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Abstract. In this work we show how classification trees, a family of non-
parametric statistical methods, can he used together with RCPS ( Resource
Constrained Project Scheduling ) stochastic modeling and simulation to provide
project managers with better insights into the project they run. Such insights
make it easier for managers to anticipate changes in planning that favor projects
to he delivered on time, within budget, and in compliance with available cash
flow and the requirements they were set to satisfy'. Also, we discuss the impli-
cations of these insights for both the management of complex projects and the
construction of effective business strategies.

Resumo. Neste artigo descrevemos como árvores de classificação, uma família
de métodos estatísticos não-paramétricos, pode ser utilizada juntamente com
modelagem e simulação estocástica para o escalonamento de projetos com re-
cursos escassos (RPCS) com vistas a fornecer aos gerentes um entendimento
mais profundo dos projetos sobre sua responsabilidade. Este entendimento fa-
cilita a implementação de mudanças no planejamento das atividades, favore-
cendo a entrega de projetos dentro do prazo, de acordo com o orçamento e
fluxo de caixa, e em sintonia com os requisitos que se comprometeram a satis-
fazer. Em adição discutimos as implicações das técnicas aqui apresentadas
para a gerência de projetos de grande complexidade e para a construção de
estratégias de negócio.

I
jr*

1 . Introduction
Over the last few decades the environment in which organizations do business has changed
considerably with enormous consequences for project management. The business para-
digms that prevailed during the industrial revolution are giving way to new ones dictated



by the information age, knowledge age and technology revolution which we are currently
experiencing [Jones et al . 2002]. For example, the existence of rigid production lines of
impersonalized tangible products that characterized the industrial revolution are being
successfully challenged by increasing demand for highly customized products and ser-
vices, decentralized work force and intangible products, opening new vistas for industrial
and business development [Hosni and Khalil 2004]. The cell phone communication, com-
puter network. TV on demand and distance learning industries are just a few examples of
such vistas [ Wagner 2005].

The increasing competition for market space in many industries worldwide has
become an important societal force of this time and age, putting extreme pressure on
organizations to make their complex, customized outputs available as quickly as possi-
ble. Nowadays, response must come faster, decisions must be made sooner and results
must occur more quickly. Hence, time-to-market has become a critical success factor in
several areas of business [ Meredith and Mantel 2002]. On top of that, for companies to
be competitive, they have to reduce their costs and focus on satisfying their customers
[Frame 2002]. If you do not deliver the products and services your customers value, for
the price they are willing to pay, someone else will.

Market pressure and the growing demand for new and more complex prod-
ucts and services have required organizations to practice creative destruction on a
non-stop basis by replacing old ways of doing business in order to create new ways
[Hamill 2000, Arora et al . 2001]. However, this process of destruction and construction
requires all sort of different specialized knowledge, e.g. marketing, emerging technolo-
gies, finance, logistic, business strategy, etc. Therefore, although invisible, knowledge
has emerged as one of the most strategic assets for organizations [Kakabadse et al. 2001].

All of this has forced organizations worldw ide to increase both the quantity and
complexity of projects they run. To remain competitive organizations have to innovate
constantly. The introduction of every innovation in products and services requires the
execution of one or, more frequently, several projets. As the pace of innovation increases,
so does the number of projects. On the other hand, the demand for new and more com-
plex products calls for the execution of more complex projects; requiring the coordination
of efforts from multidisciplinary teams with advanced technical and business skills, the
establishment of strategic alliances with external partners, the outsourcing of project ac-
tivities, and the use of recently developed technology.

Nevertheless, short time-to-market and fierce competition for market space require
projects to be executed faster, with tighter budgets and less margin for errors. Undoubt-
edly such constrains tend to put projets managers under enormous pressure to produce
results. When the pressure to deliver becomes too great, common sense often goes out
the w indow, crucial steps in the project development are ignored, the end result is shoddy,
and the rework required to repair the damage is far more expensive than if it were caught
in the planning stages [ Info-Tech Research Group 2003].

Effective project management in a lean resource environment requires good
planning and timely information, allowing problems to be anticipated and dealt with
before the worse happens[Wright et al. 1999 ]. With the view' of antecipating prob-
lems that frequently prevent projects from finishing successfully, over the years, man-

*

!



agers have resorted to planning methods such as Gantt Charts, CPM (Critical Path
Method), PERT (Performance Evaluation and Review Technique) and, more recently,
to RCPS (Resource Constrained Project Scheduling) stochastic modeling and simulation
[Lewis 2000, Kerzner 2003].

