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ROBUST FITS FOR COPULA MODELS
Beatriz V. M. Mendes', Eduardo F. L. de Melo” and Roger Nelsen’
Abstract

In this paper we propose and compare two different methodologies for fitting
copulas robustly. The first proposal consists of a robustification of the maximum
likelihood method, where points previously identified as outliers by a high breakdown
point covariance matrix estimator are downweighted in a maximum likelihood
optimization procedure. The second proposal obtains robust estimates by minimizing
selected empirical copula based goodness of fit statistics. We show through simulations
that the proposed robust estimators are able to capture the correct strength of
dependence of the data, providing more accurate estimates of copula based dependence
measures such as the tail dependence coefficient. The experiments considered several ¢-
contaminated copula models, for varying proportions € of contaminating points.
Another result in this paper is the finite sample distribution of some selected empirical
copula based statistics and corresponding tables for testing and selecting the best copula
fit.
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1) INTRODUCTION

The dependence structure of any multivariate distribution F' may be best
represented by its pertaining copula C. Given a d-dimensional data set, many suitable
parametric copula models (Joe (1999), Nelsen (1999)) are available for this task. Model
estimation may be carried on by the maximum likelihood method in two steps: first one
performs the marginal estimation and then the copula fit, the so called /FM method
(inference function for margins, introduced by Joe and Xu (1996)). The univariate fits
typically pose no difficulties. It remains to fit copulas to the d-cube with Uniform(0,1)
margins. Joe (1999) argues that we can expect the /FFM method to be quite efficient
since fully based on maximum likelihood estimation. Efficiency may be assessed either
by comparing the estimators asymptotic covariance matrices, or by comparing their

mean squared error from Monte Carlo simulations.

When all data points are generated by the same data generating process F, the
maximum likelihood method typically yield good estimates (MLE), possessing the
usual good statistical properties. However, contaminations may occur in many ways.
For example, gross errors generated by some contaminating distribution F* may change
the strength and type of the association, resulting in inaccurate estimation of joint
probabilities and dependence measures. Even more dangerous would be an error on the
data columns alignment, for example when matching slow and fast trading high
frequency equity data, which would cause no damage to the marginal fits, but could
result in a completely distorted dependence structure. We also note that the copula [0,1]
sample space makes more difficult the graphical inspection of atypical points, especially
when d > 2. We need thus an automatic robust procedure that would work well when

there are, and when there are not contaminations in the data.

Alternatives to the maximum likelihood estimation method for copulas exist in
the literature. They are mainly nonparametric and include Genest, Ghoudi, and Rivest
(1993), Genest and Rivest (1993), Capéraa, Fougeres, and Genest, (1997), Fermanian
and Scaillet (2003), Tsukahara (2005), Morettin et al. (2005), among others. However,

to the best of our knowledge, no one has proposed yet robust estimates for copulas.

Accordingly, in this paper we propose and compare two different methodologies
for fitting copulas robustly. The first proposal consists in a robustification of the
maximum likelihood method, where points previously identified as outliers by a high

breakdown point covariance matrix estimator, are downweighted in a maximum



likelihood optimization procedure. Many high breakdown point covariance matrix
estimators may be used in this preliminary phase. One may select the Minimum Volume
Ellipsoid (MVE) or the Minimum Covariance Determinant (MCD) estimators of
Rousseeuw (1983,1985), any redescending M-estimator (Tyler (1983), Tyler (1991)),
the S-estimator (Lopuhad, 1989), or the CM-estimator (Kent and Tyler, 1996).
[llustrations on the role of robust covariance matrix estimators may be found in

Rousseeuw and van Zomeren (1990).

