  

 

         Under these assumptions the solution of the fourth order equation reads: 

 

       yxtDqtyxq  2cos2cos4exp,, 2

0 , 

 

where      1161 2r   with r=R/D.

 
        The primary and the secondary fluxes (Bevilacqua et al. 2013), corresponding to 

the particles in the energy states E1 and E2, are given respectively by: 

          tDyxyxDq  2

01 4exp2sin2cos2cos2sin2 yx eeΨ   

 and  

          tDyxyxqR  2

0

3

2 4exp2sin2cos2cos2sin16 yx eeΨ   

 

Fig.3.1 Variation of the exponent ρ with the fraction of the diffusing particles β for 

different values of  r corresponding to the density distribution given by 

cos(2лx)cos(2лy). For pairs (β,r) above ρ = −1  the process is delayed 

characterizing retention as compared with the undisturbed case for β=1 
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        The exponent   ,r  controls the rate of change of the concentration. For 

1 , the problem is reduced to the classical diffusion problem. The initial distribution 

fades out with a speed proportional to D24 . For other values of  the rate of change 

of the concentration depends on the ratio r . There is a critical value  216/1 critr  that 

defines a separatrix   ,critr  splitting the family of curves into two distinct sets as 

shown in the Fig.3.1  

         The separatrix has a minimum at 1 .  If critrr  the process is delayed and we 

may refer to retention because 1 for all values 10   . Now, if critrr  the 

process is delayed if   falls within an interval  crit,0 . The fraction crit is easily 

obtained )16/(1 2 rcrit  . If crit   the exponent   falls below –1and the process is 

accelerated, that is, the particle concentration decays more rapidly as compared to the 

classical diffusion case.  

         Consider a certain curve   ,r , critrr  . Since both fluxes Ψ1and Ψ2travel 

in the same direction the rarefaction process will be accelerated, that is   decreases, 

provided that the mass flow rate Ψ2 is sufficiently large. The mass flow rate of the 

secondary energy state Ψ2 increases with   as seen before.  But since the density 

depends also on the fraction  1 , if this fraction decreases the rarefaction rate varies 

in the opposite direction and   increases. The combination of the accelerating factor   

on the mass flow rate and of the slowing factor  1  avoids the indefinitely decay of

  ,r . Therefore the exponent   ,r reaches a minimum for some value *  beyond 

which it starts increasing up to the fixed point –1. The fraction * is easily obtained 

 2* 321  r .  

         Clearly, we may refer as delayed only fluxes corresponding to points located 

above the line AB for which the inequality 1  holds. Substituting the expression 

for  it is immediately obtained 18 2 r . Now Ψ2/Ψ1 = 8r β π
2
.Therefore a sufficient 

condition for the process to be delayed is that Ψ1>Ψ2. 

           In the chapter 4 it will be discussed the interdependence between β and R. All 

theoretical considerations and solutions of ideal problems lead to the conclusion that the 

fraction of particles β dispersing according to Fick’s law is an inverse function of R. For 

very large values of R the fraction β should be small. Therefore the points on the curves 

with large R corresponding to real cases should be concentrated on the left. Therefore it 

is plausible to expect that only points to the left of β1 and β2 on Fig. 3.1 correspond to 

real cases. That is the process for the initial and boundary conditions exposed in this 

case is delayed as compared with the Fick’s diffusion 

 

3.2. Hyperbolic cosine distribution. 

 



28 

 

         Let us consider now another particular system where all parameters  RD,, are 

constant, the domain of definition is given by    1,01,0   and 0t , and the new set of 

boundary conditions reads:    tyxqatyxq ,,0.5 ,, 22  ,    tyxqatyxq ,,0.5 ,, 32

Together with the initial condition: 

  

















a

y

a

x
qyxq coshcosh0,, 0  

Under these assumptions the solution of the fourth order equation reads: 

  

























a

y

a

x
t

a

D
qtyxq coshcosh

2
exp,,

20    

where  







  1

2
1

2a

r
. The primary and secondary fluxes (Bevilacqua et al. 

2013), corresponding to the particles in the energy states E1 and E2 are given 

respectively by:  
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201

2
expsinhcoshcoshsinh yx eeΨ  

 

And 

 

Fig.3.2 The two fluxes on the boundary 

  

Ψ1 Ψ2 
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 

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
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          This case represents, in principle, a densification process. That is, it is expected 

that the concentration tends to increase in time as the particles belonging to the primary 

flux feed the supporting medium through the side 10,1  yx  and 

10,1  xy  of the border. If there is no disturbance in the diffusion process, 1 , 

the rate of change of density is equal to 22 aD .  Fig.2.3 shows the variation of  with

  for different values of 2ar . As in the previous case there is a critical value of 2ar

namely   5.02 
crit

ar , defining a separatrix     
critcrit ar 2,  , such that if 

 
crit

arar 22   the concentration tends to grow continuously, although slowly as 

compared with the case 1 , characterizing a densification process irrespectively of 

the fraction   of particles. Now for  
crit

arar 22   there is a maximum value of the 

fraction of the diffusing mass that we call crit  given by racrit

21  such that for all   

crit   the density tends to decrease, following a rarefaction process.  That is, for 

branches below the axis 0  the process is reversed, instead of densification, 

rarefaction prevails. The mass of particles leaving the system overcomes the mass of the 

incoming particles inducing an overall decrease in the particle concentration. 

 

             It is remarkable that for particular combinations  critar ,2
 such that 

  0,2 critar   the concentration is kept constant in time in spite of the fact that the 

 

Fig.3.3 Variation of the exponent ρ with the fraction of the diffusing particles   

in the energy state for different values of the r  corresponding to the density 

distribution given by    ayax coshcosh . For pairs (β,a
2
r) below AB the process 

is delayed characterizing retention as compared with the undisturbed case 1 .  
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system continues to be dynamically active. The critical points on the   axis will be  

called stagnation points. If crit  the density increases steadily but if crit   the 

concentration  txq ,  tends to fade out. As stated previously the conversion of 

densification into rarefaction is controlled by the mass flow rate Ψ2 and the 

corresponding particle fraction  1  . 

           As shown in the previous examples the solution of the fourth order equation with 

prescribed boundary conditions may lead to delay or acceleration in the diffusion 

process, despite the fact that the discrete approach assumed retention in the 

redistribution rule. The mass conservation principle however doesn’t impose any 

restriction concerning the type of evolution. For the continuum approach it is enough to 

prescribe the corresponding flux laws. Therefore we may expect both, delay or 

acceleration depending on the  initial and boundary conditions.  

As in the previous example considering the fraction β as a decreasing function of 

time it is reasonable to admit that for large values of R the real solution will be 

displaced to the left where β is small. Therefore for the case of primary and secondary 

fluxes in opposite directions the tendency when R is large is to cause a  rarefaction 

process opposing the tendency of the classical theory.      

 

3.3. Particular pulse functions as initial condition  

 

          In this section, we present some numerical solutions in 1D and 2D for particular 

types of initial conditions that may induce a fluctuation profile of the concentration 

distribution and consequently a sequence of maxima and minima of the concentration 

profile. The mathematical analysis concerning extreme values of the solution of fourth 

order partial differential equations has not yet lead to definite answers. The numerical 

solution presented in the sequel for a particular initial condition may indicate interesting 

hints for the future mathematical analysis. Even if there are no formal proofs for some 

of the mathematical properties of the numerical solution the restrictions imposed on the 

initial condition may suggest new investigation lines. It will also be shown the long run 

behavior of some particular solutions. For some cases the initial acceleration process 

may reverse to a delayed behavior compared with the classical solution. 

          Let us initially consider the normal distribution defined in the interval [0,1] 

(Bevilacqua et al. 2013):  

   exp
1

0,
2

2
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x
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Let θ=0.1. The boundary conditions prescribe no flux at both extremities of the interval 

that is Ψ1=0 and Ψ2=0, which means that the first and third derivatives vanish fo x=0 

and x=1. This is a pulse at the origin. Let us examine the solution of the bi-flux equation 

for r=10
-5

 , r=10
-3

 and r=10
-1

 where r=R/D. 

The solution was obtained with the Hermite finite element for integration in 

space and Newton backward difference method for time integration (Reddy, 1993; 

Young and Hyochoong, 1997). All the results presented in this chapter were obtained 

with the same method. The details are presented on the appendix A, together with the 

convergence tests.   

        The evolution of the concentration in the interval   1,0  is shown in Fig.3.4 for 

0.5 and three different values of r, Fig.3.4 (b),(c),(d). It is also displayed the 

solution for the classical Fick´s diffusion process, Fig.3.4 (a). Note that β=0.5 gives the 

maximum value for  β(β−1) and therefore for this value of β it is expected the maximum 

Fig.3.4. Evolution of the concentration profiles for different values of the 

reactivity coefficient R controlling and the fraction of particle in the primary 

flux: (a): 1  0.0R  (b): 0.1 , 5.0 (c): 510r , 5.0 (d): 310r ,

5.0  dt is the time interval. 
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perturbation on the classical solution imposed by the fourth order term for a fixed R.  

For very small values of the ratio 301 r and 501 r
 
there is clearly a delay in the 

process that can be seen by comparing figures 3.4(a) with 3.5(b) and 3.5(c). Indeed for 

the time (4000dt), the concentration at x=0 according to the classical solution is of the 

order q0 = 3.5 units and for 501 r and 301 r  are q0 = 4.2 units and  q0 = 4.08 

respectively.  

 

         However for 101 r the process is initially accelerated as can be seen from 

Fig.3.4(d) with the concentration at x=0 for t=4000dt going down to a value close to  

5.20 q .  

           It was noticed from several tests that solutions with initially speeding processes 

display consistently at least one minimum in the interval   1,0 as shown in Fig.3.4 (d) 

with 101 r . For these cases the concentration becomes negative for some subinterval

    1,0, 21 xx . This behavior has already been reported for fourth order parabolic 

equations (Murray, 2008; Cohen et al. 1981)  

          Deviating from this peculiar characteristic, for a particular range of the 

parameters  r  the solution may follow the regular physically compatible variation, that 
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Fig.3.5. Evolution of the concentration , the first flux, the curvature , the second 

flux with 001.0D , 5.0 , 110r . 
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is, no extreme in   1,0 except for  0x  and    0t, xq for  0t and 10  x . Indeed 

for all cases of high values of the retention coefficient with a fixed diffusion coefficient, 

that is r small, 301 r and 501 r , the numerical solution doesn’t  induce any 

observable anomaly and the concentration remains positive for all time in   1,0 . If this 

is not a demonstration, since we are dealing with numerical solutions the indication is 

sufficiently strong to support the conjecture that    0t, xq in the space domain for all 

time provided that r is sufficiently small.         

           Negative values of the concentration may occur for certain combinations of r and 

  as shown above. This phenomenon has a physical meaning. For the initial condition 

introduced above the primary and the secondary fluxes travel in the positive x-axis 

direction close to the origin, that is for 
1xx  .  The secondary flux changes sign at a 

point
2x and keeps forcing particles to move in the negative direction of the x-axis in 

given interval  32 , xx .   For certain values of r and   even the primary flux changes 

sign in an interval that coincides partially with  32 , xx . This means that in a region 

close to the origin a counter flux appears recruiting particles from the right to the left as 

shown in Fig.3.4.  If the intensity of the counter flux is strong enough it is possible that 

the stock of particles will be not able to supply the demand created by this inversion of 

motion. In these cases the concentration becomes negative. 

        Now if the reversed secondary flux intensity is moderate the primary flux remains 

always positive along the x-axis and the concentration will not drop below zero. This 

case corresponds to a standing retention behavior, that is, the process is delayed for all 

time. Negative values of the concentration are always associated, for the type of initial 

and boundary conditions assumed here, with processes which are initially subjected to 

acceleration. Therefore when the decaying speed of the concentration exceeds the value 

corresponding to the classical diffusion the solution is physically compatible only if 

there is an initial layer that can supply particles for some bounded interval in the domain 

 1,0  otherwise the model is not valid anymore and the concentration continuity will be 

disrupted causing strong instability in the process.  

Now if we consider the variation in time of the concentration at the origin, 0x , for a 

fixed 5.0 , 007.0D and different values of r  the results obtained for the case of 

initial and boundary conditions as prescribed above show that the processes that are 

initially accelerated may become delayed with respect to the classical diffusion 

approach after a sufficiently long time. With 110r , for instance, the process is 

initially accelerated as compared with the classical case 0R and 0.1  as shown in 

Fig.3.6. But for 10t  the solution is reversed, the concentration for 110r  is larger 

than the corresponding value for the case of classical diffusion. So in the long run we 

may say that the process is delayed. 
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                    The behavior of the secondary flux is crucial regarding the evolution of the 

concentration since the third order derivative depends on the intensity and on the sign of 

that function. Now the secondary flux represents the curvature variation of the 

concentration profile. This is another important aspect of the initial condition equivalent 

to the gradient variation. As the concentration varies in time the sign of the second flux 

and the primary flux as well may switch from positive to negative, or the other way 

around, inducing reversal of the flow direction. The solution therefore turns out to be 

much more complex than for the classical diffusion equation.           

In order to explore the conditions that triggers fluctuations in the concentration profile, 

let us examine the solutions for a particular form of  initial conditions. Consider the bi-

flux equation with all coefficients constant: 

   
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defined in the interval[–1,1]. 

         Let the initial condition be given by:      nxxq cos15.00,  and the 

boundary condition by:   0,1  xtq ,   0,1  xtq ,   0,1 33  xtq

  0,1 33  xtq . In the previous examples the initial condition was kept constant while 

the solution was obtained for three different values of r=R/D to see how this parameter 

influence the evolution of the concentration profile with possible occurrence of 

fluctuations. In the present case the initial condition plays the key role since it is 

modified increasing the value of n such that it approaches gradually a pulse at the 

Fig. 3.6.Evolution of the concentration at 0x for different values of the 

reactivity coefficient R . the blue line represents the classical diffusion with 

0R  and 1  
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origin. It is a peculiar type of pulse that approaches a Dirac function as n→∞. In any 

case it provides very interesting information about the evolution of the solution and the 

induction of fluctuations behavior. We take r=R/D=1 and β=0.86667. Note that this 

value of β ia equivalent to take β=0.13333 as far as the influence of the fourth order 

term is concerned keeping th same R. The difference of the solutions will be determined 

by the coefficient of the second order term βD. The primary flux is not affected by the 

value of β but the secondary flux depends linearly on this parameter. Therefore for the 

examples presented here Ψ2  is maximized with respect to β.   

          Let us examine the solution for some values of n. Note that the initial condition 

remains less than one for all points of the interval, except for x=0, since 

(1+cos(πx))/2<1 for all −1≤x<ε and 1 ε<x≤1. The initial condition is progressively 

being concentrated at x=0 for increasing values of n. For n=1 clearly all the 

concentration profile remains positive. The same is valid for n=2. For increasing values 

of n however the solution degenerates and for n=10 the concentration profile presents 

fluctuations with negative values for certain time intervals. For sufficiently large time 

the solution becomes again regular and tends to a uniform distribution as expected since 

there are no fluxes at the boundaries.   
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Fig.3.7 The numerical solution for the fourth condition equation with no flux 

boundary condition 
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           Let us now test another type of boundary condition letting the flux free at both 

extremities of the interval and imposing the concentration and the concentration 

curvature to vanish at x=1 an x=−1. That is    0,1  tq ,   0,1 tq ,   0,1 22  xtq ,

  0,1 22  xtq . The initial condition is    xxq n 5.0cos0,  .The parameters R,D 

and β  are the same as before.  

          The solutions present the same general behavior as in the previous case except 

that now the solution remains without fluctuation for higher values of n, Fig.3.8. For 

n=10 for instance the solution for this case, that is free flux at the boundaries, is regular 

q(x,t) ≥0 for all 1≥x≥−1. For the previous case with no flux at the boundaries the 

anomaly, q(x,t) <0 is present for a subset of the domain of definition. For n=100 

however the anomalous behavior shows up.  

           Therefore it is possible to say that the occurrence of anomalies, fluctuations in 

this case, depends on the boundary conditions at least for some class of functions.     

 

          These examples show that there must be a limiting condition, or a definite critical 

initial condition that we may call separatrix characterizing two different behaviors, the 
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Fig.3.8 The numerical solution for the fourth condition equation with Dirichlet 

and Navier boundary condition  
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regular behavior and the anomalous behavior with presence of fluctuation and negative 

values of the concentration. These indications can well be used to start theoretical 

analysis of the behavior of fourth order partial differential equations.      