Although the stochastic modeling and simulation of RCPS problems has proved
to be a powerful tools for project planning in constrained environments, the construction
and analysis of RCPS activity networks require considerable experience in quantitative
model building and advanced knowledge of both mathematics and statistics.

This work shows how classification trees, a family of noil-parametric statistical
methods, can be used together w ith RCPS stochastic modeling and simulation to provide
valuable insight into project planning in constrained environments, making it easier for
managers to foresee changes in planning that favor projects to be delivered on time,within
budget and in compliance with available cash flow and the requirements they were set to

satisfy. Also, we discuss the implication of such insights for both the project management
of complex projets and the construction of effective business strategies.

2. Conceptual Framework

One of the main goals of project scheduling is to produce a detailed plan of project re-
lated activities with the view of allowing managers to deal with a large variety of prob-
lems before the worse happens. Among these problems one may find lack of specialized
or experienced labor, incompatible start and finish dates among activities, insufficient
funding, activities being executed in sequence when they should be executed in paral-
lel, unavailability of equipment, etc. However, the most frequent problem managers use
project scheduling to solve is the minimization of makespan1, other common possibilities
include minimization of cost, maximization of financial results,maximization of quality
measures, etc. [Zhu et al. 2005].

2.1. Resource-Constrained Project Scheduling

Project schedules that are subjected to precedence and resource constraints are called
“Resource-Constrained Project Scheduling" in the literature, or RCPS for short. Not
surprisingly, the vast majority of projects in the real world face RCPS problems. Hence,
the great amount of attention that the academic world and industry have been paying to

efforts in dealing efficiently with RCPS problems.
Over the years numerous methods have been proposed to solve RCPS prob-

lems, such as: implicit enumeration, branch-and-bound procedure, schedule generation
schemes (SGS), X-pass. etc. A comprehensive review of these methods is found in
[Demeulemeester and Herroelen 2002, Kolisch and Hartmann 2006]. Despite the differ-
ences these methods may have, they can all be classified in just two categories: exact
methods and heuristic methods [Castillo and Mu//oz 2004].

Exact methods are used to find the precise maximum or minimum value of a vari-
able under consideration. For example, the minimum project duration or its maximum
financial return. However, these methods have considerable limitations that become ev-
ident when projects have a great number of activities or complex resource constraints.

Total project duration.



Usually, in these circumstances a solution cannot be found within reasonable computing
time. Heuristic methods, on the other hand, use a schedule priority criteria to provide an
approximate solution to RCPS problems. They are particularly useful when the use of
exact methods are not feasible.

In the heuristic methods every activity is initially a potential candidate to be sched-
uled . However, activities can only be scheduled if all its precedent activities have been
completed and the resources required for its execution are fully available. Unfortunately,
whenever activities share resources, it may imply that they cannot be executed concur-
rently. The use of a heuristic is then necessary to decide when each activity should receive
its required resources and be executed as a result. When no real candidate activities are
available, the clock advances until one of the activities in progress is completed. At that
point in time resources are freed and the process is repeated, i.e. candidate activities are
identified, resources are checked for availability and activities are scheduled. The total
duration of a project is the time required for the completion of all its activities.

The following are examples of heuristics frequently used to deal with RCPS prob-
lems: shortest processing time (SPT), most immediate successors ( MIS ), late start time
(LST), first come first served ( FCFS). A thorough account of these heuristics is provided
by [Goerlich and Olaguibel 1989]. As a mathematical problem RCPS belongs to a cat-
egory' where, in general, an optimal solution cannot be found in a linear or polynomial
time frame, i.e. the NP-hard category [ Blazewicz et al. 1983].

2.2. Classification Trees
The techniques described in this article to analyze RCPS stochastic models make
extensive use of classifications trees, a class of statistical inferential methods con-
ceived by Morgan and Sonquist in the 1960’s [ Morgan and Sonquist 1963] and later
perfected by others, such as: [ Kass 1980], [Breiman et al. 1984], [Quinlan 1992],
[ Loh and Vanichestakul 1988] and [ Loh and Shih 1997].