Any high breakdown robust estimator, able to find the pattern suggested by the
majority of the data, typically downweights some small proportion of the data (see
Tyler (1983), Rousseeuw and van Zomeren (1990), among others). In the first
exploratory step, we chose to use the covariance affine equivariant estimator MCD,
which is implemented in S-Plus. Based on the MCD estimates, a hard rejection weight
function assigns zero-one weights to selected data points. In the second step, the copula
model is fitted in a weighted maximum likelihood optimization procedure, yielding the
Weighted Maximum Likelihood estimates, the WMLE. These estimates possess the
usual good asymptotic properties under the true model (Rousseeuw, 1985). Under
contaminated models we show in this paper, through simulations, that they possess

small bias and variance, and outperform the MLE.

The second proposal obtains robust estimates by minimizing selected empirical
copula based goodness of fit statistics. These are the so called Minimum Distance
estimators (MDE), first proposed by Wolfowitz (1953, 1957). Since the empirical
copula is only defined on a lattice £, we define our distance with discrete norms. We
start with well known statistics (see Ané¢ and Kharoubi, 2003) such as the Kolmogorov
distance statistic K, the Cramer-von Mises statistic W2, the Anderson-Darling statistic
AD, the Integrated Anderson-Darling statistic IAD, and apply different redescending
weight functions, yielding 28 Minimum Distance estimators. The newly proposed
statistics downweight the influence of points belonging to selected corners of the unit d-

cube, introducing robustness.

All estimators are compared in a comprehensive simulation study. The
experiments consider e-contaminated parametric copula families, containing varying
proportions ¢ of contaminating points. The selected families include elliptical copulas
(Normal), copulas modeling extreme values, either maxima or exceedances (Gumbel,
Galambos, Clayton, Husler Reiss), some widely used in practice copula families (Frank,

Cook-Johnson, Joe, Joe-Clayton, Asymmetric Logistic model copula, and some other



copula families defined in Joe (1999)). For each parametric copula we find the best
(smaller mean square error) robust estimator, and indicate the best MDE choice for that
particular family. In this way we aim to provide guidance to the researcher or

practitioner when applying our methods.

Another result in the present paper are the finite sample and asymptotic
distributions of the minimum distance statistics identified as best robust estimators by
the simulation experiments. Some selected quantiles are given in tables for testing when
searching for the best copula fit. This is an important issue since practitioners usually fit
several parametric copula families and would like to have a tool for help choosing the
right copula (Durrleman, Nikeghbali, and Roncalli, 2000). We provide a means for

answering this long standing question.

The remainder of this paper is organized as follows. In Section 2, we define
copulas and review the classical estimation method. In Section 3, we define the new
robust estimators. In Section 4, we carry out simulation experiments and compare the
performances of classical and robust estimates. Several copula models are selected and
contaminated with varying proportions of contaminations. For each family we provide
three robust alternatives to the classical estimates possessing smaller mean squared
error. Section 5, we show an application of our methods to a real data set. We conclude

the paper in section 6.
2) COPULAS AND CLASSICAL ESTIMATION

To simplify the notation, from now on we set d = 2 even though all inference
methods in the paper are intended and work for dimensions d > 2. Let (X, X;) be a
continuous random variable (rv) in R? with joint distribution function (cdf) F and
margins Fi, [ = 1, 2. Consider the probability integral transformation of X, and X, into
uniformly distributed rvs on [0,1] (denoted Uuniform(0,1)), that is, (U, Uy) = (Fi(X)),
Fx(X,)). The copula C pertaining to F is the joint cdf of (U,, U,). As multivariate
distributions with Uniform(0,1) margins, copulas provide very convenient models for

studying dependence structure with tools that are scale-free.

As an alternative definition, for every (xi,x,) belonging to [-o0,00]* consider the
point in [0,1]* with coordinates (Fi(x;), Fa(x2), F(x1,x2) ). This mapping from [0,1]* to

[0,1] is a 2-dimensional copula. From Sklar's theorem (Sklar, 1959) we know that for



continuous rvs there exists a unique 2-dimensional copula C such that for all (x;,x»)

belonging to [-00,00]%,

Fiaxy,xq) = C{F{x).Falxq)). (1)