         To close this chapter let us consider a 2-D problem defined in the region 

[−1,1]x[−1,1]. The problem is to solve the bi-flux equation: 

                            1 qRqD
t

q





  

with all parameters constant, namely 5.0 , 01.0D , 38.0R . The boundary 

conditions correspond to no flux at the boundaries: 

  0          0            0           0
11211


 yxyx 211 ΨΨΨΨ  

and the initial condition is given by: 

   22100,, yxeyxq   

 

 

Fig.3.9. The behavior of concentration at t=0.0; 0.01; 0.05; 0.15  
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Fig.3.9 shows the concentration distribution at different times. It is interesting to see 

that as time pass by the particles moving towards the edges tend to concentrate at the 

center of the  middle of the edges, x=0, y=±1 and y=0, x=±1. Particles reach the central 

part of the edge before reaching the corners. This can be explained by the fact that the 

central part of the edge is closer to the initial distribution of particles, that is, the initial 

conditions.  Initially the anomalous behavior corresponding to negative values of the 

concentration is present at the corners Fig.3.9. Due to the high gradient from the center 

to the corners the flux is oriented towards the corners inducing a fourfold partition. The 

density and flux distribution are similar in the four quadrants. In relatively short time 

four wells grow at the corners inducing the fluxes to converge to these four points. 

Fig.3.10 to Fig. 3.12 shows clearly this behavior. 

 

 

 

 

 

 

 

 



39 

 

 

 

 

 

Fig.3.10. The contour of the concentration at time 0.01 and 0.15
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Fig.3.13a show the density distribution on the domain [−1,1]x[−1,1] for t=0.05 and 

Fig.3.13d the curvature of that same distribution. The other figures show the 

distributions of the effective primary flux and the effective secondary flux which are the 

correlated with the gradients of the density and curvature distribution respectively.  

Fig.3.13. the behavior of the concentration and the primary and the 

second flux at time 0.05 
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         The general behavior of the solution for the classical Fick’s diffusion process 

follows similar evolution process, except that there are no singularities at the corners. 

The distribution remains positive for points of the domain all the time.   

         We will see that this expected behavior for the diffusion process may be 

completely different for the case of anisotropic media.  
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Chapter 4 

 

Anisotropic diffusion processes 1D 

case 

 

         In the previous chapters it was presented the bi-flux process for isotropic media. 

Some basic differences in the behavior of this new approach as compared with the 

Fick´s diffusion were highlighted. It was shown that there are critical combinations for 

the pair (βcrit,Rcrit) dividing the concentration evolution into two different zones. One of 

them exciting delaying processes while the other induces acceleration, or one region 

corresponding to accumulation while for the other rarefaction prevails. The combination 

of these two parameters is therefore critical for the anomaly introduced in diffusion 

process.  

         The correlation between β and R was carefully examined by Silva, et al. (2013 and 

2014), Faria, et al. (2015). After the simulation of inverse problems for the bi-flux 

equation it was clearly shown that there is a correlation between these two parameters. 

This correlation is not surprising. The secondary flux excited by the presence of the 

reactivity coefficient R automatically captures a fraction β of particles for this new 

energy state. 

         There is no definite relationship between these new parameters. It is a new 

challenge of this theory together with, at least, another critical point that we will see 

later. The only clue for helping the definition of β as function of R, β=F(R) is that it is a 

decreasing function of R and for R=0, β=1. Two laws will be used to solve some typical  

problems, namely: 

a) A linear law of the form: 













max

1
R

R
        where   max0 RR     and  10   is a saturation 

parameter  that is β cannot be less than 0. 

b) An exponential law of the form: 
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

























2

0

exp
R

R
    where  R≥0  and   α≥0 

         There are of course several other possibilities, but as far as we know, there is no 

concrete justification to adopt a definite rule to connect these two parameters. Probably 

there is no unique law. It will depend on the substratum and on the nature of the 

spreading particles. As for the determination of the existence and properties of the 

complex flux behavior exposed in this thesis, experimental data are not yet available. 

       A second critical question is the definition of the secondary flux. For the case of 

isotropic media the secondary flux is well defined, that is, it is uniquely defined:  

 
x

x

txq
R eΨ

3

3
1

2

,




   

Now if β and R are function of x there are other possible definitions for the secondary 

flux, as already mentioned. Recall the other two possibilities: 

 
x

x

txq

x
R eΨ 




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










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2
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  

and 

 
x

x

txq

x
R eΨ 


















,
2

2
3

2   

 

We will call these three expressions as first class, second class and third class secondary 

fluxes respectively. Each of these definitions leads to a particular governing equation.  

For 1

2Ψ : 
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For 2

2Ψ : 
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                            (4.2)                             

For 3

2Ψ : 
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(4.3) 

 

          These three equations clearly present considerable differences in the factors of the 

concentration derivatives. This is of crucial importance. Indeed, the equation 

corresponding to the secondary flux given by 1

2Ψ is similar to the classical equation for 

anisotropic media. It is the same with the diffusion coefficient modified to βD. If D is 

constant the bi-flux equation with this definition for the secondary flux introduces an 

artificial anisotropy for the primary flux. The reactivity coefficient doesn’t play any 

direct role in the classical diffusion process. The perturbation introduced by R is 

indirect through the partition coefficient β. 

         Now the second and third definitions of 2Ψ  involves considerable perturbation in 

the primary flux even if the diffusion coefficient D is constant. This means that for these 

cases the constants associated to the secondary flux are mingled to the constants of the 

primary flux. The perturbation imputed by the secondary flux in the primary flux is of 

considerably importance. 

        By the time being there is no definite reason to decide for one of the three. 

Certainly the first definition 1

2Ψ  is the less critical, that is, it will probably introduce 

less serious disturbances in the solution, while the other two 2

2Ψ  and 3

2Ψ  may input 

essential differences in the flux as functions of space and time. If we assume that every 

potential is generated by the gradient of some appropriated field, the second option 2

2Ψ

is the more appropriate. Indeed R is the characteristic constant and the field is given by 

the concentration curvature 221 xqr  weighted by the fraction β of diffusing 

particles. Than the second proposal matches these conditions. Therefore there are strong 

reasons to consider 2

2Ψ  the best option. 

        Finally, it is possible to have also the physical constants varying with time for 

isotropic or anisotropic diffusion. In general this condition doesn’t introduce any major 

difficulty in the solution. 

        It must be clear that we have found no references on bi-flux diffusion further than 

those already cited. Therefore the solutions that will be presented in the sequel are in 

fact, numerical experiments that try to analyze the influence of the new physical 

constants on the concentration distribution. Comparisons with the classical model will 

be included for some cases. The solutions will also be associated to some particular 

phenomenon that supposedly could be model with the theory under discussion. 
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4.1Diffusion processes in an anisotropic one-

dimensional medium 

 

      Consider the interval [−1,1] and an anisotropic substratum  referred to the secondary 

flux parameters only. That is D=0.01 and   ),)5.0(20exp( 2

0  xRxR  5.00 R Initial 

condition:     ,cos12500 πx.x,q   and boundary condition: 

  0,1  xtq ,   0,1  xtq ,   0,1 33  xtq ,   0,1 33  xtq  

Let us assume the correlation between R 

and β given by the linear law:  

  0321 RR  

The secondary flux will be defined as the 

first proposal 1

2Ψ . This choice minimizes 

the perturbation of the anisotropy on the 

solution, and therefore gives the 

opportunity to verify the minimum 

deviation from the classical one. That is, 

Fig.4.2 Evolution of q and first derivative comparing the classical medel  

Fig. 4.1 Initial distribution R 



46 

 

this is what the theoretical development has induced up to now.  

The equation to be solved is therefore: 

   
 

 
 

3

,3
1

,,














































x

txq
R

xx

txq
D

xt

txq
  

with the definitions given above. Note that the reactivity coefficient varies as shown in 

the Fig.4.1 The medium is isotropic on the first half and the anisotropy assigned by the 

variation of R occurs on the second half with a maximum at x=0.5.  

        Fig.4.2 shows the solutions for the bi-flux process and the classical Fick´s method. 

Both the concentration and the specific primary flux ( xqspec )(1Ψ )   are shown. 

There is clear tendency for the concentration to become denser on the right half of the 

interval where R is large. As t→∞ the concentration tends to a uniform distribution for 

both cases as it should be. It is also clear that the primary flux, for the bi-flux diffusion 

Fig.4.2b, keeps the maximum intensity 6.0)(1 specΨ  along all the points on the half 

x>0.5. The primary flux distribution for the classical case Fig.4.2d despite presenting a 

higher maximum values 8.0)(1 specΨ at x=0.5 doesn’t sustain this intensity for a large 

interval. Also the secondary flux, Fig.4.3, pushes the particles towards the end x=1with 

two intense bursts close to x=0 and x=1. 

All this behavior taken together suggests 

that the concentration tends to accumulate 

on regions where the reactivity coefficient 

is high. The presence of the reactivity 

coefficient exerts a direct influence on the 

secondary flux and also an indirect 

influence on the primary. Note that these 

comments are consistent only for the case 

of diffusion of particles in a confined 

region.      

Now let us examine what happens for 

different initial and boundary conditions. Let the initial condition be: 

    5.0,9100, 2  axxaxq  

and the boundary condition: 

  1020*,1  axtq ,   1020*,1  axtq ,   0,1 33  xtq , 

  0,1 33  xtq  

 

Fig.4.3 The behavior of second flux 
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With the prescribed boundary conditions the concentration in the domain will grow 

steadily since we have internal flux at both ends.  The behavior for the two cases, the 

Fickian diffusion and the bi-flux diffusion will be very similar. However, some small 

but meaningful deviations are to be observed. While the densification process for the 

classical case follow a non decreasing path for all points in the interval [-1,1] Fig.4.4c. 

For the bi-flux process this is not true Fig.4.4a. In the interval [-0.2, 0.6] there is an 

initial reduction in the concentration. It is as if particles in this region were requested to 

concentrate at points close to x=−1. Note that the concentration at x=−1 grows quicker 

for the bi-flux process than for the classical one. This is certainly due to the perturbation 

on the primary flux and the presence of the secondary flux for the new approach, both 

introduced by the fourth order differential term. This phenomenon is similar to the case 

of the response to an initial condition concentrated on the origin as explained in the 

previous chapter.  It confirms the hypothesis of the intense demand for particles when 

the bi-flux approach is taken to model the diffusion process. This happens for some 

particular conditions. For the present case it is compatible with the particle distribution. 

Fig.4.4Evolution of q and first derivative with flux into the domain for 

anisotripic medium comparing with classical model 

a b 

c d 
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Comparing Fig.4.4b with Fig.4.4d it is clearly seen that the specific primary flux 

intensity is higher for the bi-flux process than for the classical theory, particularly in the 

region [0,1]. The presence of the R(x) on that region also contributes to the acceleration 

of this kind of behavior.  

        Now there is not yet any observable phenomenon that has used this type of 

approach. Physico-chemical processes are difficult to devise that could follow the 

process proposed here. However it is not difficult to see that the motion of living 

organisms or certain species of animals are adequately modeled by the proposed theory. 

After the results obtained above it is reasonable to assume that the reactivity coefficient 

R may be associated to some kind of attractor representing food or some kind of 

pheromone. The introduction of this type of disturbance in the environment, substratum, 

will modify the natural diffusion process attracting the individuals toward regions where 

R is high. Therefore the model could satisfactorily represent the motion of certain types 

of organisms in the presence of some stimulus that could induce change in their energy 

states. In any case experimental confirmation is necessary to validate the process.         

 

4.2 Diffusion processes on an active anisotropic 

substratum  

 

           The motivation induced from the solution above regarding the reactivity 

component as a possible attractor suggests taking into consideration an active role of 

that parameter. That is it is reasonable to consider the reactivity coefficient function of 

time, or more precisely, subjected to a given law that regulates its evolution in time. If 

we consider the reactivity factor as the food supply in a set of living organisms diffusing 

in some substratum the following system could be proposed to model the system:  
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                      (4.4) 

 

That is we assume that the coefficient of reactivity evolves in time according to a 

diffusion process. If we think about food this means that the respective ingredients are 

able to spread in the medium. In the previous example the food would be restrict to a 

specific area. 
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Consider the system 4.4 Let D=0.1 and DR=0.05. The initial distribution of the 

reactivity coefficient R(x,0) is the same as in the previous cases Fig.4.1. Let us consider 

for the following case the fraction β decaying exponentially with the reactivity 

coefficient R: 
















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











2

0

5exp
R

R
      with   50 R  

The boundary conditions are: 

  0,1  xtR   and   0,1  xtR .  For the main equation referring to the 

concentration q(x,t) the initial condition is defined as : 

   210exp0, xxq    for all x such that exp(−10x
2
)≥0.1 

q(x,0)= 0.1 for all x such that  exp(−10x
2
)<0.1  

Under this condition we approach an initial 

distribution concentrated around x=0 and           

avoid the possible negative values that could 

appear close to x=0, Fig.4.5 

The boundary conditions correspond to a closed 

reservoir, no flux at the boundaries.   

0
1






xx

q
     and      0

1

3

3






x
x

q
 

The numerical solution was performed with the cubic Hermit polynomials as base 

function for the BFS finite element method. The approximations for the reactive 

coefficient R is shown in table 6.a. Since the equation governing the evolution of R(x,t) 

is the classical second order partial differential equation the convergence is quite good. 

The results for N=40 elements and N=640 elements is less than 1%.  

Table 4.1a Convergence for R(x,0.5) 

N R(-1, 0.5) R(-0.5, 0.5) R(0, 0.5) R(0.5, 0.5) R(1,0.5) 

20 3.528e-006 0.00408447 0.54172842 2.89988673 1.07829432 

40 3.592e-006 0.00408366 0.54172551 2.89991677 1.07807229 

80 3.595e-006 0.00408364 0.54172550 2.89991695 1.07805816 

160 3.595e-006 0.00408364 0.54172550 2.89991693 1.07805727 

320 3.595e-006 0.00408364 0.54172550 2.89991693 1.07805722 

640 3.595e-006 0.00408364 0.54172550 2.89991693 1.07805721 

Tables 4.1b,c,d show the approximations for the concentration, the primary flux and the 

secondary flux in this order for time t=0.5. For points corresponding to the central part 

of the domain  -0.5<x<0.5 the numerical solution converges rapidly for a limiting value 

for the three variables. Particularly for the concentration the convergence is very good 

Fig  4.5 Initial distribution 
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for all the domain of definition -1<x<1.  For N=40 the stable value for q(x,0.5) is 

reached. For larger number of elements there is practically no gain. Only for primary 

and secondary fluxes the solutions are still subject to variations at x=1 and x=-1, but the 

values are so small that we may say that the convergence is quite satisfactory for all the 

range -1<x<1. 

Table4.1b Convergence for q(x,0.5) 

N q(-1, 0.5) q(-0.5, 0.5) q(0, 0.5) q(0.5, 0.5) q(1,0.5) 

20 0.12226478 0.27214696 0.39921318 0.37406883 0.36148479 

40 0.12255830 0.27220083 0.39918163 0.37411394 0.36156123 

80 0.12255088 0.27206392 0.39905445 0.37403083 0.36149358 

160 0.12256879 0.27207399 0.39905950 0.37403900 0.36150301 

320 0.12256860 0.27206662 0.39905266 0.37403457 0.36149943 

640 0.12256956 0.27206680 0.39905257 0.37403478 0.36149975 

 

Table4.1c Convergence for Ψ1 (x,0.5) 

N Ψ1 (-1, 0.5) Ψ1 (-0.5, 0.5) Ψ1 (0, 0.5) Ψ1 (0.5, 0.5) Ψ1 (1,0.5) 

20 -1.263e-005 -0.05723163 0.00425233 0.00454377 -9.734e-007 

40 -2.027e-006 -0.05713757 0.00425765 0.00453149 -1.568e-007 

80 -2.691e-007 -0.05711297 0.00424832 0.00452536 -2.179e-009 

160 -3.410e-008 -0.05710970 0.00424774 0.00452486 -2.819e-009 

320 -4.278e-009 -0.05710838 0.00424713 0.00452454 -3.556e-010 

640 -5.352e-010 -0.05710813 0.00424706 0.00452449 -4.456e-011 

 

Table4.1d Convergence for Ψ2 (x,0.5) 

N Ψ2 (-1, 0.5) Ψ2 (-0.5, 0.5) Ψ2 (0, 0.5) Ψ2 (0.5, 0.5) Ψ2 (1,0.5) 

20 -4.829e-008 -0.04370391 0.93803336 0.11154303 -8.021e-004 

40 -6.265e-009 -0.04338993 0.94616815 0.11110317 -2.297e-004 

80 -7.907e-010 -0.04337977 0.94647171 0.11105621 -3.829e-005 

160 -9.900e-011 -0.04337640 0.94643840 0.11104825 -5.245e-006 

320 -1.235e-011 -0.04337548 0.94642950 0.11104706 -6.724e-007 

640 -1.644e-011 -0.04337524 0.94642610 0.11104665 -8.459e-008 

The evolution of R(x,t) and q(x,t) are given in Fig.4.6.  It is interesting to observe that 

as expected the initially symmetric distribution is deviated towards the left. The 

Fig.4.6a. Evolution of R Fig.4.6b. Evolution of q 
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concentration decreases quickly converging to the uniform distribution as expected from 

the theory. The nutrients accumulate on the right side since the flux is blocked at x=1. 