As an inferential method, classification trees seek to explain the behavior of a
target variable by combining different values of a given set of predictive variables. To
achieve this goal, the values of the predictive variables are successively combined in such
a way that an n-dimensional space is portioned into increasingly more homogenous sets
of values with respect to the target variable. The way the portioning is done allows the
final result to be presented as a flow-chart whose format resembles a tree, so the name of
the family of methods. Furthermore, the information presented in the flow-chart may be
easily translated into a set of rules that indicate the likelihood of occurrence of values in
the domain of the target variable for different circumstances.

Classification trees are non-parametric methods, i .e. no restrictions are imposed
on the distribution of values of predictive and target variables. In addition, these variables
are allow ed to hold all sort of relationships among themselves. All of this makes it easier
to use classification trees to solve problems in the real word, where the distribution of
values of variables and the relationships that they hold among themselves are frequently
unknown. Therefore, not only classification trees are a family of robust methods, but the
way the results are presented makes understanding easier and facilitates their dissemina-
tion among all interested parties.

Moreover, classification trees have been widely reported as presenting satis-



factory results even in the presence of noise and when little data is available; mak-
ing it a very attractive class of methods to be used in all sorts of different situations
[Witten and Frank 2005].

In formal terms, given a set of observations O = { o\ .o2 , • • • , om}, where every
Oj [i .. m] O is a tuple (•/* ] , J:2 r„) and each tuple component x, e [ i .. n] may take
value in a different domain, then let p [ j m be the value of the tuple component
X , of O j . In these circumstances, a variable i 7 )' in O is an undefined value of the set
{t’i.i , i\% 2, . . . , Moreover, let ir„ be the target variable, whose behavior one hopes
to explain by combining the values of ?rj, w2. • • • . wn-\ . Also let w„ take value in a finite
set J .

In the classification tree paradigm the set of variables in O is exhaustively exam-
ined for relations of the form:

if Xi is a continuous variableXi < r,
or
X, G { ki ,k2,k¿. • • • . k¡ }. if Xi is a discrete variable.

where r and [|. j] belong the domain of xt . Each relation RXi<r or R.¡ ,e { k^- Xi ) that is
found allows O to be partitioned into two sets, i.e. OR and O^ R, such that ORHO-,R = {}
and OR U 0-,R = O. In this case. OR contains the observations in O for which R holds
and 0~,R the observations for which the negation of R holds.

A metric M is then used to evaluate how diverse the data in O, OR and O^ R are
regarding the elements in The difference between M ( O ) and the weighted average
of M ( OR ) and M ( O^ R ) indicates the contribution of relation R for the reduction in the
diversity of the elements in J as a result of partitioning O into OR and O-^ R. Because one
wants diversity to be reduced as fast as possible, the relation R that provides the biggest
reduction in diversity is initially used to partition O. The process is then successively
reapplied to OR and O^ R , until no gain in the reduction of diversity is achieved.

In the classification tree paradigm, when J has only two elements, one of the
most frequently used diversity metric is the Gini diversity index. The index was initially
proposed by Corrado Gini [Gini 1939] and later adapted by [Breiman et al. 1984] for the
development of classification methods. In formal terms, for a given set of observations
Ö, Gini is calculated as

1(0 ) = 1 - 5, ( 1 )

where 5 = P( j i \ö )2 f°r 3i J, and P ( j,\0 ) is the probability of occurrence of
objects j , in O. In these circumstances the reduction in diversity provided by a relation R
is given by

A1(0 ) = 1(0 ) - {¡( OR) xpR 4- I ( O^R ) X ]KR )
where PR and p^ R are respectively the proportion of elements in OR and O^R.

(2)

3. Mining RCPS Stochastic Models with Classification Trees
According to Seneca (4 BC-AD 65), the Roman philosopher:

“ Rules make the learner's path long, w'hile examples make it short and
successful".



As a result, the mining process presented in this article is introduced with the help of a
real-world inspired example.

Suppose that a chain of furniture stores decides to create a catalog to promote
some of the products they sell to a large group of prospects at a special price. The proper
undertaking of this task requires that eight interdependent activities are efficiently exe-
cuted within a time frame, i.e.