To measure monotonic dependence, one may use the copula based Kendall's t
correlation coefficient. Kendall's T does not depend upon the marginal distributions and

is given by:
1 1
TN Xa) = 4/ / Cag ua)dCwy ua) — 1. (2]
J00J0

This invariance property is not shared by the linear correlation coefficient p,
which is actually the Spearman correlation coefficient between X, and X,. To measure

(upper) tail dependence one may use the upper tail dependence coefficient defined as

Ay = lim Apla)= lim PriX| = ﬂ“'{l )| X = F.I'{l all, (3]

|"|—[]| .'|—||I

if this limit exists, and where F;' is the generalized inverse of F;, i.e., Fi'(u) =
sup i [Fifri) = il for = 1, 2. The lower tail dependence coefficient A, is defined in a
similar way. Both the upper and the lower tail dependence coefficients may be
expressed using the pertaining copula:
Oy )

O, u) . .
——  where Cluy, ua) = Pr{l| = u, Us = ua},and Ay, = 11}11 (4
U wll w

A = lim
ull

if these limits exist. The measures Ay belonging to (0,1] (or A, belonging to
(0,17) quantify the amount of extremal dependence within the class of asymptotically
dependent distributions. If Ay = 0 (A, = 0) the two variables X, and X, are said to be
asymptotically independent in the upper (lower) tail.

In the case the true copula belongs to a parametric family 1Ch.0 €0

, estimates
of the parameters may be obtained through the IFM method mentioned in the
Introduction, in the context of independent and identically distributed observations.
There are mainly two versions: the fully parametric and the semiparametric approaches,
detailed in Genest et al. (1993), Shih and Louis (1995), Joe (1999), and Chebrian et al.
(2002). The fully parametric approach relies on the assumption of parametric marginal

distributions. The Uniform(0, 1) data, obtained from the estimated marginals, are used to



maximize the copula density function with respect to 8. The final results are very
sensitive to the right specification of all marginals. In the semiparametric method, in the
first step the standardized data are obtained as the empirical cdfs. In this case, the
estimation procedure suffers from loss of efficiency, see Genest and Rivest (1993), even
though many authors use it to avoid misidentification of the marginal cdfs (Frahm,
Junker, Schmid, 2004).

The behavior of the maximum likelihood estimators of copula parameters were
investigated through simulations by Capéera (1997) in the case of the Gumbel or
logistic model, by Genest (1987) in the case of the Frank family, and by Mendes (2005)
in the case of the Joe-Clayton copula. Genest (1987) investigated the performance of
four estimators considering samples of size 10 to 50, and found that the method of
moments estimator appears to have smaller mean squared error than the maximum
likelihood estimator. Goodness of fit tests for copulas and alternative tools for checking
the quality of fits are discussed in Fermanian (2003), Chen and Fan (2005), among

others.

In what follows we assume the margins have been already properly estimated

and concentrate on fitting copulas robustly.
3) ROBUST ESTIMATES
3.1) The robust weighted maximum likelihood estimates (WMLE)

Let { (ui,ui), (uz,u2), ..., (ur,ur) } represent T independent and identically
distributed (iid) observations of a bivariate copula. We first estimate the covariance
matrix associated to the data using the high breakdown pointﬁafﬁne equivariant MCD
estimator. For a given integer A, the MCD location estimator ' is defined as the mean
of the h points of the T.2 data set for which the determinant of the sample covariance is

minimal.

The MCD covariance estimator is the sample covariance of those / points. By
. ! Ttd+l) (g 2 . . .
taking =l (d =2 , the MCD attains the best possible breakdown point at any

data set in general position. To obtain consistency at the normal model the “raw”
covariance estimate based on the /4 points is usually multiplied by a factor. We note that

no particular distributions (marginals or joint) were assumed for the data. For the cases



d > 2, Davies (1987) showed that at an elliptical distribution, the MCD estimators are

consistent for the true mean and covariance matrix.