This behavior attracts the diffusing particles, supposedly living organisms, to the right 

end very quickly.     

         The diffusing fraction of particles in the primary energy state decays exponentially 

with R. But R also decreases as time increases since it is subjected to a diffusion 

process. There is partial compensation along this process. The solution converges to a 

steady state as can be also seen from Fig.4.7 representing the time variation of the 

concentration at three specific points: 

The evolution of the concentration at x= 1 and x= −1 follow completely different paths. 

At x=1 close to the points where food accumulation increases rapidly the concentration 

grows more quickly than at x=−1. This is therefore a confirmation of the assumption 

that the reactivity coefficient for this case is compatible with the hypothesis of  nutrients 

available for the living organisms. For sake of completeness Fig.4.8 shows the primary 

and secondary fluxes for the concentration. Now let us examine another interesting 

situation similar to the previous problem except that a “food” source is included in the 

Fig.4.8a Evolution of first flux Fig.4.8b Evolution of second flux 

Fig.4.7 The evolution for q(-1,t),q(0,t) and q(1,t) for R without source term 
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formulation. That is the new system reads: 
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           The term A(R(x,t)) represents a source of food. That is, there is limited source of 

nutrient proportional to the actual nutrient available. Take A=0.7 The solution was 

obtained with the same method described in the appendix as for the other cases.  

The solution for both variables q(x,t) and R(x,t) are displayed in  Fig.4.9. The tendency 

for the concentration q(x,t) to deviate towards regions where R is large is again 

confirmed. The peculiarity of this solution refers to the limiting case where the solution 

tends to an abnormal steady state or freezes for a non uniform distribution. After a 

sufficient long time the concentration profile becomes a curve in the interval [−1.1]. The 

Fig. 4.9b Evolution of q  Fig. 4.9a Evolution of R 

Fig.4.10 The evolution for q(-1,t),q(0,t) and q(1,t) for R with source term 
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expected value for most of the cases for sealed domains, that is, no flux at the ends, will 

be a uniform distribution of the concentration consttxq
t




),(lim . This however doesn’t 

happen for this case. The concentration profile tends to curve as t→∞, as seen from 

Fig.4.9. According to the classical theory this is impossible. The reason that allows for 

this anomalous behavior is that the bi-flux theory depends critically from the fraction β 

of particles excited by the potential generating the primary flux. Note that the secondary 

flux doesn’t exist if the primary flux is extinguished. But the fraction β is a decreasing 

function of R. When R→∞ then β→0 and there is no motion at all. The system becomes 

freeze in some peculiar energy state.  Now in our problem we assumed a continuous 

source for the reactivity coefficient. Therefore R grows continuously and the fraction β 

approaches zero leading to a non uniform distribution of the concentration profile. The 

solution obtained is compatible with the theory and could not lead to a different result. 

Fig.4.10 shows the time variation of the concentration for three representative points , 

x=-1, x=0, x=1. The limiting values as t increases are different for the three points. At 

t≈3 the concentrations at these points reaches a limiting value and remain practically 

constant for all t > 3.  

         The convergence for t=0.5 referring to the approximations obtained for the 

reactivity coefficient, the concentration and the primary and secondary fluxes are 

displayed in the tables 4.2a,b,c,d. The same comments as for the previous case apply to 

this case. 

Table4.2a Convergence for R(x,0.5) in the model for R with source term 

 

N R(-1, 0.5) R(-0.5, 0.5) R(0, 0.5) R(0.5, 0.5) R(1,0.5) 

20 5.344e-006 0.00596787 0.77387164 4.11078831 1.54043215 

40 5.439e-006 0.00596674 0.77386734 4.11083007 1.54011738 

80 5.443e-006 0.00596671 0.77386732 4.11083031 1.54009735 

160 5.443e-006 0.00596671 0.77386731 4.11083027 1.54009609 

320 5.443e-006 0.00596671 0.77386731 4.11083027 1.54009601 

640 5.443e-006 0.00596671 0.77386731 4.11083027 1.54009601 

 

Table4.2b Convergence for q(x,0.5) in the model for R with source term 

 

N q(-1, 0.5) q(-0.5, 0.5) q(0, 0.5) q(0.5, 0.5) q(1,0.5) 

20 0.12224443 0.27044148 0.39457073 0.37989942 0.36581108 

40 0.12253791 0.27049543 0.39454170 0.37994117 0.36588350 

80 0.12253048 0.27035807 0.39441406 0.37985815 0.36581709 

160 0.12254839 0.27036817 0.39441928 0.37986608 0.36582642 

320 0.12254821 0.27036078 0.39441242 0.37986166 0.36582291 

640 0.12254916 0.27036095 0.39441234 0.37986184 0.36582323 
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Table4.2c Convergence  for Ψ1(x,0.5) in the model for R with source term 

 

N Ψ1 (-1, 0.5) Ψ1 (-0.5, 0.5) Ψ1 (0, 0.5) Ψ1 (0.5, 0.5) Ψ1 (1,0.5) 

20 -1.217e-005 -0.05577710 -0.00031766 0.00482320 -6.561e-007 

40 -1.980e-006 -0.05568149 -0.00031754 0.00480914 -8.917e-008 

80 -2.635e-007 -0.05565664 -0.00032750 0.00480242 -1.190e-008 

160 -3.342e-008 -0.05565342 -0.00032793 0.00480189 -1.523e-009 

320 -4.193e-009 -0.05565209 -0.00032853 0.00480153 -1.915e-010 

640 -5.245e-010 -0.05565184 -0.00032858 0.00480148 -2.398e-011 

 

Table4.2d  Convergence for Ψ2(x,0.5) in the model for R with source term 

 

N Ψ2 (-1, 0.5) Ψ2 (-0.5, 0.5) Ψ2 (0, 0.5) Ψ2 (0.5, 0.5) Ψ2 (1,0.5) 

20 -5.939e-008 -0.06563441 0.57574594 0.10320541 -1.769e-004 

40 -9.681e-009 -0.06769771 0.57579652 0.10221345 -8.951e-005 

80 -1.221e-009 -0.06768774 0.57543121 0.10210151 -1.574e-005 

160 -1.528e-010 -0.06768246 0.57537589 0.10208880 -2.180e-006 

320 -1.908e-011 -0.06768105 0.57536587 0.10208719 -2.802e-007 

640 -3.234e-012 -0.06768068 0.57536342 0.10208677 -3.528e-008 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 

 

Chapter 5 

 

Bi-Flux Diffusion on 2D Anisotropic 

Domains 

 
          Let us turn now to the diffusion problem in a two dimensional space domain R

2
. 

The diffusion problem for the bi-flux diffusion state is rather complex not only because 

it requires the definition of two new coefficients, the fraction β and the reactivity 

coefficient R, or one of them plus a functional relationship between these two 

parameters, but also as seen in the previous chapter the proper choice of the secondary 

flux potential. Since this a new approach and the theoretical/numerical development up 

to now has open several research windows we decided to explore the possible new 

behaviors induced by some possible choices of the new coefficients. Note that all the 

problems posed in the next sections are linear problems. Even for those cases there are 

considerable large possibilities of peculiar behaviors. As a matter of fact a more precise 

mathematical modeling even leading to linear equations is sometimes more effective 

than introducing non-linearity.        

 

5.1. Asymmetric Anisotropy  

 
          Consider now the diffusion process taking place in a two dimensional domain 

defined by    1,11,1  . Let us initially assume the secondary flux given by )3(

2Ψ  then 

the corresponding differential equation reads: 

 

       qRqD
t

q





 1  

 

 The medium is anisotropic in the sense that the reactivity varies as a function of x.   

 

  10                   001.0, 0  xxRyxR , 11-  y          R0 = 5 

  01                         001.0,  xyxR , 11-  y  
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Fig.5.1b shows the picture of R in the domain.  The diffusion coefficient is constant 

D=0.1. The initial condition, as shown in the Fig.5.1a, is given by:    

   22 1010exp0,, yxyxq   

And the boundary conditions impose no flux, primary and secondary, at the boundaries: 

0
1


y
q          0

1


x
q        0

1


y
q        0

1


x
q  

The correlation between β and R will be assumed to be linear as given by: 

max1 RR        with Rmax = 5.001 

The function β=β(x,y) is displayed in Fig.5.1c.  

 

The solution was obtained numerically with the Bogner-Fox-Schmidt (BFS) (Bogner, 

1965) finite element method on a mesh composed of square elements and the Hermite 

polynomials as base functions (Irons, 1969; Petera, 1994; Watkins, 1976).  The time 

integration was performed with a Euler backwards difference procedure. The 

convergence was satisfactory as shown in table 5.1.   

Fig.5.1a Initial distribution Fig.5.1b Reactivity coefficient 
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Table 5.1. Convergence of concentration for five points in 2D, with linear relationship 

N*N q(-1,-1, 0.01) q(-0.4,0,0.01) q(0, 0,0.01) q(0.4, 0,0.01) q(1.0,1.0,0.01) 

10*10 -2.6275e-006 0.2088183 0.8099417 0.2741395 -0.0882347 

20*20 1.0999e-008 0.2064627 0.8328648 0.2706597 -0.0877910 

40*40 1.1182e-008 0.2064486 0.8533093 0.2686040 -0.0872301 

80*80 1.1199e-008   0.2064486   0.8649527   0.2679241    -0.0869223 

 

The solution confirmed the tendencies found in the previous cases for one-dimensional 

diffusion. The concentration tends to increase more rapidly in the regions where the 

reactivity coefficient is high. The initial symmetry is clearly broken as can be seen from 

Fig.5.2. The concentration distribution grows asymmetrically with respect to the x 

direction.  

Fig.5.2 shows the contour lines of the concentration in the domain    1,11,1   

corresponding to the surfaces displayed in Fig.5. We can see that the higher level 

contour lines deviate to the right which indicates that particles are moving preferably to 

the right side. That is, the region where the reactive factor increases exerts a kind of 

attraction effect on the particle path.    
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The figures 5.4a, b and 5.5a, b show the primary and secondary fluxes at two different 

times 20dt and 800dt, respectively. At very short times, Fig.5.4b, the secondary flux 

becomes very high close to the central point [0,0] where the density is maximum 

pushing particles toward the border. For points far from the center [0,0] there is an 

inversion of the secondary flux direction pulling particles towards the center. This 

behavior seems to be typical when the initial condition is highly concentrated around a 

point, a kind of pulse. For the case of one dimension problems this behavior was already  

 

Fig.5.3a Contour of q at time 20dt Fig.5.3b Contour of q at time 100dt 
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discussed in chapter 3. The peculiarity for the present solution is that there is no 

symmetry due to the variation of the reactivity factor with x,y. The inversion of flux 

direction appears for the region x>0. After a sufficiently long time t=800dt the flux is 

stabilized in just one direction pushing particles to the right border. Note that the 

secondary flux is inexpressive for x<0.  

The primary flux presents a more regular behavior. Initially t=20dt it is practically 

symmetric with respect to the x axis. As time increases, however, an asymmetric pattern 

starts to appear showing the influence of the bi-flux behavior also on the primary flux 

distribution. 

Another typical behavior of the bi-flux approach that is governed by a fourth order 

partial differential equation is the growth of negative values of the concentration at 

some critical points. For the present problem the negative value of the concentration 

grows at the corners [1,1] and [1,-1] as indicated in the Fig.5.3b and 5.6-b. After an 

initially accumulation of particles at the referred points the evolution of the 

concentration shows a rapidly decrease of the concentration towards negative values. 

The relatively intense particle flux imposed by the secondary flux pulling particles 

towards the center request particle from the corners [1,1] and [1,-1] generating this 

phenomenon. The concentration at the central point [0,0] decreases steadily as expected 

Fig.5.6a.    

Now it is also important to test the solution for a different definition of the secondary 

flux. For the previous solution the secondary flux was defined as the third class: 

  tyxqR ,,)3(

2  Ψ    

Now let us see what happens if we take the second flux defined as: 

  tyxqR ,,)2(

2  Ψ  

This definition, as explained before, is probably more consistent with what is to be 

expected for the definition of flux potential. It correlates the potential with the gradient 

Fig.5.6 Evolution of the concentration profile q(0,0,t) and q(1,1,t) for )3(

2Ψ with 
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of the curvature of the density distribution. With this definition the governing equation 

reads:     

      qRqD
t

q





 1  

For this case the perturbation introduced in the primary flux by the secondary flux is not 

so critical as for the third class definition. The intital and boundary considitons are the 

same as for the previous problem and the reactive coefficient R and its correlation with 

the fraction β, as well.  

The solution for this case didn’t present any important deviatios from the preceding 

case. Fig. 5.7a,b show the time variation of two representatives point, namely [0,0] and 

[1,1] for the previous case )3(

2Ψ for diferent values of γ in the expression  

max1 RR  with Rmax = 5.001. Clearly the process is accelerated for increasing 

values of γ. 

  

 

Fig.5.7 Evolution of the concentration profile q(0,0,t) and q(1,1,t) for )3(

2Ψ  
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Fig.5.8 Evolution of the concentration profile q(0,0,t) and q(1,1,t) for )2(
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The solution for the secondary flux defined with the secondary class option doesn’t 

differ essentially from the previous case except that the speed of variation of the density 

at the corners is considerably smaller for the second class flux as can be seen by 

comparing the figures 5.7b and 5.8b.  

     

5.2. Axisymmetric anisotropy  

 

       For the second problem let us consider a new relationship between the reactivity R 

coefficient and the diffusing fraction of particles β excited in the primary energy state. 

Let   

 

  2

0exp RR   

 

 

Fig.5.9 the exponent relationship between   and R  

The exponential law is more flexible allowing for a large range of variation for R with a 

practical cutting effect for large values of time.   

The problem is defined in a 2-D space within the region [1,-1]x[-1.1]. Let us take for the 

secondary flux the third class definition   tyxqR ,,)3(

2  Ψ  leading to the equation: 

      qRqD
t

q





 1  

The initial condition admits a polar symmetric distribution, the same as in the problem 

3.1 : 
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   22 1010exp0,, yxyxq   

together with the same boundary conditions. No flux, primary and secondary, at the 

boundaries: 

0
1


y
q          0

1


x
q        0

1


y
q        0

1


x
q  

The correlation between β and R will be assumed to be exponential given by: 

    2

0exp RRR    

 

 

The reactivity coefficient is the same as in problem 5.1:     22 1010exp5, yxyxR   

and the fraction β is given by:     2

05exp RRR   with R0=5, 5 . Fig.s 5.10a 

and 5.10b show the functions R=R(x,y) and β=β(x,y). The diffusion coefficient is 

D=0.1.  

The solution was obtained numerically as mentioned for the problem in chapter 3. The 

convergence as shown in the table 5.2 at time 0.01 is satisfactory. 

Table 5.2Convergence of concentration for five points in 2D, with exponent relationship 

N*N q(-1,-1, 0.01) q(-0.4,0,0.01) q(0, 0,0.01) q(0.4, 0,0.01) q(1.0,1.0,0.01) 

10*10 5.1377e-007 0.2365930 1.4844618 0.2365930 5.1377e-007 

20*20 1.0887e-008 0.2266660 2.2950605 0.2266660 1.0887e-008 

40*40 1.1193e-008 0.2265916 2.3408640 0.2265916 1.1193e-008 

80*80 1.1210e-008   0.2265744   2.3375152   0.2265744   1.1210e-008 

 

The evolution of the concentration is shown in Fig.5.11. Now this type of “diffusion” is 

peculiar and may represent one of the most important anomalies introduced by the bi-

Fig.5.10a Reactivity coefficient Fig.5.10b The fraction β 
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flux approach. Deviating from any expected evolution previewed by the classical theory 

the concentration q(0,0,t) is increasement instead of decreasement. Particles flow 

opposing the concentration gradient in the very beginning. It is kind of initial shock.  

 

Fig.5.12 represents the contour lines relative to the concentration distribution on the 

field of definition of the problem. As expected, the symmetry is preserved and no 

anomaly associated to negative values of q(x,y,t) is present for this problem. As this 

type of anomaly grows up immediately after the initial condition is imposed to the 

system, it is expected that the concentration will remain positive for all time is all over 

the domain.   

Fig. 5.11 Evolution of the concentration profile  
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The primary and the secondary flux distributions for t=20dt and 800dt are shown in 

figures 5.13 and 5.14. The primary flux is regular with no peculiar disturbance from the 

expected behavior. It follows regularly the scattering process as expected from the 

Fick’s law. The intensity of course depends on the physics imposed by the bi-flux 

diffusion process. 