1 . Product Selection - that chooses the products that will be advertised in the catalog;
2. Prospect Selection - that identifies the prospects to whom the catalogs are going

to be mailed;
3. Pricing - that establishes the promotional price of every product to be advertised

in the catalog;
4. Catalog Design - where the graphic and textual aspect of the catalog, and accom-

panying advertising material are conceived and put together;
5. Labe! Printing - where labels with prospects ' names and addresses are printed and

organized:
6. Stock Control - that makes sure that the products advertised in the catalog will be

available for shipping when they are ordered ;
7. Catalog Printing - where the actual print of the catalog is done;
8. Catalog Labeling & Mailing - which labels the catalogs with prospects' names

and addresses and sends them to their intended destinations over the mail.
Tough competition in the furniture business has brought down profit margins over

the years, as a result the chain of furniture stores operates with a skinny employee struc-
ture. Therefore, only two people have been selected to work on the catalog project. They
are going to be named Mimi and Ed. Table 1 shows the human resources required by each
of the project 's activities.

Table 1. Resources required by each of the project’s activities.
Activity Resource Required

Label Description
PdS Product Selection Mimi and Ed
PsS Prospect Selection Mimi

PricingP Mimi and Ed
CD Catalog Design Ed
LP Label Printing Mimior Ed
SC Stock Control Mimior Ed
CP Catalog Printing Mimi or Ed
CLM Catalog Labeling & Mailing Mimi and Ed

Figure I presents the project 's network of activities. In that figure Product Selec-
tion is the first activity to be executed and Catalog Labeling and Mailing the last. More-
over, an arrow connecting two activities such as Product Selection
that the latter may only start when the former has been completed and all the necessary
resources are available.

As the project has to be completed within a time frame, it is crucial that manage-
ment is made aware of its expected makespan in respect to the current resource constraints

Pricing indicates



Prospect
Selection

Label
Printing

t Catalog
L & M

StockProduct
Selection Pricing Control

i
Catalog
Design

Catalog
Printing

Figure 1. The project’s network of activities.

and the duration of the different project activities. However, because these activities have
not been executed yet, their duration can only be estimated. In this case, with the support
of other experienced project managers and a database of previously executed projects,
a three point estimate has been established for each activity, indicating their minimum,
most likely and maximum expected duration. Table 2 presents these figures.

Table 2. Minimum, maximum and most likely duration of project activities.
Activity Activity Duration

Minimum Most Likely
w

Maximum
PcIS 3 6—
PsS 3 6 8
P 4 76

CD I 8 10
LP 7 9 1 1
SC 5 76
CP 4 5 8

CLM I 2 4

Considering that the exact duration of each activity is unknown and that the avail-
able resources may be insufficient to ensure that all activities are executed when their
precedents are completed, a stochastic simulation model has been built to analyze the
project makespan. In this model, the duration of each activity is described by a triangular
probability density function, one of the most widely used functions to describe activity
duration [Chung 2003].

Subsequently the stochastic model was subjected to a simulation process, w'here
resources were granted to the first activity to place a request for them. During simula-
tion the duration of each activity was recorded in the form of a percentage of their re-
spective time range. Also, the activity waiting time for resource allocation was recorded
together with the outcome of each simulated scenario, indicating whether the project fin-
ished within the allowed time. Table 3 presents the figures collected during simulation.
Table 4 describes the meaning of the columns presented in Table 3. See [Chung 2003] for
an introduction to simulation.



F:or example, as indicated by variables Sen and CD, in the first simulated scenario
the execution of Catalog Design consumed 25.4% of its time range, i.e., 14-0.254 x ( 10 —
1) = 3.3 time units. Moreover, the variable Leo shows that the necessary resources for its
execution were being used by other activities at the time they were requested and that 4.1
time units passed until they were released. It should also be noted that only two activities
had their waiting time for resource allocation registered. This is due to the fact that no
other activities had to wait for the allocation of resources they needed.

Figure 2 shows the project makespan classification tree built with the help of the
SPSS software (www.spss.com), using the data generated during the simulation process
and the CRT option, an enhanced variation of [Breiman et al. 19X4] approach to classi-
fication. In that figure the box labeled Node 0 is the root of the classification tree. It
contains the total number of observations available for analysis, i.e. 5,000 in this case.
Also, it displays the number and proportion of the different scenarios in which the catalog
project finished and did not finish on time.