At this first step we are not concerned with efficiency. We just want to identify
data points which seem not to follow the (linear) dependence structure defined by the
majority of the points. Points identified as atypical will be given zero weight.
Identification of points is based on the robust distances being the cutoff point the 0.90-
quantile of a chisquare distribution with 1 degree of freedom. To illustrate, Figure 1
shows the scatter plot of data simulated from a 5% contaminated Normal copula* with p
= 0.8, and the ellipsoids of constant probability equal to 0.90 associated with the
covariances matrices estimated by the 0.50 breakdown point MCD and by the classical
MLE.

\
Figure 1: Data simulated from a 5% contaminated Normal copula with p = 0.8
and the ellipsoids of constant probability equal to 0.90 from the robust MCD and the
classical MLE.

-

In the second step we obtain the maximum likelihood estimates ! of copula

parameters 0, using just those data points assigned weights equal to one.

* The contamination scheme is explained in Section 4.



3.2) Minimum distance estimators

The empirical copula function was introduced by Deheuvels (1979), and their
limit properties studied in Deheuvels (1981a, 1981b). Let (x;, x2,), t = 1, ..., T, denote a
sample of 7 iid bivariate observations from the distribution F' with marginals F; and F>,

copula C with density ¢, and let {x; «, x4, be the component wise order statistics of the

sample. Consider the lattice

. £ fa .
L= =0T, i=12!
(r T> ’

The empirical copula ¢ is defined on £ by
. T
{- bl T‘- = Z I|1 Rt ST gt S B I:!-J:I
I'

where I} is the indicator function.
According to Deheuvels (1979, 1981a, 1981b) the following identity
C{Fry{x ). Fraiza)) = Friz, xa)

holds, where Fr is the empirical distribution function of a sample of F, and

Fri(x;) = Fr(x;,+©), Fry(x;) = Fr(+o0,x;) are the marginal empirical distributions. It is

shown that Deheuvels's copula C converges to C as T increases.

The empirical copula density C may be obtained from ¢ (Nelsen, 1999) and is
given by

tot : R T e e ,
R DD MG LI e S ©

Copula measures of goodness of fit may be obtained by minimizing some

distance between the empirical copula C and a fitted parametric copula C =

{C9.0 O] To obtain the MDE estimates we propose minimizing the following



selected empirical copula based goodness of fit statistics. The first discrete norm

defined on £ used is the Kolmogorov statistic K defined by

K= |';'11f]|L-‘II}_?{E'! C'l%l ;"I li'l%l %‘!} _ (7

Deheuvels (1979, 1981a, 1981b) also studied the asymptotic properties of the
Cramér-Von Mises statistic W2, which is the second empirical copula-based statistic

used
-2 ZZ =t a2 St fa o .
.“ = [{F I‘TI T:l (- I"T- T:l] . |~b:|

The third empirical copula-based statistic used, ADk, is based on the Anderson-
Darling statistic (Stephens, 1974) and given in Ané and Kharoubi (2003).

fTIl 13\ (|i¢
ADyi = sk . LT T

. (9
1=y ||: ||'| to ‘I]ll ("!r !I_-.—al

I.
T
1

An¢ and Kharoubi (2003) also considered a more global measure of discrepancy

given by the Integrated Anderson-Darling statistic, [ADak, given by:

i i 2
(G 3) - E(,

TAD Ak _ZZ. Ol &

|
b =1t AL -C

(10

The statistics (9) and (10) emphasize deviations in the tails (the corners of the

unit square) by applying a weight function to (7) and (8). The weight function is

1
AR = . (11}

VICE 20 - C. 5]

The perspective and contours of (11) in the case of a Gumbel copula with 6=2
are shown in column 1 of Figure 2. However, this goal may be better achieved by

multiplying (7) and (8) by the weight function w;:

10



t: 1
fr'|.r.r.—-!.'n[?|- fz:' = (12)

VI +% - GG 3L - Ol )

which emphasizes just the points in the lower left (LL) and the upper right (UR)

t fo Figt fa ] ., =
corners’. The factors |7 ' 7 — (7 7)) and [1 =€

-#1| correspond to the cdf on the "L"
shaped areas located at the LL and the UR quadrants of the unit square. This weight

function is illustrated in column 2 of Figure 2, again for the Gumbel copula.