          The secondary flux however presents a peculiar behavior consistent with the 

density variation in time. Note that immediately after the initiation of the process, that 

is, for short times, t< t* the secondary flux close to the center [0,0], that is inside a disk  

r< r* is negative pushing the particles towards the center. Outside this disk, that is for 

r>r* the secondary flux is positive contributing to the dispersion of particles as imposed 

also by the primary flux. This behavior is opposed to the flux distribution in space for 

the isotropic diffusion process. Indeed, after imposing a highly concentrated 

Fig.5.13a. The primary flux at 20dt Fig.5.13b The second flux at 20dt 
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distribution, centered at the origin x=0, for t=0, the initial condition, the secondary flux 

excited close to the origin, x<x*, is positive and negative for x>x*.  This behavior was 

considered as partly responsible for the negative values of the concentration on a limited 

region along the x axis. For the present case the situation is reversed and no negative 

values of the concentration appears in the solution. Therefore all the results obtained 

confirm the hypothesis that the negative values of the concentration are imposed by the 

secondary flux fluctuation around the central point of a kind of pulse as the initial 

condition.  

           Note also that after a sufficient long time the secondary flux vanishes inside a 

disk r<r**. the primary flux however remains active.  

The Fig. 5.15 shows the rapid increase of the concentration at [0,0] starting from 

q(0,0,0)=1 to q(0,0,0.001) ≈ 2.6 representing a increase of 260%. Note also that for the 

corner [1,1] the concentration increases steadily. No negative value is expected.  

The influence of the constant α in the exponential function relating R and β is shown in 

Fig. 5.19.  The value of α affects the maximum value of the concentration and the 

Fig. 5.15 Evolution of the concentration profile q(0,0,t) and q(1,1,t) for )3(

2Ψ with 

5  
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Fig 5.16.  Evolution of the concentration profile q(0,0,t) and q(1,1,t) for )3(

2Ψ with 
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respective time taken to reach the maximum as well. If α decreases from 5 to 3 the 

maximum of the concentration in the “diffusion” process will drop from 2.58 to 1.35. 

The maximum is very sensitive to the value of α. For other points the constant α 

practically doesn’t exert any substantial influence as sown in the figure 5.16b for the 

corner [1,1].  

          It is worthwhile comparing the solutions for a different option for the secondary 

flux potential. Let us take the secondary flux potential defined by: 

  tyxqR ,,)2(

2  Ψ  

 The corresponding differential equation reads:  

      qRqD
t

q





 1  

Keeping all the other conditions as previously the solution referring to the central point 

q(0,0,t) and to the corner q(1,1,t) are displayed in the figure 5.17  

The influence of the definition of the secondary flux potential is extremely important. 

The general trend of the concentration evolution is preserved, however the intensity is 

drastically reduced. For the constant α=5 the maximum at [0,0] reaches the value of 1.3 

almost twice less than the value corresponding to the third class potential flux.  This is a 

considerable difference. The reason, as explained before, is to be attributed to the 

perturbation on the primary flux imposed by the secondary flux. The influence of the 

second class flux potential is less critical than the influence attributed to the third class 

potential. The concentration in the corners varies according to the common trajectory 

characteristic of the others solutions.  

            In any case the problems posed above provide an unambiguous indication that 

the reactivity coefficient may work like an attractor, forcing the flux to converge to 

points where R(x,y) is maximum. The question now arises if there is any possible real 

situation that matches the behavior obtained with the theoretical results.  

Fig 5.17  Evolution of the concentration profile q(0,0,t) and q(1,1,t) for )2(

2Ψ with 

3,4,5  
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            The motion of living organisms on a substratum where the reactivity factor plays 

the role of given nourishment may be a good example that fits the behavior previewed 

by the solution above. If the food is concentrated in a small region, with R(x,y) high, the 

organisms (particles) will displace towards that region where the probability to find 

food is high. This behavior is satisfactorily modeled by the above equations at least 

form the qualitative point of view. As already remarked the bi-flux approach is very 

much adequate to model the motion of cells or other entities that are able to change 

energy states. Living organisms usually carry this ability.  

             It is also puzzling that the Bose-Einstein condensate presents the same 

aggregation particularity where the velocity distribution of elementary particles tends to 

evolve according to similar distribution as shown in the figure 5.11. 

            Finally let us see how the solution is affected if the reactivity coefficient is a 

function of time. Consider the problem defined with the third class of secondary flux, 

that is, the potential that introduces the strongest perturbation on the concentration 

distribution. Take   tyxRR 102020exp 22

0    with R0=5.    

 

The Fig.5.18 shows clearly the influence of R as a decreasing function of time. As 

expected the decaying process is accelerated since R decreases in time. It is also clear 

that the maximum values reached by the concentration are smaller than the 

corresponding ones for a time independent reactivity coefficient. The time to reach the 

maximum density is also larger for R as decreasing function of time. Again we see 

another strong indication that the reactivity coefficient works as an attractor. If R 

decreases its capacity to attract the particles is reduced and the concentration tends also 

to decrease at an equivalent speed. The strong influence is at the middle. Other regions 

far from the center will be less affected proportionally to their distance from the origin. 

The evolution of the density at the corners will not be affected by the new function 

R(x,y,t).           

Fig 5.18.  Evolution of the concentration profile q(0,0,t) and q(1,1,t),R 

depending domain and time, for )3(

2Ψ with 3,4,5  
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For the case corresponding to the second class flux potential the time variation proposed 

for the reactivity coefficient doesn’t introduce any substantial modification as shown in 

the Fig.5.19. 

 

5.3. Axisymmetric active anisotropy 

   
           One of the possible applications of the theory presented here, as already said, and 

is the motion of living organisms. Assuming this hypothesis and from the indications 

obtained from the behavior of the solution to the previous problems, it is admissible to 

associate the reactivity coefficient with food. But for several cases, particularly referring 

to micro-organism, the nourishment is a compound that is able to diffuse in the same 

substratum. Thus it is reasonable to admit Fick´s law governing the evolution of R:  

 
     ,,

,,
tyxRD

t

tyxR
R




           (5.1) 

 

It is therefore convenient to study the coupled system consisting of two diffusion 

process involving q(x,y,t) and R(x,y,t). The problem is defined in the same domain

   1,11,1  as in the previous section and the boundary and initial conditions as well. 

Also the primary fraction β is an exponential function of R as before: 

 

   2

0exp RR                       with R0=5 

 

Now let us assume to solve (5.1) the following auxiliary data: 

Boundary conditions: 0
boundary

R  

Initial condition:    22 1010exp50,, yxyxR   

Fig. 5.19 Evolution of the concentration profile q(0,0,t) and q(1,1,t),R 

depending domain and time, for )2(

2Ψ with 3,4,5  
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The problem will be solved for various values of DR: DR=0.01, DR=0.05 and DR=0.1 to 

estimate the influence of this coefficient in the solution. 

The diffusion coefficient D =0.1 is constant for all cases. Then let us consider the 

system: 

 

 
        

 
         ,,

,,

,,1,,
,,

tyxRD
t

tyxR

tyxqRtyxqD
t

tyxq

R










                                   (5.2) 

  

The secondary flux is assumed to be generated by the first class potential: 

 

        ,,,,1

2 tyxqtyxR  Ψ  

 

The initial and boundary conditions are the same as in the previous section.  

Fig.5.20a, 5.20b and 5.20c show the evolution of q(x,y,t) for two characteristic points, 

the central point q(0,0,t) and the corner q(1,1.t).  
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It is remarkable that for the first class secondary flux potential there is no rising 

tendency at the central point q(0,0,t) opposing the solution obtained with the second and 

third classes secondary flux potentials. This result clearly confirm that the deviation 

from the classical and expected tendency for the concentration to decrease steadily at 

[0,0] comes mainly from the perturbation on the primary flux. It was shown that the first 

class potential defining the secondary flux doesn’t introduces any significant alteration 

on the variables associated to the primary flux.   

Fig.5.20c Evolution of the concentration profile q(0,0,t) and q(1,1,t),R 

depending diffusion law, for )1(

2Ψ with 1.0,05.0,01.0RD , 3  

 

Fig.5.20b Evolution of the concentration profile q(0,0,t) and q(1,1,t),R 

depending diffusion law, for )1(

2Ψ with 1.0,05.0,01.0RD , 4  
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The influence of α in the exponential law relating β and R is moderate and as expected 

larger values of α introduce delay in the process. This is apparent by comparing the 

solutions displayed in the Fig.5.20,a,b,c for t=0.01. The influence of the diffusion 

coefficient varying in the range,  01.0,1.0  doesn’t introduce any significant 

modification on the solution.  

Consider now the solution for the case where the second class secondary flux potential 

is taken.  

        ,,,,)2(

2 tyxqtyxR  Ψ  

The differential equation system is now: 

      

    

1

RD
t

R

qRqD
t

q

R










                                                                  (5.3) 

As shown in the Fig.5.21a,b,c the influence of the coupling effect given by the system 

(5.3) is not significant. The influence of the constant α in the exponential relation 

connecting β and R is more important than the coupling effect at least for the values of 

DR adopted here.  
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Even when compared with the behavior obtained with the reactivity coefficient as a 

given function of time  tyxRR 102020exp 22

0   as in the previous section the 

solution doesn’t differ significantly.  

Now let us consider the third case corresponding to the third class potential for the 

secondary flux, that is:  

        ,,,,)3(

2 tyxqtyxR  Ψ  

The coupled system reads 

 
        

 
   ,,

,,

 ,,1,,
,,

tyxRD
t

tyxR

tyxqRtyxqD
t

tyxq

R










                                    (5.4) 

The solutions are shown in the Fig.5.22a,b,c.  Now the behavior  of the concentration 

considering the coupled system (5.4) presents considerable differences as compared 

with the uncoupled system, that is with R=R(x,y) a time independent coefficient. The 

influence of DR is significant. The difference in the solution for R0=5 at 

t=0.01considering DR=0.1 and DR =0.01 is approximately 78%. The gradient of the time 

variation of the concentration increases substantially with DR. The concentrations at 

t=0.01 for DR=0.01,0.05 and 0.10 are of the order of 89%, 79% and 70% of the 

respective maximum values. Increasing values of  DR introduces corresponding larger 

decreasing rates of the concentration.  

It is again shown that the third class flux potential for the secondary flux exerts a strong 

influence on the behavior of the solution. 
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It was shown in this chapter that the definition of the secondary flux potential is critical 

for the behavior of the solution of the fourth order equation. While the second and third 

classes definition induce similar behaviors the first class potential leads to a completely 

different behavior. For the first class potential the primary and secondary fluxes have a 

weak interaction while for the second and third class flux potentials a strong interaction 

is developed. It was shown that for appropriate initial and boundary conditions and for 

particular definition of the reactivity coefficient R(x,y) together with its functional 

relation with β it is possible for the solution to grow from the initial condition instead of 

decaying as expected for the classical case. The coupled system with R=R(x,y,t) as an 

active coefficient spreading according a diffusion law introduces remarkable 

information only for the case of the third class potential.  
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The role of the reactivity coefficient as an attractor was confirmed with all the problems 

solved above. This property suggests strongly that the present approach could be 

relevant for active biological processes and possibly for social-economics behavior.  

The results obtained open a very large window for future research theoretical and 

applied. The new tool can be explored to improve several cases of diffusion and to 

model new complex phenomena.   
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Chapter 6 

 

A hypothesis for the bi-flux process 

and the time evolution of β in an 

ideal universe 

 

 6.1 The hypothesis for retention process 

 

         It is not the purpose of this thesis to discuss the physics of the retention process. 

Nevertheless a suggestion will be briefly presented here. It is based on the interaction 

among particles that exchange kinetic energy. It is of course an ideal universe. But 

before entering the possible explanation for the bi-flux theory let us explore briefly 

other situations that can interfere on the flux, but are quite different from the approach 

used in this thesis. 

        Retention processes may be simulated by subtracting and adding equal fractions of 

particles in a continuous or discontinuous process. This formulation of the problem is 

equivalent to deal with the classical diffusion equation incorporating a source-sink term. 

For one dimensional flow and constant diffusion coefficient the new equation reads: 

 

 txf
x

q
D

t

q
,

2

2










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The function  txf , represents the effect of a source or a sink depending respectively on 

the plus or minus sign of that term in the differential equation. If  
f

i

t

t
dttxf , for it and 

ft covering a sufficient large interval, Fig.6.1, then the above equation can be 

considered as representing diffusion with temporary retention provided that after a finite 

time all particles active in the process at 0t are back into the process. This idea fits 

into several proposals presented in the literature and may work well for particular cases. 

It is not a law properly speaking it is an adjustment factor that assumes energy exchange 

with the surrounding environment.  

          On the contrary, the law proposed here keeps the particles all the time in the 

system distributed in two concomitant fluxes with different flux rate groups that may 

represent “temporary retention” without exchange of energy with the surroundings. The 

underlying idea in the theory presented here is the energy distribution associated with 

the linear momentum and angular momentum. A particle is said to be blocked whenever 

its angular momentum prevails over the linear momentum. Fig. 6.2(a) illustrates the 

motion distribution assumed here. It is important to remark that in our model all 

particles are continuously participating in the evolution phenomenon, and what we call 

“trapped” or “blocked “ particles are in reality subjected to a slow motion, as slow as we 

wish, in the same direction of the main flux or in the counter-flux direction.              

 

 

 

 

 

 

Fig.6.1. Source-sink function simulating temporary retention in a continuous 

process (a) and discontinuous process (b) 
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        The result of the interaction among particles changes the energy state of the 

particles introducing several microstates. In the present approach the several states are 

reduced to two fundamental states. Assuming energy conservation a given particle with 

mas “m” and moment of inertia “I” is initially moving without rotation with velocity 

“v0”. The kinetic energy is then: 

2

00
2

1
mvE   

After interacting with other particles the new 

kinematical state is  ,v . With energy 

conservation, under very small temperature 

changes, we may write: 

2222

0 mmvmv   , where we put I=mλ
2 

 

        Now let us assume that there is a limit L  

for the angular velocity such that as 0v , L . Assume that (Fig.6.3): 

 

Fig.6.2 (a)  Illustration of particles moving along the flow trajectory, diffusing 

particles, and delayed particles. (b) Interaction in an interference zone  with 

energy conservation. (I) State before interference (II) State after interference. 
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











22

22

2

0

2

1
exp

L

L

v

v



  

 

That is when 1 Lz   than 0v  and all the kinetic energy is transferred to the 

rotational energy. The system is stand still after all particles assume the rotational state. 

If 0  the system is in a pure diffusion state. Substituting the above relation in the 

energy conservation principle we obtain: 

 





















z

z

zE

E

1
exp1

1 2

2

0

   where,  Lz   

 

6.2.A law for the variation of  β with time   

 

6.2.1 The energy partition 

 

           In the previous section we introduced briefly some comments on the energy 

partition between particles belonging to the fluxes Ψ1 and Ψ2, here we will develop this 

idea. Let us explain first what we understand by excitation state. Consider a particle 

moving with linear velocity v and rotating with angular velocity ω. The linear 

momentum p and the angular momentum L are given respectively by vp m and 

ωL
2dm where m is the mass of the particle and d is the effective gyration radius. Let 

us call active energy or translational energy the kinetic energy associated to the linear 

momentum. That is if p is the linear momentum of a given particle P, its active energy 

is m2e 2

p p where m is the mass of the particle. The rotational energy eω corresponds 

to the kinetic energy generated by the angular momentum L, that is 22

ω 2e dmL . Any 

particle may be moving with linear momentum p and angular momentum L, the total 

energy e however remains constant, e =ep+eω = constant. We will consider that energy 

conservation is true for all particles under consideration, that is, the system is 

conservative.  

 Now suppose that we have a system consisting of N particles where the particles 

are divided into two subsets, N1=βN and N2=(1‒β)N. The energy density or specific 

energy (energy/volume) corresponding to N1 and N2 are respectively, q2E 2

11 Ψ and 
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     E21E 2

22  qΨ . Therefore we assume that all particles excited in the state 

E1 do not rotate, all kinetic energy is stored as active energy, while the kinetic energy 

corresponding to the state E2 is stored as active energy and rotational energy Eω(β) as 

well. Note that since the system is conservative we have E=E1+E2→ constant. We may 

consider the rotational energy as a hidden form of energy and the parameter (1‒β) as the 

probability of occurrence of rotational energy. Indeed for pure Fickian processes (1‒ 

β)=0 there is no rotational energy in the system, Eω(1)=0, and for (1‒ β)=1 all energy is 

stored as rotational energy Eω(0)=E. Let us call     E0E . Recall that if β=0 then Ψ2 

= 0. The contribution of the rotational energy of all particles to E2 is wrapped up in the 

energy density term Eω(β). 

Suppose now that we are dealing with a dynamic system, that is, there is a continuous 

internal energy exchange in the system E1↔E2. The energy distribution is clearly 

controlled by the parameter β. Therefore to perform the analysis of a dynamical 

diffusion process as exposed above in an isotropic medium it suffices to assume the 

fraction β(t) varying in time and the diffusing particles distributed between two time 

dependent energy states. Note that the Eq.2.9 still holds for  β= β(t). Recalling Eq.2.9  

 

    1
4

4

2

2

x

q
R

x

q
D

t

q














  

  

           As suggested above, in diffusion processes, particles collide continuously 

exchanging linear momentum and angular momentum. In principle at each collision 

active energy may be converted into rotational energy and the other way around. In our 

particular universe we will consider two distinct and opposite phase states. The phase 

state S1 is such that active energy is always converted into rotational energy while in the 

phase state S2 rotational energy is always converted into active energy. Let us introduce 

the following rules that apply in our particular universe (Rhee et al., 2012)  

 

1) In an isolated system the total kinetic energy remains constant therefore 

     constantE212EE 2

2

2

121   qq ΨΨ   for all t. 