For example, initially, in 60.7% of the generated scenarios the project finished on
time,whilst in 39.3% it did not. It should be noted that the relation that is used to partition
the initial set of scenarios is Lip < 4.8, and that, as a consequence, Node I contains the
4,110 observations for which this relation holds and Node 2 the remaining 890.

Because of the incremental way in which the tree is constructed, all relations that
hold for the observations in a node also hold for the the observations in its descendants
nodes. For example, in the scenarios that are part of Node 3 the label-printing waiting
time for resource allocation is smaller than or equal to 4.8 time units ( LLP < 4.8) and

Table 3. Simulation results connecting the duration of project activities and wait-
ing time for resource allocation with the project’s outcome.
Sen PdS PsS P CD I P SC CP CLM Leo L I P Rst

44.4 88.3 1.2 25.4 24.5 36.6 36.8 10.9 0.04.1 In
2 80.6 13.6 70.4 67.6 14.7 24.116.1 76.9 0.0 3.5 In
3 34.8 78.7 0.9 13.8 32.9 49.3 21.266.1 4.1 0.0 In
4 40.7 84.2 80.5 29.2 64.5 20.7 84.2 81.6 0.0 4.4 Out

38.5 92.2 27.3 84.6 45.2 49.1 85.8 31.3 0.0 4.6 Outn

Table 4. Meaning of the variables whose values were collected during the simu-
lation process.

Variable Meaning
Sen Scenario identifier.
PdS, PsS. • • • ,CLM Duration of activities PdS. PsS. ,CLM expressed as a

percentage of their respective time range.
Leo aid LLP Waiting time for resource allocation of activities CD and LP.
Rsl The outcome of a given scenario, where In indicates that the

project finished within the allowed time and Out indicates oth-
erwise.
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Figure 2. The project’s makespan classification tree.



the time spent in the design of the catalog is smaller than or equal to 80% of its estimated
time range ( CD < 0.8). Table 5 shows all the relations that hold for the leaves of the
tree presented in Figure 2, i.e. for the nodes that have no descendants, together with the
proportion of In 's and Out’s.

Table 5. Rules indicating in which circumstances the catalog project is more
likely to be finished on time.

Node Rule Outcome
OutIn

LLP > 4.82 30.2% 69.8%
4 LLP < 4.8 and CD > 0.8 47.7% 52.3%

LLP < 4.1 and CD < 0.8 and CP < 0.G13 90.3% 9.7%
LLP < 4.1 and CD < 0.8 and CP > 0.014 60.3% 39.7%

15 LLP > 4.1 and Lu> < 4.8 and CD < 0.8 and LP < 0.6 67.2% 32.8%
LLP > 4.1 and LLp < 4.8 and CD < 0.8 and LP > 0.616 23.0% 77.0%

It should be noted that according to the information displayed in Figure 2, if the
project manager can ensure that the label-printing waiting time for resource allocation
is smaller than or equal to 4.8 time units ( LLP < 4.8), then the chances of the project
finishing on time goes from 60.7% to 67.3%. However, if they can also ensure that the
time spent on the catalog design is smaller than or equal to 80% of its time range ( CD <
0.8), then the chances of the project being delivered on time increases even further to
82.7%.

In addition, if the label-printing waiting time for resource allocation is shortened
to at most 4.1 time units ( LP < 4.1) and the catalog printing is carried out in less than
or equal to 60% of its estimated time range ( CP < 0.6), then the chances of the project
being finished as planned goes to 90.3%.

4. Discussion
At the outset of this article we undertook to successfully mine RCPS stochastic models
with the view of making it easier for managers to anticipate tactical changes in project
planning. Bellow we answer some key questions about the implications of the insights
provided by classification trees for both project management and the construction of ef-
fective business strategies.