Note that when using the functions introduced above, points in the LR quadrant,
in the UL quadrant, as well as those points in the middle will have the same influence
on the resulting statistic, and this may be further improved. Accordingly, we propose
the redescending weight functions w; (#,/T, t,/T), which assign more weight to points
located at the LL, the UR, and both corners, respectively.

.' =
R (0 M- [ -
W LT :I 'l..' 1 T T + i T

‘b bz f it g BE
warRlFs #) = ClF F) : (13)

"I -:r -
wo - vr(F. R = e T2 O3 F)

The weight function w.(. , .) represents the cdf of the square close to (1,1) and
it is larger when the point is close to (0,0). The weight function wuz( . , .) represents the
cdf of the square close to corner (0,0) and it is larger when the point is close to (1,1).
The weight function ws,.ur( - , . ), illustrated in column 3 of Figure 2, represents the
sum of the previous cdfs, and possesses the nice property of downweighting just points
located at the LR and UL corners®. These weights are more natural since they all are in

(0,1), whereas those w; are all greater than 1.

Figure 2 shows the three weight functions associated to the LL-UR case. We
observe that the weight function given by (11), in column 1, is too flat in the middle and
gives much more weight to LL when compared to UR. Our first proposed weight
function w, illustrated in column 2, is an improvement, since it enhances almost
equally the two LL and UR corners, and does not emphasize the LR and the UL

corners. The second weight function proposed w», in column 3, is even more promising

> We are estimating positive dependence, as explained in Section 4.
¢ Note this may be considered a smoothed version of the (hard) weight function used by the WMLE. See
also Figure 3.

11



because it gives equal weights to the LL and UR corners and to the middle points, just

downweighting the points in LR and UL corners.

e - (\:‘
=L o ] =
o = W mm_
55 52 ge
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o = .ln 2
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LL-UR Weigths -1- (Gumbel d=2) LL-UR Weigths -2- (Gumbel d=2)

Figure 2: Perspective and contours of the weight functions designed to

introduce robustness in the case

of the Gumbel copula with 6 = 2. Column 1 shows

(Wak), column 2, (w;), and column 3 illustrates (w.).

We now define robust variations of the Kolmogorov and of the Cramér-Von

Mises statistics based on the proposed weight functions, w; and w,. They are

ADy = | foax, 'f?lsz ::':%'%:' ”"'f""”":le'%* (14)
'n'f t: -irf fl_ rf fl_ El =
ADy = I_ﬁl,l.}:{_! CKTI- TL' CKTI-?):' ""i.f.f.—f'lr'le-?j, (15)
T
-|-'f| f!é-. ':|rif| f:e- a v f.l a i
TAD, = E E Ol = — Ol =. = [winn—rpl=. =11, 16G)
=t ||tT )~ Al bne-vrlz, ) o
L) f1 fa f] fa f1 fa
o i 2y =T =419 . o Z419 s
[AD, _le ”E I[Hf 7))~ Ol Il [weee-vnlz, FI (17)
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According to the copula type (possessing or not tail dependence) one may
consider emphasizing just the LL or the UR quadrant. Thus we consider MDE statistics
designed to emphasize just the points in one of the corners, based on variations of
(AD1), (AD2), (IAD1), and (IAD2). They are the Lower Left tail Anderson-Darling
(LLAD1 and LLAD?2), the Upper Right tail Anderson-Darling (URADI1 and URAD?2),
the Lower Left tail Integrated Anderson-Darling (LLIAD1 and LLIAD?2), and the Upper
Right tail Integrated Anderson-Darling (URIADI and URIAD2). They are all based on

weights (w; and w,). For example,

Ok tay kL Eay
LLAD = max f‘T T _‘T T (18]
trtasT [ i vl by
AEERVIL ek et N O]

The other statistics are defined in Appendix 1. Still more weight may be given to
the tails if we consider second degree statistics’. The second degree statistics, denoted as
2LLADI1, 2LLAD2, 2URADI, 2URAD2, 2LLIADI1, 2LLIAD2, 2URIADI1 and
2URIAD?2, use squared weights and are given in Appendix 1.