 

2) In an isolated system subjected to the phase state S1 the rotational energy 

increases and the active energy decreases continuously. Therefore in an isolated 

system S1 0Elim 1 
t

and  ElimElim 2



tt

. This means that β = β(t) is a 

function of time and  β(t)→0 as t→∞.  

 

3) In an isolated system subjected to the phase state S2 the active energy increases 

and the rotational energy decreases continuously. Therefore in an isolated 
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system S2 EElim 1 
t

and   0Elim 



t

. This means that β = β(t) is a function 

of time and  β(t)→1 as t→∞. 

 

 

   According to the hypothesis introduced above, a complex diffusion process 

consisting of a very large number of micro-states is reduced to two fundamental non-

stationary states governed by a primary volumetric flow rate Ψ1 and a secondary 

volumetric flow rate Ψ2 that represent the overall average of micro-states (see 

appendix). If the system is in the phase state S1 as time increases it tends to the 

stationary state Eω .For a system in the phase state S2 all particles will be excited in the 

energy state E1 after a sufficient long time. Now as β= β(t) is function of time, as time 

varies the parameter 0<β<1 covers the whole energy distribution spectrum for both 

cases 

 

6.2.2 Isolated system in the phase state S1. 

 

Consider now a one-dimensional problem defined in some interval x ϵ [a,b]. Let 

us assume that the distribution of particles in states E1 and E2 is independent of x but 

may vary in time. The system is isolated and according to the model exposed in the 

previous section the system tends to rest meaning that the total active energy tends to 

zero as t→∞. Since the system is isotropic the linear momentum tends uniformly to zero 

for all x as t→∞, that is   0,lim 


tx
t

p . Consequently   0,lim 


tx
t

 .Under these 

conditions let us find an expression for the decay of the fraction β as function of time. 

Clearly the probability of interaction among particles is proportional to β inducing a 

reduction of particles in state E1. That is, the variation δβ is proportional to β. This 

means that the change of the excitation state, active energy into rotational energy 

(p→L), is more intense when the number of 

particles in state E1 is large  β>>0. 

Besides the probability of interaction 

among particles the rate of the variation δβ 

depends on the energy contained in the state 

E1 or alternatively on complementary state 

E2. Let T(t) be the variable that measures the 

active energy contained in the state E1. It 

might be an indirect measure of the linear 

momentum of the particles in the system. 

Since the system is isolated and the total 

energy is constant, T(t) is also an indirect 

Eω(T) 

T 

 

Fig.6.4. Variation of the rotational 

energy with the parameter T 
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measure of the rotational energy. Let  Eω(T) represent the rotational energy. Clearly 

Eω(T) is decreasing functions of T (Fig.6.4).  

At very large energy levels T>>0 the rate of variation of the rotational energy Eω(T) 

with respect to the energy parameter  T is low. But for T small big variations of the 

angular momentum occurs for relatively low decrease of the energy parameter T. 

Therefore it is reasonable to assume as a first approximation: 

 

  









T

T
FT 0E

                                                        (6.1) 

The variation δβ depends therefore on two determinant parameters: 

1. The fraction of particles in the state Eω given by β.  

2. The variation of the rotational energy given by ‒δ(Eω(T)). The negative sign 

meaning that β decreases as Eω increases.  

 

With the hypotheses above it is possible to define the variation of β: 

 

 

0

E

K





   

where  K0 is a given energy parameter. Now with the Eq6.1 we may write: 

T
du

dF

T

T
  2

0E    

where  u=T0/T. Introducing the expression above in the equation for δβ we get: 
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T
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  

After integration: 
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Where dudFFu  . Now define: 

uF
T

S
1

  
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The function Sω may be understood as the entropy referring to the present theory applied 

to isolated systems. Introducing this expression in Eq.6.2 we get: 













  Tdt

t
S

K

T
lnexp

0

0
  

With: 

  0

0

0                and                        ln S
T

K
SgT

t





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We finally obtain: 

  









  dtSg

S

S



0

exp  

Assuming now the simplest expression for the energy Eω(T), that is, according to Eq.6.1 

Eω(T)=K1(T0/T),  1KFu  and with Eq.6.2 it is  readily  obtained:   

  
1

exp
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











  dt

t

S

S

                                           (6.3a) 

That after integration gives the general expression: 

     
)(

exp
0











S

tS                                                (6.3b) 

Therefore  ln0SS  or  NNSS 10 ln . We will call the variable Sωas ω-entropy. 

It is a measure of the relative organization of particles in two states S1 and S2. S

indicates the equivalent number of particles excited in a pure rotational energy state or 

likewise at rest, meaning xi = constant (i=1,2,3), in a given inertial frame. That is, as S

→∞ or similarlyβ→0 the relative distances among all particles tend to remain fixed and 

the system approaches a stationary state. If it would be only possible to measure the 

active energy, then for very large values of S an external observer would come to the 

conclusion that the system is inactive or “dead”. Maybe only the mass could be detected 

and the rotational energy stored in the system would be hidden, it would be a kind of 

“dark energy”.  

 Since the active energy for this system is a decreasing function of time and 

the variation rate of change is inversely proportional to the active energy level it is 

reasonable to admit that tUtS 0  where U0 is a constant of the system. From which 

follows 22

0tUS  ,and finally: 

 2

0

2exp  t   
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where, 2

000 12 SU  

  
 

6.2.3 Isolated system in the phase state S2. 

 

          This system, sustained by the phase state S2 has the opposite property of the 

previous one, that is, the collision between two particles always transforms angular 

momentum into linear momentum but not the other way around. This means that 

ultimately the initial rotational energy will be totally converted into active energy. 

Suppose that initially the total energy in the system is stored under the form of 

rotational energy


E .That is, the fraction β increases gradually from β(0) =0 up to β(t
*
) 

=1 which is the maximum possible value. We want to analyze the behavior of the phase 

change up to t=t*.     

The evolution of the fraction β, with a first approximation for the energy 

function, is given by the expression 6.3-a derived before with the exponent multiplied 

by ‒1. Indeed we have now   )(0 tSS    for all t>0 and consequently   E

which explains the change in sign. Now the simplest approximation for the variation of 

the ω-entropy coherent with the variation for S1is given by 
3

0
ˆ  tUtS . Note that 

now the ω-entropy is a decreasing function of time given by 2ˆ 2

0

 tUS .  Therefore 

we may write from 6.3-b: 

 

 22

0exp t   

Where, 
2

000 2ˆ SU . Note that under the above assumptions t* →∞.  

This case, the S2 phase state, is more complex than the first one S1. The transfer 

of rotational energy to active energy is not so easy and would require an external 

potential field to initiate and probably to sustain the process. So the present approach is 

only a first approximation. Note that the phase S1 is related to extinction while S2 is 

related to creation which is always more difficult to be analyzed and simulated.  
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6.2.4 Selected examples. 

 

            Consider now the bi-flux diffusion process defined on the interval [−1,1] for an 

isotropic supporting medium. If the fraction β  is function of time the governing 

equation 6.3  is written as : 
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Assume that the primary and secondary fluxes vanish at the boundaries, x=1 and x=−1. 

The boundary conditions therefore read: 

0
1






xx

q
and 0

1
3

3






xx

q  

Let the initial condition be: 

     11                   cos125.00,  xxxq   

Fig.6.5. Evolution of the concentration profile in an isolated system. Energy is 

being transferred from S1 to S2 at different rates 1/τ0. For 1/τ0=0, β =1, Fickian 

Fig.5.2 Evolution of concentration 

Fig. 5.2 Evolution of the concentration profile  

(1/τ
0
)

2
=2

Fig.6.3. 

Correla

tion 

speed - 

spin  

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

q
(x

,t
)

D=0.1, R=0.008,beta=1

 

 

t=100dt

t=1000dt

t=7000dt

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

q
(x

,t
)

D=0.1, R=0.008,beta=exp(-2t2)

 

 

t=100dt

t=1000dt

t=7000dt

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

q
(x

,t
)

D=0.1, R=0.008,beta=exp(-10t2)

 

 

t=100dt

t=1000dt

t=7000dt

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

q
(x

,t
)

D=0.1, R=0.008,beta=exp(-100t2)

 

 

t=100dt

t=1000dt

t=7000dt

(1/τ
0
)

2

=0 

 

(1/τ
0
)

2

=10 

 

(1/τ
0
)

2

=2 (1/τ
0
)

2

=100 



86 

 

Suppose that initially, t=0, the system is subjected to a pure Fickian process, that is, 

only the primary flux exists.  Since there is no energy exchange with the surroundings, 

according to our hypothesis, the primary flux will decrease and the secondary flux will 

increase as time increases. Energy is continuously transferred from the primary flux to 

the secondary flux. Now for an isolated system starting with a full Fickian diffusion 

regime, that is β(0)=1 Eq.4.3b prevails, that is: 

 20exp  t  

The diffusion and reactivity coefficients are taken D=0.1 and R= 0.008 respectively. 

Fig.6.5 shows the concentration profile for different values of the parameter τ0. For 

values relatively high, 210   the freezing process is low and stabilizes close to the 

uniform solution, that is, .),(
lim

consttxq
t




. Note that both fluxes are blocked at the ends 

x=+1 and x=−1and the diffusion process imposes q(x,t) constant as t→∞. As the value 

of τ0 decreases the freezing progression is quicker. For τ0=0,1 there is almost no time to 

initiate the diffusion process and the density distribution after a sufficient long time is 

almost the same as the initial conditions. Fig.6.6 shows the time variation of the 

concentration at x-0. For values of τ0 less than 0.1 the steady state is reached very 

quickly and the final concentration distribution remain close to the initial condition. 

Since β goes to zero as time increases in all the cases the primary flux will vanish and 

the concentration profile q(x,t) will freeze for very large t. It is interesting to observe 

that the gradient of the concentration alone is not determinant to trigger the diffusion 

process, it is also necessary the presence of particles in state E1. If the system has 

attained the limiting state E2=


E , than there is no flow irrespective of the concentration 

profile.  

 

 

Fig.6.6. Evolution in time of the concentration at x=0 for different values of τ0. 
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Now consider the second case where the system belongs to the phase state S2 

initially free of active energy but subjected to a continuous influx of active energy at the 

expense of rotational energy. Let the boundary conditions be the same as before and 

take the following initial condition:   

    xxq cos225.00,   

Initially the system is inactive; there is no flux at all, neither primary nor 

secondary. Now, since rotational energy is being continuously transformed into active 

energy the fraction βwill steadily increase. The law governing this behavior is given by

 22

0exp t  as explained before. Fig.6.7 shows the evolution of the bi-flux 

process for different values of τ0. For very low energy transfer rates, τ0 large, the system 

tends to equilibrium very slowly. For low values of τ0 the system behaves almost like a 

pure Fickian process. Note that since there is no flow at the boundaries the system tends 

to the steady state with the concentration q(x,t) constant along the domain [−1,1]. 

Fig.6.7. Evolution of the concentration profile q(x,t) for a non-conservative system. 

Energy is being continuously transferred to the system at different rates τ0. For 

τ0=0, β =1, Fickian diffusion.   
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        The variation of the concentration with time, q(0,t), at x=0, for various values of τ0 

is shown in Fig.6.7. Here the fraction  β of particles belonging to the Fickian diffusion 

increases steadily in time. Therefore eventually the final concentration profile will 

coincide with the expected profile for a Fickian process that is a uniform distribution on 

the region -1<x<1. The evolution of q(0,t) shown in the Fig.6.8 shows clearly this 

tendency. 

 

The hypothesis advanced above considering the effect of rotation has been raised by 

some authors. Their approaches are rather complex and might be coupled to the bi-flux 

assumption with a possible simplification of the diffusion process. (Murray, 2008) 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.8. Evolution in time of the concentration at x=0 for different values of  τ0 
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Chapter 7 

Two examples of the influence of 

nonlinear source and sink  

 

           In this chapter it will be shown the effect of the presence of non-linear source and 

sink on the solution of the bi-flux equation. Two types of classical equations will be 

used in order to compare the solution obtained with the new approach with classical 

solutions. The purpose of this final section is simply to compare some typical cases. A 

detailed study of the existence, uniqueness and stability conditions is not included in the 

purpose of this thesis. It will be however shown that there can be interesting effects 

introduced by the bi-flux equation particularly referring to the regularity of some 

solutions. This chapter as the others focuses on the numerical solutions of some specific 

cases and tries to highlight the most critical differences with respect to the classical 

solutions. Two types of equations were selected: the Fisher-Kolmogorov extended 

equation and the Gray-Scott equation. Both represent the model of important events in 

chemical and biological sciences ( Araujo, 2014; Dee,1988; Peletier, 1996, 1997).        

 

7.1. The Fisher-Kolmogorov equation. 

 

The Fisher Kolmogorov equation was developed independently by Fisher and 

Kolmogorov. One of the important motivations was the modeling of genetic 

modification. The particular property of this equation is the generation of travelling 

waves that are adequate to represent the genetic modification in a given population 

(Fisher, 1937). We will not go into this discussion but will be restricted to the 

comparison of the solutions given by the classical approach and the bi-flux approach.  

The classical Fisher Kolmogorov equation reads: 

 qq
x

q
D

t

q










1

2

2

     with  0<q<1 

The stationary equilibrium solutions is stable for 1q  and unstable for 0q . We will 

discuss the extended Fisher Kolmogorov equation of the form: 
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 2

2

2

1 qq
x

q
D

t

q










        with  0<q<1                                    (7.1) 

This equation is similar to the previous one with stable solutions for 0q and unstable 

solutions for x=±1.  The solution for a simple case of (7.1) will be compared with the 

corresponding bi-flux equation: 
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                                       (7.2)           

Let us solve the problem in the interval [-1,1] and take the following values for the 

parameters: 

D=0.02, β=0.5, R=0.04, γ=1 

The initial condition is  210exp)0,( xxq    and the boundary conditions: 

    0,1,1  xtqxtq   and       0,1,1 2323  xtqxtq  

 

Figures 7.1a and 7.1b represent the evolution of the bi-flux theory and the classical 

theory. The general aspect doesn't differ essentially for the two approaches.  The 

solution, for both cases, tends to the stable condition q(x,∞)=1 as estimated by the 

theory.  In this aspect the only difference is the speed of convergence much higher for 

the bi-flux approach. Again, as expected, negative values appears for the bi-flux 

solution close to the ends. This is a typical behavior that has been confirmed by the 

solution obtained by Danumjava et al. (2006) and Khiari et al. (2011) that uses also a 

fourth order partial differential equation but with no particle distribution in two distinct 

energy states given by the fractions β and (1- β) as in the present theory.  

Fig.7.1a F-K equation with bi-flux
 

Fig.7.1b F-K equation 
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Now in order to test the convergence of the method the analytical solution for a given 

problem was compared with the numerical solution. Consider the equation: 

 

   
 

 
 txgqq
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where
 

        tt eDRextxg 2224 2cos21162cos,     

The initial condition is defined as    xxq 2cos0,  , and the boundary condition are 

given by:     0,1,0  xtqxtq  ,     0,1,0 2323  xtqxtq . The parameters 

are: 0.2D , 5.0 , 4.0R .The term g(x,t) was introduced such that the analytical 

solution would be of the form: 

 

    textxq  2cos,  

Now take    txvxtxq ,, 22   to define the system two of second order equations: 

   txvxtxq ,, 22   

   
 

 
 txgqq

x

txv
R

x

txq
D

t

txq
,

,
1

,, 3

2

2

2

2















  

The error of the numerical solution using the non-linear Galerkin method (Marion and 

Temam, 1989, 1990, 1995; Nabh et al., 1996; Dubois et al.,, 1998, 1999, 2004; Dettori 

et al.,, 1995; Laminie et al.,,1993; García-Archilla et al.,, 1995) compared with the 

exact solution is given in the table 7.1. The element size is given by Nh 1  in the 

table, with N representing the number of elements.  The time step 21 ht  .  

 

 

Table 7.1 CPU time, error and order of accuracy for q in F-K model with bi-flux model 

under nonlinear Galerkin method 

 

N h t  CPU(s) 
L for q  Order 

2L for q  Order 

5 0.2 0.04 0.042 2.70e(-3) ---- 2.20e(-3) ---- 

10 0.1 0.01 0.083 8.39e(-4) 1.69 6.51e(-4) 1.76 

20 0.05 0.0025 0.426 2.20e(-4) 1.93 1.63e(-4) 2.00 

40 0.025 6.25e(-4) 3.212 5.56e(-5) 1.98 4.04e(-5) 2.01 

80 0.0125 1.56e(-4) 26.26 1.40e(-5) 1.99 1.00e(-5) 2.01 

160 0.0063 3.91e(-5) 202.08 3.49e(-6) 2.00 2.49e(-6) 2.01 

Final time T=1.0 
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It is seen that the method converges exponentially with decreasing size of the elements. 