4.1. What are the necessary steps leading to the successful mining of RCPS
stochastic models?

To successfully mine RCPS stochastic models with the view’ of helping managers to an-
ticipate changes in project planning that increase the chances of finishing the project on
time one may take the following steps:

1. Build a stochastic model that properly represents the project's activities, their in-
terdependency relations and the resource constrains to which they are subjected;

2. Run a simulation process that, for each scenario, collects the project outcome
indicating whether it finished on time or not. In these circumstances a scenario is
composed of the duration of all project activities as percentage of its time range,
together with their respective waiting time for resource allocation;



3. Use the data collected during the simulation process to construct a classification
tree that has the project outcome as its target variable;

4. Examine the tree carefully looking for ways to improve the chances of finishing
the project on time;

5. Make the necessary adjustments in the project planning of activities;
6. If any adjustments are made, then the stochastic model ought to reflect these

changes, the simulation process should be rerun and the classification tree rebuilt.

4.2. How do users of RCPS stochastic models benefit from classification trees?

One of the main benefits of building an RCPS stochastic model is the insight it can po-
tentially provide on the dependency relations that exists among the duration of project
activities, the waiting time for their resource allocation and the project outcome. The un-
derstanding of these relations allows the identification of activities that most strongly in-
fluence the outcome of a project, prompting changes in planning that increase the chances
of projects being delivered on time.

However, even the construction and analysis of small RCPS stochastic models
require considerable knowledge of mathematics and statistics, including the use of prob-
ability density functions for both discrete and continuous variables, sampling, randomly
generated scenarios, measures of central tendency and spread, estimation, etc. As a result,
many project managers are unable to enjoy the benefits of using this truly pow erful tool,
because they just lack the necessary technical skills.

In addition, the two statistical methods that are most frequently employed to iden-
tify cause and effect relationships among variables in RCPS stochastic models are linear
correlation and regression. The proper use of these methods to analyze the relationship
that exists among the duration of project activities, waiting time for resource allocation
and project outcome requires these relations to be linear, which most often is not the case.

Moreover, linear regression requires predictive variables to be independent, i .e.
the value that one of these variables may take may not depend upon the value that other
predictive variables take. Unfortunately, there is a natural tendency that the duration of
project activities depend upon each other. For example, in many industries time spent
on planning and designing tends to strongly influence time spent on testing and delivery.

Therefore, situations in which the proper use of linear regression is welcome do not come
by as frequently as one may hope for.

Finally, both correlation and linear regression do not deal easily with categorical
variables. Linear regression requires these variables to be transformed into a set of inde-
pendent variables. Linear correlation requires variables to be of ratio scale, while rank
order correlation requires them to take value in an ordinal set. Furthermore, linear re-
gression requires the target variable to be continuous. See [McClave and Sincich 2005]
for an introduction to regression and correlation, and [Kurpiusand Stafford 2005] for a
discussion about measurement scales.

Although, classification trees cannot make the construction of RCPS stochastic
models any easier, they do help w'ith the analysis of the simulation process, particularly
with the extraction of information that favors tactical changes in project planning. The
use of classification trees does not require predictive variables to be independent nor to
hold a linear relation with the target variable. Also, they can take value in any kind of set.



despite its scale of measurement being nominal, ordinal, scalar or ratio. All of this not
only greatly facilitates the analysis of RCPS stochastic models, but also makes it faster
and less prone to errors.

4.3. Are there anv additional benefits for users of RCPS stochastic models?
While correlation uses a number that varies within well defined bounds, typically from
-1 to I , to indicate the intensity of a relation that holds between two variables, linear
regression uses a polynomial equation to describe the relationship that holds between
a set of predictive variables and a target variable. Although the interpretation of these
results are not particularly difficult, they do require some knowledge of mathematics and
statistics.

On the other hand, classification trees yield simple logical expressions that de-
scribe the dependency relation that hold among predictive variables and a target variable.
Such expressions are easy to read and understand, even by those with a restricted knowl-
edge of mathematics and statistics. Moreover, they do indicate, clearly and incrementally,

the most critical values that predictive variables with discrimination power may take, i .e.,
values that most strongly influence a project 's outcome. This makes it easier for project
managers and their teams to identify what needs to be done and when it needs to be done,
before the worst happens.

4.4. Can the techniques described in this article be used to analyze other aspects of
project management besides makespan?

Although all the examples that have been used throughout this article have been concerned
with project makespan, there is no reason why classification trees cannot be successfully
combined with stochastic modeling and simulation to analyze different aspects of project
management, such as cost, financing, budget and cash flow compliance, operational risk,
human resource hiring and allocation, quality conformity, etc.