The CPU time however increases also exponentially with the number of elements.  

The Fig.7.2a,b represent the errors in L
∞
 an L

2
 as functions of the number of elements 

N. The convergence for both norms is quite satisfactory. Although this is a particular 

solution the results indicate that the numerical method works well.   

 

7.2. The Gray-Scott equations 

 

The reaction process of two chemicals in which one of them is catalytic 

compound can be modeled by the Gray-Scott equations. We will consider the one 

dimensional Gray-Scott model, in which self-replicating patterns have been observed 

(Pearson, 1993; Lee et al. 1994). There are several approaches to deal with the Gray-

Scott equations since the solutions can belong to different classes. Travelling waves can 

be generated in one dimensional domain with appropriated initial conditions, standing 

waves can be produced in bounded domains and pattern formation varying in time can 

also be generated. This section is devoted to the analysis of some particular cases in R
1
. 

The solutions obtained with the classical equations will be compared with the solutions 

with the bi-flux hypothesis.     

The classical Gray-Scott model (Pearson, 1993; Lee et al. 1994) reads:  
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Fig.7.2a. Cell N vs 3 error
 

Fig.7.2b. Cell N vs 
L  error
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The values of the parameters are given as: 01.02  , 01.0A , 053.0B . Consider the 

problem with the initial distribution given by: 

    100sin5.010, 100 xxq                                          (7.4a) 

     100sin25.00, 100 xxv                                          (7.4b) 

as shown in Fig. 7.3 

 

 

 

 

 

 

 

 

 

Fig.7.3 The initial distribution for the Gray-Scott model 

The boundary conditions are given by no flux at x=0 and x=100 for both variables. That 

is: 
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The nonlinear Galerkin method is used to obtain the numerical solution. The results for 

some selected time values are given in Fig.7.4. Comparison with the solution presented 

in (Doelman, 1997; Zhang, 2016) show that the results are very much similar. 
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Now, we will consider the Gray-Scott model considering the bi-flux hypothesis which 

includes the fourth order in both equations. The new system reads:  

 

       
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Clearly as compared with the classical Gray-Scott model, the parameters
q , v ,

qR , vR ,

qD are added in this new model. In order to check the differences between these two 

models, the value of the parameters are  imposed to be: 01.02 v  , 0.1qqD , 

01.0A , 053.0B ,   01.01  qqq R ,   01.01  vvv R .  

For sake of simplicity, the value of 
q , v  are put equal to  0.5. The other parameters 

are defined as: 02.02  , 2qD , 04.0qR , 04.0vR .  

Fig.7.4 The evolution of q and v for the classical case 
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The initial conditions are the same as before and the boundary conditions are extended 

to include the non-flux condition to the secondary flux:  
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As in the previous cases the fourth order partial differential equations (7.5) are 

transformed into a four second order equations system: 
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Note that  
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The initial conditions   22

0

22 0, xxqxq
t




  and    22

0

22 0, xxx
t




 are 

obtained from the equations (7.4a,b) 

The solutions of the system (7.6a,b,c,d) for t=40 and t=140 are given in the Fig.7.5.  

 

 

 

 

 

 

 

 

Comparing with the classical Gray-Scott solution, Fig.7.4, we can see that at time t=40, 

the bi-flux Gray-Scott model introduces a delay in the process of the variety self-

Fig.7.5 The evolution of q and v in the system at time T=40 and T=140 
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replicating patterns v . On the other rand the evolution of the variety q progresses in the 

opposite direction and is raised as compared with the classical solution.  

It is also remarkable the regularity of the solution imposed by the bi-flux approach. For 

t=3000 and t=4500. The bi-flux solution imposes a very regular pattern on the pulses for 

both the self-replicating variable ν and the variable q as shown in the Fig.7.6. The 

classical solution introduces two more pulses for ν and destroys the symmetry of this 

variable. The variable q is also perturbed although less intensively then ν.  

As usual, the bi-flux approach introduces the anomaly related to negative values of the 

distribution, in this case referring to the self-replicating variable. Therefore for 

physically consistent solutions the initial condition related to ν must be sustained by a 

thin layer distributed on the domain of definition.      

Fig.7.6 The evolution of q and v in the system at time T=400, 3000, 3300, 

4500
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 Assuming a new set of parameters given by:  01.02 v , 0.1qq D ,  02.0A ,

04.0B ,   1.11  qqq R ,   05.01  vvv R ,  the numerical solution is 

qualitatively  similar but with  a larger number of pulses as shown in the Fig. 7.7 and 

7.8. 

As in the previous examples convergence tests were used to evaluate the performance of 

the numerical method. Consider the system: 

Fig.7.8 The evolution of q and v in the system at time T=400, 3000, 3300, 4500
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Fig.7.7 The evolution of q and v in the system at time T=40,140 
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The initial condition given as    xxq cos0,  ;    xxv 2cos0,  , with no flux 

boundary condition. The analytical solution can be found: 

     txtxq  expcos,  ; 

     txtxv  exp2cos,   

Now, take    txsxtxq ,, 22  ,    txuxtxv ,, 22   to define the system into four 
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The value of the constants given by 01.02 v  , 0.1qqD , 01.0A , 053.0B , 

  01.01  qqq R ,   01.01  vvv R . 

Table 7.2a CPU time, error and order of accuracy for q in Gray-Scott model with bi-flux 

under  nonlinear Galerkin method 
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N h t  CPU(s) 
L  for q  Order 

2L  for q  Order 

5 0.2 0.04 0.059 1.47e-002  1.15e-002  

10 0.1 0.01 0.192 3.67e-003 2.00 2.60e-003 2.15 

20 0.05 0.0025 1.219 9.12e-004 2.01 6.19e-004 2.07 

40 0.025 6.25e(-4) 9.0247 2.27e-004 2.01 1.51e-004 2.04 

80 0.0125 1.56e(-4) 71.891 5.67e-005 2.00 3.72e-005 2.02 

160 0.0063 3.91e(-5) 572.98 1.42e-005 2.00 9.25e-006 2.01 

 

 

Table 7.2b CPU time, error and order of accuracy for v in Gray-Scott model with bi-

flux under nonlinear Galerkin method 

 

N h t  CPU(s) 
L  for v  Order 

2L  for v  Order 

5 0.2 0.04 0.059 4.48e-002  3.03e-002  

10 0.1 0.01 0.192 1.21e-002 1.89 7.55e-003 2.01 

20 0.05 0.0025 1.219 3.08e-003 1.97 1.83e-003 2.05 

40 0.025 6.25e(-4) 9.0247 7.72e-004 2.00 4.49e-004 2.03 

80 0.0125 1.56e(-4) 71.891 1.93e-004 2.00 1.11e-004 2.02 

160 0.0063 3.91e(-5) 572.98 4.83e-005 2.00 2.76e-005 2.01 

 

 

From the table 7.2a,b and Fig.7.8a,b, we can find that the convergence order of this 

method is two. Also, these results represent good accuracy and confirm the robustness 

of the method. The error decreases exponentially with increasing number of elements.  

 

In this chapter it was shown the influence of the fourth order equation modeling 

the bi-flux phenomenon for two cases of non-linear equations. The non-linearity for 

both cases was concerned to the source/sink terms. Other non-linear cases particularly 
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concerning the interaction between the reactivity coefficient R and the concentration 

q(x,t) deserve to be analyzed. These cases however fall beyond the scope of the present 

work.  

Our purpose was to show that the bi-flux theory interferes in the solution 

preserving the fundamental behavior of the classical case for some important situations. 
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Chapter 8 

 

Conclusions and Future Work 

 

The discrete process of diffusion with retention in a two dimensional domain was 

developed to obtain the fourth order equation, which suggests the introduction of a 

secondary flux leading to a bi-flux theory. The secondary flux was introduced in the  

mass conservation principle to obtain a fourth order equation as shown in Chapter 2. As 

suggested in Chapters 3 and 4, the dependence of R and β is critical both for isotropic 

and anisotropic media. For isotropic media the delay or acceleration of diffusion 

processes depends strongly from the relation R-β. For anisotropic media the relation β= 

β(R) is still more important. It was clearly shown that, at least for closed domains, no 

flux at the boundaries, the reactivity coefficient plays the role of an attractor provided 

that β is a decreasing function of R  

The anomaly of the distribution developing negative values for the concentration 

after the introduction of initial conditions highly concentrated at a given point far from 

the boundaries is recurrent for one- and two-dimensional cases. It was shown however 

that there is a critical initial concentration qcrit(x,0) separating the behavior into q(x,t)>0 

for all x and q(x*,t)<0 for some interval [xe<x*<xd]. Two selected examples were 

introduced. The first is related to the initial condition q(x,0)=[0.5(1+cos(πx))]
n
 , subject 

to the no flux boundary condition; the second is related to the initial condition 

q(x,0)=[cos(0.5πx)]
n
. The boundary conditions impose the concentration q and its 

second derivative  to vanish at the boundaries. For n less than some critical value the 

solution is regular. Therefore there must a critical n such that for n< ncrit the solution is 

regular. This result may be a starting point for a mathematical analysis intended to 

explain the necessary conditions for developing negative values. 

 An extremely important conclusion is the criticality of the definition of 

secondary flux. It was shown that there are three classes of definition. For the first class 

the influence on the concentration evolution is not critical. But for the second and third 

classes the influence on the time variation of the concentration for certain initial 

conditions in anisotropic media R=R(x,y) is critical. The second and third class 

definition for the secondary flux leads to an unexpected increasing in the concentration 

in regions with negative distribution gradients which is impossible for the classical 

approach. The difference in the behaviors induced by the definitions of the secondary 

flux is due to the perturbation on the first and second derivatives of q(x,t) arising from 
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the variation of  R and β as functions of x. These terms combine with the terms coming 

from the primary flux coefficients. There is therefore a spurious influence of the 

parameters corresponding to the secondary flux into the primary flux. The definition 

that seems to be appropriate for the secondary flux is to consider the respective flux 

potential proportional to curvature that is proportional to (βΔq). With this definition 

Ψ2=R{[(∂(βΔq)/∂x]i+[(∂(βΔq)/∂y]j}.  

After several solutions for non-flux boundary conditions it becomes clear that the 

the reactivity coefficient R(x) for anisotropic media plays the role of an attractor. 

Clearly the partition β is a decreasing function of R. This property suggests that the 

reactivity in problems related to population dynamics can considered as a nutrient box 

attracting biological particles. In this sense it was also propose a model that considers 

the reactivity coefficient varying in space and time according to a diffusion process. 

 This new approach admits the existence of two simultaneous fluxes. It is not two 

distinct sets of particles scattering with different velocities but particles with the same 

general physical characteristics diffusing in two distinct energy states E1 and E2. The 

particles may transfer from one state to the other depending on some intrinsic physic-

chemical property or due to the action of external fields. Two new physical constants 

are introduced namely, the reactivity coefficient R and the parameter β representing the 

partition of the flux in two groups. That is a fraction β of particles scatters in the state E1 

and the complementary fraction (1- β) scatters in the energy state E2. In chapter 6, it is 

presented a brief discussion about an ideal evolution of energy states associated to the 

exchange of kinetic energy. It is assumed that translational energy and rotational energy 

could exchange with each other. Considering an ideal universe the idea of a particular 

type of entropy is proposed which is consistent with the usual definition of entropy in 

thermodynamics. The basic concepts and dynamics of diffusion considering rotational 

energy has however to be further explored. A few publications (Bevilacqua et al., 2016) 

deal with this topic which is rather complex. It is necessary to put much more effort to 

advance this type of behavior. Probably the bi-flux approach could contribute to 

advance the theory of diffusion of particles with rotation.  

For some non-linear processes the bi-flux approach as an extension of the 

classical postulation preserves the dominant characteristics of the classical solution 

introducing interesting regularization as in the Gray-Scott problem.         

As suggestion for future work it is to be highlighted: 

1. Try to institute an appropriated master equation with inclusion of random 

variables. It should be possible to make use of some basic principles of the 

mathematical physics.  

2. The relation between R and β should be further analyzed. It seems that it is very 

difficult to establish general laws for the interdependence of these two 

parameters. The relation β= β(R) should be representative of each context, socio-

economic, biological, physico-chemical.  
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3. The property of R(x) for anisotropic media as an attractor should be further 

analyzed. Some analytical justification should be searched.  

4.  The anomalies corresponding to negative values of the concentration should be 

further investigated with the help of the numerical results. 

5. The steady state solutions should be determined. It is much more complex than 

the steady state for the classical case. Of particular interest is the term Rβ(1-β) 

which is the logistic equation that could induce chaotic behavior.  

6. The extension of the problem with the inclusion of the dependence of the new 

parameters on the concentration is also of great interest. It is possible for the 

reactivity coefficient to be strongly dependent on q(x,t) 

7. Another important point that is missing, and is critical for the discussion in a 

broader academic context, is the search for applications. I think that biological 

processes and medical applications like the evolution of tumors are appropriated 

topics to be explored with this theory. Also flux of capital seems to be an 

attractive topic to be dealt with this theory. 

Finally I would say that most of all it is necessary to establish a network of 

researchers and students interested in problems related to diffusion. They should come 

from different fields of interest. I think that this theme is extremely rich and can turn to 

be an important source for research lines.  
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Appendix 

 

A Numerical scheme for linear equation 

 

A1. The Galerkin finite element method with Hermite element  

 

            In this part, we will consider how to use finite element method to get the 

numerical solution. Consider the equation as below, 2Rx : 

 

 
              ,1,

,
tqRtqD

t

tq
xx

x





                  (A-1a) 

   xx 00, qq  , x ;                                                  (A-1b) 

  0,  tq x ,   0,3  tq x , x                               (A-1c) 

 

      First, let     ,, tptq xx  and introduce into Eq.(A-1a,1c), we get: 

 

    
              ,1,

,
tpRtqD

t

tq
xx

x





       (A-2a)                                        

   tptq ,, xx                                           (A-2b) 

   xx 00, qq  , x ;                                    (A-2c) 

  0,  tq x ,   0,  tp x , x                               (A-2d) 

      

With the weighted integral statement for the Eq. (A-2a, 2b, 2c), we can get: 

 

 
                ,1,

,
xxxx

x
 





dtpRtqDd

t

tq
  



109 

 

    xxxx dtpdtq   
 ,,  

 

Where,   1H .  1H  is the Hilbert space. Then the above system is simplified by 

Green theory to give: 

                   

 
   

        xxxx

xxxxx
x
















dtpRdtpR

dtqDdtqDd
t

tq





,1,1 

,,
,

    (A-3a)          

      0,,,   
xxxxxx dtqdtpdtq                      (A-3b) 

    

Subject to the boundary condition, the system above can be rewritten as: 

                 

 
      xxxxx

x
 





dtpRdtqDd

t

tq
 ,1,

,
    (A-4a)         

    0,,   
xxxx dtpdtq                                (A-4b) 

 

A2 Solution with Hermite finite element for one dimensional case 

under D, R and β constants. 

 

For 1D domain, the cubic Hermite base functions for the reference element  1,10 I  

are given as: 

 3

1 32
4

1
 H  

  111 H ,       0111 111  HHH  

 32

2 1
4

1
 H  

  112 


H ,       0111 222 


 HHH  



110 

 

 3

3 32
4

1
 H  

  113 H ,       0111 333 





 HHH  

 32

4 1
4

1
 H  

  114 


H ,       0111 444 


 HHH  

Where  0


iH , 4,3,2,1i  means the value of the first derivative at the point 0 . We 

denote the unknowns by jjjj ppqq 2121 ,;, to represent the values of xx ppqq ,;, at the point 

j , 2,1j . Then the approximated solution  xqh  and  xph for the Galerkin method 

inside the reference domain can be expressed respectively as : 

 

      22

2

1

1 



 j

j

j

j

j

h HqHqq   

      22

2

1

1 



 j

j

j

j

j

h HpHpp   

ii H . 4,3,2,1i  

 

         The finite element approximation for (A-4) can be expressed as: 

 

  KPRKQDQM   1                                    (A-5a)           

0MPKQ                                                   (A-5b) 

 

Where, Q  means the partial derivative with respect to time. M and K  are the mass 

matrix and stiffness matrix in the original domain, respectively. Let  ,  denote the 

usual scalar 2L inner product. Given as: 

 

  dxHHHH jiji  
1

1
,  
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  dx
x

H

x

H
HH

ji
ji









 

1

1
, ,   2,1i , 2,1j  

 

Because each computational grid on the reference domain has 4 degrees of the freedom, 

this leads to a system of 44  coupling equations. Thus 44 block mass matrix m and 

stiffness  matrix k  in the reference domain are defined as follows: 

 

   

   










2212

2111

,,

,,

HHHH

HHHH
m  

   

   














2212

2111

,,

,,

HHHH

HHHH
k  

             Considered the computational sub-interval  ji xxI , , the calculation of the 

integration in  ji xxI ,  is performed reducing the operation  to the reference interval 

0I . 

           The affine relation between I and 0I  can be chosen as : 

22

ijij xxxx
x





   

Thus, d
xx

dx
ij

2


 ,

2

ij xx

dx

d
J





. 

             The integral on the domain could be written as the sum on all sub-intervals for 

equation (A-4). In general the integration on each subinterval will be performed after 

transforming the actual coordinates into the corresponding ones in the reference domain 

I0. The integration can then be easily evaluated with four point Gaussian quadrature rule 

on 0I : 

 

       dJtqdxtxqdxtxq
j

i

x

x
hh

I
h   


1

1
,,,  

 

       dJtqdxtxqdxtxq
j

i

x

x
hh

I
h   


1

1
,,,  
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Where 
2

ij xx

dx

d
J





is a Jacobian determinant. The discrete solution vectors PQ,

are defined as: 

 1111 ,,,,  n

x

n

x qqqqQ  ,  1111 ,,,,  n

x

n

x ppppP  . 

 

The matrices M and K , which are the global mass matrix and the global stiffness 

matrix, depend on the local mass and stiffness matrices m and k , respectively. The 

relationship is defined by the number of points linking the global number in the original 

domain and the local number in the subdomain. Until this point, the equations (A-5a) 

and (A-5b) comprise a system of time dependent ordinary differential equations. This 

system can be solved with several numerical methods, like as Euler’s methods, Runge-

Kutta method, Newmark-beta method etc. Here, we will use the simple Euler backward 

difference algorithm. The full discrete formulation can be written as: 

 

  111 1   tttt KPRKQDtMQMQ                        (A-6a)         

011   tt MPKQ                                         (A-6b) 

 

Then, can be rewritten in martrix form as: 

 

 
tt

P

QM

P

Q

MK

KRtKDtM
































 


00

01
1


               (A-7) 

                   

The initial distribution 0Q  and 0P  are obtained from the conditions determined by (A-

2c) and (A-2b), respectively. Then numerical solution of this system is performed with 

the platform Matlab.  

 

A3 The coefficients are constant for two dimensional case with 

BFS element 
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         In 2D case, for the spatial domain, the Bogner-Fox-Schmidt (BFS) element will be 

employed because it leads directely to the determination of the concentration and the 

primary and secondary fluxes as in one dimensional case. It is used the Lagrange 

element with the advantage of  less computational time. The process for assembling the 

algorithm is similar to that used for the one dimension case. The base functions called 

cubic Hermite function of Bogner-Fox-Schmidt (BFS) element are write for the 

reference element on    1,11,1  , subject to the point      1,11,1,  . 

 

    1111 HHBS   ,     1321 HHBS  ,     3331 HHBS  ,     3141 HHBS   

    1212 HHBS  ,     1422 HHBS  ,     3432 HHBS  ,     3242 HHBS   

    2113 HHBS  ,     2323 HHBS  ,     4333 HHBS  ,     4143 HHBS   

    2214 HHBS  ,     2424 HHBS  ,     4434 HHBS  ,     4244 HHBS   

 

Where, the value of   belongs to  1,1 , and the the value of   as well. 

   3

1 32
4

1
 H ,    32

2 1
4

1
 H ,    3

3 32
4

1
 H

   32

4 1
4

1
 H  are the base Hermite polynomial in one dimensional case. 

             For the base functions in the square domain, the process is similar to that used 

in the one dimension case. For instance, the four base functions 11BS , 12BS , 13BS , 14BS

subject to the restrictions for the point  1,1 , that is 1  and 1 should match 

the conditions: 

 

  11,111 BS ,       01,11,11,1 111111   BSBSBS  

  11,112 BS ,       01,11,11,1 121212   BSBSBS  

  11,113 BS ,       01,11,11,1 131313   BSBSBS  

  11,114 BS ,       01,11,11,1 141414   BSBSBS  

Where 11BS  denotes the first partial differential of   ,11BS  with respct to the 

coordinate; 11BS  denotes the first partial differential for   ,11BS  with respct to the   
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coordinate; 11BS  denotes the second mixed partial differential of   ,11BS  with 

respct to the   and    coordinates.  

             The other base functions 21BS , 22BS , 23BS , 24BS ; 31BS , 32BS , 33BS , 34BS ;

41BS , 42BS , 43BS , 44BS   referring to the points  1,1 ;  1,1 ;  1,1  respectively are 

determined following similar reazoning as before referring to point  1,1  

                For the uniform mesh sizes 1 iix xxh in the x direction and 1 iiy yyh  

in the y direction, we introduce the unknowns jjjj qqqq 4321 ,,, to represent the value of 

xyx ppqq ,,, at the point j , 4,3,2,1j , respectively. So that the approximate solution 

 yxqh ,  and  yxph ,  for the Galerkin method inside the reference domain can be 

expressed as : 

  yx

j

jy

j

jx

j

j

j

j

jh hhqBShqBShqBSqBSq 443322

4

1

11, 


  

  yx

j

jy

j

jx

j

j

j

j

jh hhpBShpBShpBSpBSp 443322

4

1

11, 


  

For the two dimensional case,  ,  the usual scalar 2L inner product is given as: 

 

  ddBSBSBSBS stijstij   


1

1

1

1
,  

  


dd
BSBSBSBS

BSBS stijstij

ijij

















   

1

1

1

1
, ,    

4,...,1i , 4,...,1j , 4,...,1s , 4,...,1t  

Since there is 16 degrees of freedom for the reference domain, the dimension of the 

mass matrix m and the stiffness martix k in is 1616 , respectively, and are given as: 

 

   
 

   















 

44441141

4mod,1)4/(4mod,1)4/(

44111111

,...,

,

,...,

BSBSBSBS

BSBS

BSBSBSBS

m jjflooriifloor   

   
 

   





















 

44441141

4mod,1)4/(4mod,1)4/(

44111111

,...,

,

,...,

BSBSBSBS

BSBS

BSBSBSBS

k jjflooriifloor   
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16,...,1i , 16,...,1j  

Where “floor” for the subscript 4/i  means the value of the nearest integer less than 4/i  

for instant,   24/9 floor ; 4modi  means the remainder when i  divided by 4, for 

instance, 14mod13  . 

         We assume that the computational sub-domain    iiii

e yyxx ,, 11    is affinely 

equivalent to the reference domain    1,11,1 c . And the affine transformation is 

defined as: 

ceeT :  

    ,,, 11 












 
 

y

i

x

ie

h

yy

h

xx
yxT

 

          The numerical formulation used is same as in the one dimensional case, so that 

the integration in two dimensional space is written as: 

 

      dxdyJtqdxdytxqdxtxq
j

i

j

i
e

x

x
h

y

y
hh     


1

1

1

1
,,,   

      dxdyJtqdxdytxqdxtxq
j

i

j

i
e

x

x
h

y

y
hh     


1

1

1

1
,,,   

 

Where 
dyddxd

dyddxd
J




 is a Jacobian determinant. The discrete solution vectors 

PQ, are defined as: 

 11111111 ,,,,,,,  n

xy

n

y

n

x

n

xyyx qqqqqqqqQ   ,  

 11111111 ,,,,,,,  n

xy

n

y

n

x

n

xyyx ppppppppP  , 

M and K  are the mass matrix and stiff matrix in the original domain, respectively. For 

time integration, the Euler backward difference is used to estimate the solution for the 

semi-discrete equation (A-5), consequently, the full discrete model is obtained in matrix 

representation similarly as (A-7): 

 

 
tt

P

QM

P

Q

MK

KRtKDtM
































 


00

01
1


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With the initial condition for the system (A-2c), the algorithm can be implemented 

starting with 0Q  and 0P  corresponding to 0t on the platform Matlab. 

 

A4 Solution for constant coefficients for two dimensional case 

with Lagrange finite element 

 

Comparing with A3, the difference is just the base function, here the Lagrange base 

function is employed on the reference domain for the spatial domain, the numerical 

method for time integration is the same that is the Euler’s backward difference. Thus, 

the structure of the method is the same. We first list the base function on the reference 

domain    1,11,1  , given as : 

      11
4

1
,1L ,       11

4

1
,2L  

      11
4

1
,3L ,       11

4

1
,4L , 

Then the approximated solution  yxqh ,  and  yxph ,  for the Galerkin method inside 

the  reference domain with Lagrange base function can be expressed as : 

  



4

1

,
j

j

jh qLq   

  



4

1

,
j

j

jh pLp   

 

For the two dimensional case,  ,  the usual scalar 2L inner product is given as: 

 

  ddLLLL jiji   


1

1

1

1
,  

  


dd
LLLL

LL
jiji

ji

















   

1

1

1

1
, ,    

4,...,1i , 4,...,1j , 
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Since there are 4 degrees of freedom for the reference domain, the mass matrix m and 

stiff matrix k as in the one dimensional case are both 44 matrix, which are given as: 

 

   

   










2212

2111

,,

,,

LLLL

LLLL
m  

   
   















2212

2111

,,

,,

LLLL

LLLL
k  

The calculation of numerical integration in the discrete model is the same as A1.2 so 

that the full discrete equation can be obtained as before   

 

 
tt

P

QM

P

Q

MK

KRtKDtM
































 


00

01
1


 

 

Here,  121 ,,  nn qqqqQ  ,  121 ,,,,  nn ppppP  , M and K  are the mass matrix 

and stiffness matrix in the original domain, respectively. 

             If all coefficients in the model are functions of time, but independent of the 

spatial variables, the discrete formulation for the model on the spatial domain is the 

same as the case where all coefficients are constant. For the time integration the 

difference is that all coefficients have to be evaluated at each time step. With the new 

values the calculation is performed similarly to the case where the coefficients are 

constant. So that the full discrete equation is similar as before except that all coefficients 

have to be actualized at each time. Next, we will consider the numerical method with 

the coefficient depending on the spatial variables. 

 

A5 Coefficients depending on the spatial variables for anisotropic 

domain.    

 

          We will consider the problem in R
2
. The one dimensional case is a particular 

case.  The solution concerns the case of no flux boundary conditions as previously. The 

Hermite finite element method with the BSF element will be used. A special case is 

studied where the reactivity coefficient  yxRR , is function of the spatial variables 

and the fraction  R  depends on R . The diffusion coefficient D  is constant. 
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         Since the coefficient R associated with the domain R  can be written as  yxR ,  

consequrntly  R   can be written as  yx, . According to the bi-flux theory and 

the mass conservation principle, the equation can be written as below: 

 

   
        0,1

,,
21 





V

yx

i

V

dsds
t

tqttq
ee.ΨΨ

xx
     (A-8) 

    1,2,3i   

Where the first flux   ,,1 tyxqDΨ is defined according to the Fick’s law. 

Depending on the position of  yx,  in the secondary flux potential equation, there are 

three possible alterantives:  

        ,,,1

2 tyxqyxR  Ψ  

       ,,,2

2 tyxqyxR  Ψ  

       ,,,3

2 tyxqyxR  Ψ  

            In the following it is shown the derivation of the mass matrix and the stiffness 

matrix with the material coeffcients depending on x and y. After actualization of the 

matrices at each time step the computation process is similar to the case of constant 

coeffcients.      

Type I 

The original model will be written as: 

 

 
              ,1,

,
tqRtqD

t

tq
xx

x





                  (A-9a) 

   xx 00, qq  , x ;                                                  (A-9b) 

  0,  tq x ,   0,3  tq x , x                               (A-9c) 

The week formulation under the Galerkin method with Hermite element given as: 

 
                ,1,

,
xxxx

x
 





dtpRtqDd

t

tq
  

    xxxx dtpdtq   
 ,,  

The mass matrix in the reference domain defined as: 
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  ddBSBSBSBSm stijstij   


1

1

1

1
,  

  


dd
BSBSBSBS

BSBSk stijstij

ijij

















   

1

1

1

1
, ,   

     


 dd
BSBSBSBS

yxBSBSyxk stijstij

ijij    



























1

1

1

1
,,,   

          


 dd
BSBSBSBS

yxRyxyxBSBSRk stijstij

ijijR    



























1

1

1

1
,,1,,1

 

4,...,1i , 4,...,1j , 4,...,1s , 4,...,1t  

 

 

The semi-discrete formulation:  

PKQKDQM R   

0MPKQ  

 11111111 ,,,,,,,  n

xy

n

y

n

x

n

xyyx qqqqqqqqQ  , 

  11111111 ,,,,,,,  n

xy

n

y

n

x

n

xyyx ppppppppP   

M , K , K , RK are the mass matrix, stiffness matrix, stiffness matrix corresponding to 

 , stiffness matrix corresponding to   and R ,  in the original domain. 

The full discrete formulation in matrix scheme 

tt

R

P

QM

P

Q

MK

tKtDKM
































 


00

0
1


               (A-10) 

 11111111 ,,,,,,,  n

xy

n

y

n

x

n

xyyx qqqqqqqqQ  , 

 11111111 ,,,,,,,  n

xy

n

y

n

x

n

xyyx ppppppppP   

M and K  are the mass matrix and stiffness matrix in the original domain, respectively. 
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Type II 

The original model will be written as: 

 

 
              ,1,

,
tqRtqD

t

tq
xx

x





                  (A-11a) 

   xx 00, qq  , x ;                                                  (A-11b) 

  0,  tq x ,    0,  tq x , x                               (A-11c) 

 

The week formulation under the Galerkin method with Hermite element is : 

 

    xxxx dtpdtq 


  
 ,

1
,  

 
                ,1,

,
xxxx

x
 





dtpRtqDd

t

tq
  

The mass matrix in the reference domain is defined as: 

 

  ddBSBSBSBSm stijstij   


1

1

1

1
,  

      ddBSBSyxBSBSyxm stijstij   


1

1

1

1
,1,,1  

  


dd
BSBSBSBS

BSBSk stijstij

ijij

















   

1

1

1

1
, ,   

     


 dd
BSBSBSBS

BSBSk stijstij

ijij    



























1

1

1

1
,,,   

        


 dd
BSBSBSBS

RBSBSRk stijstij

ijijR    



























1

1

1

1
,,1,1  

4,...,1i , 4,...,1j , 4,...,1s , 4,...,1t  

 

The semi-discrete formulation:  
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PKQKDQM R 
  

0 PMKQ 
 

 11111111 ,,,,,,,  n

xy

n

y

n

x

n

xyyx qqqqqqqqQ    

and  

 11111111 ,,,,,,,  n

xy

n

y

n

x

n

xyyx ppppppppP  . 

 

The full discrete formulation in matrix scheme 

tt

R

P

QM

P

Q

MK

tKtKM
































 


00

0
1




                                 (A-12) 

 11111111 ,,,,,,,  n

xy

n

y

n

x

n

xyyx qqqqqqqqQ  , 

 11111111 ,,,,,,,  n

xy

n

y

n

x

n

xyyx ppppppppP  , 

M , M , K , K , RK are the mass matrix, mass matrix corresponding with  , stiffness 

matrix, stiffness matrix corresponding to  , stiffness matrix corresponding to   and R   

in the original domain. 

 

Type III 

The original model could be written as: 

 

 
               ,1,

,
tqRtqD

t

tq
xx

x





                  (A-13a) 

   xx 00, qq  , x ;                                                  (A-13b) 

  0,  tq x ,     0,  tq x , x                               (A-13c) 

The week formulation under the Galerkin method with Hermite element is: 

 
                ,1,

,
xxxx

x
 





dtpRtqDd

t

tq
  

     xxxx dtpdtq   
 ,,  

The mass matrix in the reference domain is defined as: 
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  ddBSBSBSBSm stijstij   


1

1

1

1
,  

  


dd
BSBSBSBS

BSBSk stijstij

ijij

















   

1

1

1

1
, ,   

     


 dd
BSBSBSBS

BSBSk stijstij

ijij    



























1

1

1

1
,,,   

        


 dd
BSBSBSBS

RBSBSRk stijstij

ijijR    



























1

1

1

1
,,1,1  

4,...,1i , 4,...,1j , 4,...,1s , 4,...,1t  

 

The semi-discrete formulation:  

PKQKDQM R 
  

0MPQK  

 11111111 ,,,,,,,  n

xy

n

y

n

x

n

xyyx qqqqqqqqQ   and 

 11111111 ,,,,,,,  n

xy

n

y

n

x

n

xyyx ppppppppP  .  