Each of these aspects is more easily and effectively analyzed with the right choice
of predictive and target variables. For example, for project cost analysis it is usual to
choose the estimated cost of each activity as predictive variables and the project total cost
as the target variable. However, because project cost may also be influenced by many
other factors, as for example the existence of penalties for late delivery, loss of qualified
and experienced labor, sudden change in the interest and exchange rates, lack of proper
resources, equipment malfunction etc., it is not uncommon that project cost analysis is
improved by the inclusion of a multitude of other variables related to both financial and
non-fmancial aspects of project management.

Whatever the situation, the right combination of predictive and target variables is
bound to yield rules that help managers to keep their project on track, making tactical
changes in planning where and when they are shown to be necessary.

4.5. Can the combination of classification trees and RPCS stochastic modeling and
simulation be used as a negotiation tool?

Despite all the efforts that project managers may place on their tasks, projects are full
of uncertainties that make planning a difficult endeavor. Not only are projects concerned
with interrelated events and activities that have not happened yet, but also once these



activities have been completed, they will not be executed in the future exactly the same
way as in the past. Therefore, reliable activity cost and time span estimation are not easily
achieved. Also, it is not unusual that projects will have people working together for the
first time; not to mention that many projects are influenced by a variety of economic,
social and political factors such as interest rate, flow of imports and exports, change in
consumer behavior, proximity to the electoral period, introduction of new technology, etc.

Hence, projects are very unlikely to run as planned, requiring frequent adjustments
in the course of time. The more complex and lengthy the project, the more adjustments
it is likely to require. While some projects many not need adjustments involving over
budget investments and deadline extensions, others go the other way around.

Because the rules generated by classification trees are conjunctions of logical ex-
pressions that are easy to read and understand, and can be presented to non-technical
personnel, they may be used as an awareness tool to make senior management more con-
scious of critical aspects of a project; in particular of those aspects w here further invest-
ment is necessary. In this sense, the incremental w'ay in which the rules are presented
makes it easier for project managers to indicate where the extra funding should go, as
well as the consequent increase in the likelihood of finishing the project on time.

For example, in the catalog project if funding is made available to ensure com-
pliance with < 4.8 and C D < 0.8, the chances of having the project finished on
time go from 60.4% to 82.7%. However, if additional funding is made available to also
ensure that L < 4.1 and C l } < 0.G, then the chances of finishing the project on time
increase to 90.3%. See Node 13 in Figure 2. Therefore, not only classification trees make
the analysis of RCPS stochastic model easier, but they can also be used as a negotiation
tool with stakeholders to ensure that a project receives the resources it needs in a timely
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manner.

4.6. What are the implications of the insights prov ided by classification trees to
project management and business strategy?

In the extremely competitive world that has emerged as a consequence of the advent of
the Internet and the globalization of the world economy, organizations in many lines of
businesses have found themselves under enormous pressure to innovate, improving con-
stantly the quality of the products and services they market. Because innovation depends
upon the execution of projects, the number and complexity of projects that organizations
run annually have increased considerably.

A combination of tools such as classification trees and RCPS stochastic modeling
and simulation that helps to increase the chances of projects being delivered on time,
within budget and according to the quality aspects that were agreed upon, is certain to
favor more effective project management w ith positive impact on the number of projects
that are successfully completed and, as a result, on the competitive aspect of business.

5. Conclusion
In this article we have demonstrated the viability of successfully combining classifica-
tion trees with RCPS stochastic modeling and simulation to provide managers with the
means to anticipate changes in project planning that favor projects being finished success-
fully. This combination of mathematical tools may be used to analyze different aspects of



project management including project makespan and cost, with many advantages of more
classical methods.

Classification trees are not difficult to build as predictive variables are not required
to have any particular distribution of values or hold any kind of relationship among them-
selves. Moreover, the rules generated by classification trees are easy to read, understand
and communicate to all interested parties, helping to avoid mis-communication among
team members and also w ith the identification of most needed adjustments in project
planning.

c

Furthermore, easy to understand rules favor the involvement of senior manage-
ment with critical aspects of project planning and execution, making it easier for project
managers to ensure that the necessary investments are made where and when they are
most needed. All of this makes classification trees a verv attractive tool to be used in
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combination with RCPS stochastic modeling and simulation to support the management
of complex projects in the real world.
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