 

The full discrete formulation in matrix scheme 

tt

R

P

QM

P

Q

MK

tKtKM
































 


00

0
1




                                       (A-14) 

 

 11111111 ,,,,,,,  n

xy

n

y

n

x

n

xyyx qqqqqqqqQ   , 

  11111111 ,,,,,,,  n

xy

n

y

n

x

n

xyyx ppppppppP  , 

M , K , K , RK are the mass matrix, stiffness matrix, stiffness matrix corresponding to 

 , stiffness matrix corresponding with   and R ,  in the original domain. 
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B  Numerical scheme for systems with R varying 

with the diffusion law 

 

B1. R varies according to the diffusion law  

 

            In this section we will derive the numerical solution for a system where R varies 

according to a diffusion law. Assume the system as below, 2Rx : 

 

 
     ,

,
tRD

t

tR
R x

x





                                           (B-1a) 

 
              ,1,

,
tqRtqD

t

tq
xx

x





                  (B-1b) 

   xx 00, RR   , x                                                 (B-1c) 

   xx 00, qq  , x                                                 (B-1d) 

  0,  tR x ,  x                                                    (B-1e) 

  0,  tq x ,   0,3  tq x , x                               (B-1f) 

Suppose   and R are related as given below: 

 

)exp(
2

0

2

R

R
   

Where 0R is the maximum value for  x0R  on the domain at the initial time Let 

    ,, tptq xx  . Substitute this expression in Eq.(B-1b,1f) to get: 

 
     ,

,
tRD

t

tR
R x

x





                                           (B-2a) 

 
              ,1,

,
tpRtqD

t

tq
xx

x





                  (B-2b) 

   tptq ,, xx                                                          (B-2c) 

   xx 00, RR   , x                                                 (B-2d) 
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   xx 00, qq  , x                                                 (B-2e) 

  0,  tR x ,  x                                                    (B-2f) 

  0,  tq x ,   0,  tp x  , x                               (B-2g)      

Let us call the computational domain  ,   1HV ,   2LH . Let us define the 

following norms related to the spaces V and H respectively:  

   


d,  

   


d,  

Assume that hV is the finite dimensional subspace of V . The Galerkin finite method for 

system (B-2) is to find hhhh VpqR ,, , such that: 

 

 
  0,

,
 


hR

h RD
dt

Rd
, hV                                     (B-3a) 

 
     0,1,

,
 


hhh

h pRqD
dt

qd
, hV       (B-3b) 

    0,,   hh qp  , hV                                        (B-3c) 

For time integration, we can see that in equation (B-3a), the only varaible is R . So that 

the strategy is first to solve the equation (B-3a), second to obtain the solution for q  and 

p  subject to the equation (B-3b) and (B-2c) using the same approach for R solved in 

(B-3a). The Euler backward difference is employed for time integration of  the discrete 

equations.  

          In the sequel it is shown the process of implementation of the Galerkin finite 

element method with BSF element.  

         Denote the same symbols M and K  as the global mass matrix and global stiffness 

matrix in the original domain, and m , k  the local mass matrix and local stiff matrix, 

respectively. 

        The full discrete scheme for (B-3a) using the Euler backward difference written in 

matrix notation is: 

 

  nn

R MRRKtDM  1                                                       (B-4) 
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Here, for simplicity of notation let us call  11111111 ,,,,,,,  n

xy

n

y

n

x

n

xyyx RRRRRRRRR  , 

which means the value of R at each point of the mesh. Under the computation platform 

Matlab, the solution for (B-4) can be obtained. 

            Then the solution R from the equation (B-2a) may be written as: 

 

          yx

j

jy

j

jx

j

j

ns

j

j

jh hhqyxBShqyxBShqyxBSqyxBSyxR 443322

1

11 ,,,,, 


 

Let jiBS , nsj ,...1 , 4,...1i be the base functions in the original domain, with ns  

indicating the number of the element. 

For the system (B-3b) and (B-3c), the full discrete matrix equation can be written as:  

 

tt

R

P

QM

P

Q

MK

tKKtDM
































 


00

0
1


                            (B-5) 

where 

 11111111 ,,,,,,,  n

xy

n

y

n

x

n

xyyx qqqqqqqqQ   , 

  11111111 ,,,,,,,  n

xy

n

y

n

x

n

xyyx ppppppppP  , 

M , K , K , RK are the mass matrix, stiffness matrix, stiffness matrix corresponding to 

 , stiffness matrix corresponding to   and R ,  on the original domain. (B-5) is similar 

to the full discrete equation (A-10) obtained in A2.1. But, in (B-5) 

     


 dd
BSBSBSBS

RBSBSyxk stijstij

hijij    



























1

1

1

1
,,   

        


 dd
BSBSBSBS

RRRBSBSRk stijstij

hhhijijhR    



























1

1

1

1
1,1

 

4,...,1i , 4,...,1j , 4,...,1s , 4,...,1t  
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B2. R varies according to the diffusion law with source 

            Let us consider now the case where the reactivity coefficient R follows the 

classical diffusion law with a source. Consider the system below, 2Rx : 

 

 
      , ,

,
tRAtRD

t

tR
R xx

x





                                           (B-6a) 

 
              ,1,

,
tqRtqD

t

tq
xx

x





                  (B-6b) 

   xx 00, RR   , x                                                 (B-6c) 

   xx 00, qq  , x                                                 (B-6d) 

  0,  tR x ,  x                                                    (B-6e) 

  0,  tq x ,   0,3  tq x , x                               (B-6f) 

Let A  be constant. The process is the same comparing with (B-1) except that the semi-

discrete equation (B-4) need to be written as: 

  nn

R MRRKtDtAMM  1                                             (B-7) 

From this equation, the numerical solution for R on each point and time of the mesh 

grid could be obtained. The procedure then follows the same steps as for the previous 

case corresponding to the system (B-5). The numerical solutions for are performed, 

using the platform Matlab. 

 

C  Numerical scheme for bi-flux model with 

nonlinear source or sink 

 

C1 Model with the Dirichlet boundary condition 

 

           We will consider our new fourth order equation in two dimensions with source or 

sink term as shown below.  
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 
         3,,1,,

,,
qqtyxqRtyxqD

t

tyxq





  

   yx,  

 Subject to the boundary condition: 

  0, yxq ;   0,  yxq .    yx,  

The equation will be called as the extended Fisher-Kolmogorov (EFK) equation. A 

nonlinear Galerkin finite element method will be presented in this part, that will be used 

to obtain the numerical solution for the flux q(x,t) with the Hermite base function. 

            The original nonlinear Galerkin method idea is from Marion and Temam, 

(1989). In this part, we will consider the computational domain as  , the space 

  1

0HV , and   2LH . There are several definitions of the scalar products and 

norms are: 

 

    d, ,  2

1

,2  
L

, H , . 

    d, ,  2

1

,2  
L

, H ,  

    d 2222 , ,  2
1

222 ,
2

 
L

, H ,  

 

Assume that hV  is a finite dimensional subspace of V . First, considering the classical 

Fisher- Kolmogorov model and employing the variational principle for the classical 

model.  

 

 
  3,,

,,
qqtyxqD

t

tyxq




  

 

we can obtain the classical Galerkin expression to find hh Vq   such that: 

 

       ,,, hhh qFqDq
dt

d
 , hV  
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For 1D case, the nonlinear Galerkin method proposed in previous paper (Marion and 

Temam, 1989, 1990), two levels of discretization hV2  and hW  are considered, hV2  with 

the mesh parameter h2  and hW twice finer with respect to mesh parameter h . The 

subspace hV2 consist of the nodal (hat) function hj 2, that are equal to 1 at 

 Njjh ,...,02   and are equal to 0 at the other nodes  jkNkkh  ,,...,02 . The other 

subspace hW consists of the nodal (hat) function hj 2,  whose values are equal to 1 at the 

nodes    Njhj ,...,012   and are equal to 0 at the other nodes 

 12,2,...,0  jkNkkh . The union of bases function of hV2 and hW yields a basis of 

hV  which is not the canonical nodal basis of hV . This hierarchical basis is obtained by 

refining the mesh, so we call it h-type hierarchical basis. 

         Another kind of hierarchical basis function is called p-type hierarchical basis 

which is showed in paper ( Zhang et al.,2016 ). Consider two spaces lV  and qV , such 

that lV  corresponds to a space associated with lower-degree shape functions, while qV  

corresponds to a space associated with high-degree shape function. The union of two 

spaces lV  and qV  yields a space hV  in which the hierarchical basis is represented as one 

combination of lower-degree base function and high-degree base function. 

         Let us recall the idea of this kind of base function. They are quadratic or high 

order correction as compared with the order of base polynomial in rough grid. Here, the 

quadratic correction is referred to the linear shape function over an element. The 

subspace lV consists of the nodal (hat) function j   that are equal 1 at  Njjh ,...,0  

and are equal to 0 for the other nodal (hat) function k  jkNjkh  ,,...,0 . And the 

other subspace qV  consists of quadratic hierarchical shape function on each element. 

This quadratic function,  NjVqj ,...,1 , to a canonical element 

   1,12  hxx j  has the form: 

 

  21  j  

          As the same theory about p-type hierarchical basis function, we will consider for 

the Hermite base function, for instance, reference interval given as [-1,1], the Herimte 

base function given    3

1 3225.0    , with   111  and   011  , the first 

derivate at the point 1 and -1 are equal 0 as well, with the notation     011 11   ; 

   32

2 125.0   , with the first derivate at the point -1  equal to 1, also 

  112  , and       0111 222   ;    3

3 3225.0   , that at the point 1 

gives,   113  and       0111 333   ;    32

4 125.0   , that at the 



129 

 

point 1 gives,   114  and       0111 444   . The first kind of high-degree 

correction base function requires that in the middle of the reference point the value of 

the function is 1, the first derivate is zero, and its value and first derivate value at the left 

and right point are zero. Under these six conditions, we will obtain the “six order” 

polynomial, but unfortunately, the coefficients for the sixth and fifth order are zero as 

written as below: 

  42

1 21    

The second kind of high-degree correction base function correspond to the condition 

that in the middle of the reference point the value of the function is zero, the first 

derivate is one, and its value and first derivate value at the left and right point will be 

zero. Under these six conditions, the “six order” polynomial in the sequel can be 

obtained, but unfortunately, the coefficient for the sixth is zero as can be seen form the 

definition written as below: 

 

  53

2 2    

Consider now the bi-flux theory. The following variational principle and classical 

Galerkin method for the bi-flux theory will be introduced to find hh Vq   such that 

           ,,1,, 22

hhhh qFqRqDq
dt

d
 , hV  

With the nonlinear Galerkin method (Marion and Temam, 1989, 1990, 1995), we will 

write the approximation in the form:  

 

     ,tqtqtq qlh     ll Vtq  ,   qq Vtq   

Such that 

           ,,1,, 22

hhhl qFqRqDq
dt

d
  

         ,,1, 22

hhh qFqRqD   

     ,,0 0qqh   

 

           In this case, we can’t find two different orthogonal subspaces such that the scalar 

products for the base functions vanish, therefore the simple formula as in the paper 
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(Nabh et al., 1996; Dubois et al.,, 1998, 1999, 2004 ) can’t be found. For the nonlinear 

term in the right hand side, we will consider for a simple discrete approximation: 

 

        ,, hllh zqFqFqF   

Where  lqF  is the Jacobian matrix. For the sake of computation, we will write the 

formula in matrix notation: 

 

             ,,1,, 22

qlqlqll ZQFZQRZQDQ
dt

d
  

             ,,1, 22

qqlqlql ZFQFZQRZQD   

     ,,0 0QQl  

 

Where     ik

N

k i

ikl tqtQ 



 

 4

1

0

2

1

4  ,  

    ik

N

k i

ikq tztZ 



 

 24

2

0

2

1

24  , 

   243464746521 ,,,,...,,,, NNNN   ,  

   64741041148743 ,,,,...,,,, NNNN  . 

 

        For time integration, the semi-implicit backward differentiation scheme will be 

employed for the equation, subsequently, the full discrete scheme can be written as: 

 

               









,,1,
,,

11211211

1

nnnnnn

nn

qlqlql

ll ZQFZQRZQD
dt

Q

dt

Q


 

                ,,1, 12121

q

nnnnnn

qlqlql
ZFQFZQRZQD   

     ,,0 0

1 QQ
l
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The solution could be obtained on each point and at each time step with the platform 

Matlab. 

 

C2 Model with no flux boundary condition 

 

          In this section we consider the same model as C1 except that the boundary 

conditions correspond now to non-flux. The main fourth order equation is decoupled 

into two second order equations and the solution is obtained with the nonlinear Galerkin 

finite element on the interval [-1,1] for the spatial domain and the Euler backward 

difference method for the time integration. Due to the no flux boundary condition, the  

model is written as : 

 

   
 

  3

4

4

2

2 ,
1

,,
qq

x

txq
R

x

txq
D

t

txq















  

   
0

,1,1











x

tq

x

tq
;

   
0

,1,1
3

3

3

3











x

tq

x

tq
 

   xqxq 00,  ,        1,1x  

 

Let    txpxtxq ,, 22  , the model rewritten as below: 

   
 

  3

2

2

2

2 ,
1

,,
qq

x

txp
R

x

txq
D

t

txq















  

   txpxtxq ,, 22   

   
0

,1,1











x

tq

x

tq
;

   
0

,1,1











x

tp

x

tp
 

   xqxq 00,  ,        1,1x  

Let  IHV 1

0 , and  ILH 2 .  1,1I . The definitions of the scalar products and 

norms in one dimension case are: 

   
I

d, ,  2

1

,2  
L

, H , . 
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   










I
d

xx


, ,  2

1

,2  
L

, H ,  

Assume that hV  is a finite dimensional subspace of V . Consider the classical Galerkin 

formula is to find hhh Vpq ,  such that: 

           ,,1,, hhhh qFpRqDq
dt

d
  

    0,,   hh pq  

 

Due to the nonlinear Galerkin method (Marion and Temam, 1989, 1990, 1995; Nabh et 

al., 1996; Dubois et al.,, 1998, 1999, 2004; Dettori et al.,, 1995; Laminie et al.,,1993; 

García-Archilla et al.,, 1995; Zhang, 2016), we will split the solution into two parts:  

 

     ,tqtqtq qlh     ll Vtq  ,   qq Vtq   

     ,tptptp qlh     ll Vtp  ,   qq Vtp   

 

to obtain: 

           ,,1,, hhhl qFpRqDq
dt

d
  

    0,,   hh pq  

         ,,1, 22

hhh qFqRqD   

     ,,0, 0qxqh   

       ,),0,(,0, 00 pxqxph   

 

Consider the same approach as in C1 for the nonlinear source or sink 

 

        ,, hllh zqFqFqF   

 



133 

 

Where  lqF  is the Jacobian matrix. The system can now be written: 

 

             ,,1,, qlqlqll ZQFUPRZQDQ
dt

d
  

      0,,  qlql UPZQ  

             ,,1, qqlqlql ZFQFUPRZQD   

     ,,0 0QQl  

     ,,0 0PPl  

 

Where    





1

0

1212

N

k

kkl tqtQ  ,  

   





2

0

2222

N

k

kkq tztZ  , 

   





1

0

1212

N

k

kkl tptP  ,  

   





2

0

2222

N

k

kkq tutU   

   121231 ,,...,, NN   ,  

   NN 22242 ,,...,,,  . 

 

        For time integration the semi-implicit backward differentiation scheme will be 

employed, subsequently the full discrete scheme written for each time step as: 

 

               









,,1,
,,

111111

1

nnnnnn

nn

qlqlql

ll ZQFUPRZQD
dt

Q

dt

Q


      0,, 1111   nnnn

qlql
UPZQ  

               ,,1, 111

q

nnnnnn

qlqlql
ZFQFUPRZQD   
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      0,, 11   nnnn

qlql
UPZQ  

     ,,0 0

1 QQ
l

 

     ,,0 0

1 PP
l

 

The solution could be obtained on the each point and time under the platform Matlab. 

 

C3 Coupled model with no flux boundary condition 

 

           In this section, we will consider the Gray-Scott model with fourth order term 

called extended Gray-Scott model as below. The coefficients q , v , qD , vD , qR , vR are 

constant. 

 

       
 qAqv

x

txq
R

x

txq
D

t

txq
qqqqq 














1

,
1

,, 2

4

4

2

2

  

   
 

 
Bvqv

x

txv
R

x

txv

t

txv
vvvv 













 2

4

4

2

2
2 ,

1
,,

  

   
0

,1,1











x

tq

x

tq
;

   
0

,1,1
3

3

3

3











x

tq

x

tq
 

   
0

11











x

v

x

v
;

   
0

11
3

3

3

3











x

v

x

v
 

   xqxq 00,  ,  1,1x  

   xvxv 00,  ,  1,1x  

           The process to deal with this system is to expand the single variation developed 

in C2 into two variations for the present problem. The sequence of the solution is 

similar, so that we just list the last full discrete matrix formulation as : 
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           

   


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
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nn
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ll

LEZQF

UPRZQD
dt

Q

dt

Q


      0,, 1111   nnnn

qlql
UPZQ  

           
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ll
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Q
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Q


      0,, 1111   nnnn

qlql
LETV  

 

        
       
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      0,, 11   nnnn

qlql
UPZQ  

        
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      0,, 11   nnnn

qlql
LETV  

     ,,0 0

1 QQ
l

 

     ,,0 0

1 PP
l

 

     ,,0 0
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l

 

     ,,0 0
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