4) SIMULATIONS

In this section we report the results from simulation experiments carried on to
assess the performance of the proposed estimators. The copula families selected are
those usually chosen in applications. For example, elliptical copulas are used to
represent the dependence structure of many real life situations, such as modeling a set of
financial log-returns (Embrechts et al., 2003). Our selection was also driven by
theoretical considerations, for example, asymptotic results. The Gumbel copula is the
limit copula pertaining to the asymptotic distribution of bivariate componentwise
maxima (Charpentier (2004), Juri and Wiithrich (2002)). Bivariate excesses beyond
high thresholds should be modeled by a Clayton (or Kilmedorf-Sampson) copula
(Charpentier (2004), Juri and Wiithrich (2002)). Almost all copula families
implemented in S-Plus (software used for computations) were considered. The copula

families selected are given in Appendix 2.

Simulations scheme: Data were generated from 12 bivariate parametric copula
families. The sample sizes T were 100, 300 and 500. We considered e-contaminated

models, where a fraction .7 of observations is replaced by atypical ones from a

7 For the sake of completeness, we also experimented the concept of entropy used by Ané and Kharoubi
(2003). However, it did not lead to good solutions, and thus are not reported.

13



contaminating distribution F*. We set € equal to 0%, 3%, and 5%, and F'* as a normal
distribution with very small variance and centered close to some corner of the unit
square®. We had a total of 108 experiments, and the number of repetitions for each
model was 1000.

Our experiments considered just the cases where the rvs U, and U, possess
positive association. For the sake of comparisons, for all copula models we set the true
parameter value 0, such that corresponding Kendall's correlation coefficient would be
equal to 0.50. The data simulated from F'* is expected to act similarly to a point mass
contamination, not following the dependence structure implied by the true copula
parameters. They are supposed to weaken the strength of dependence shared by the
remaining data. Thus our contaminating points are located at the LR or at the UL
corners. For data showing negative association the same copulas could be fitted to the
transformed (U, 1-U,) data.

Let Yarze and 0 represent, respectively, the classical and a robust estimate of

the copula parameter 6,. The notation t may represent either the WMLE or any of the

28 MDE estimates. To assess the performance of the proposed robust estimators i we

use the squared loss function L(0, t ), and compare the Mean Squared Error (MSE).
i

We also compute the percentage reduction in average loss (PRIAL) for

h

compared
with ¥ g, i.e, we compute an estimate of

E[L{6n, fyrg) — L6, 8)
E[L{th, #arr1)]

Lo

Simulations results: The simulations results are given in the tables that follow.
The tables show the MSE and the (PRIAL %) for the 3 best robust estimates and for
each one out of the 108 experiments. The overall winner is in bold face. We analyse in
detail the results for the Clayton, Gumbel, Normal, and Frank copulas, given in Tables

1, 2, 3, and 4. The remaining tables are given in Appendix 3.

Clayton copula. Under 0% of contamination all procedures resulted in very

accurate point estimates. Accuracy and precision increase with T. The IAD shows

% A less subjective procedure for defining the outlying values could have been used by applying the
concept of robust distances of Rousseeuw and van Zomeren (1990).

14



excellent results very close of the winner, the MLE. Under contaminated models the
MLE never won. The WMLE was clearly superior with point estimates very close to the

true value.

Tahle 1: Resulta for e-coptaminated Claytond{fy = 2 Ap, = 0.71, Ay = 0.00) copuda models and sample sizes T
100, 300, 500, For the 3 best robuat estitrates, the first vow showe the mearn and the second row the MEEFPRIALE)

Jrom PO simelotions. Winner in bold face. First panel: e = 005, Second: ¢ = 308, Thmd: ¢ = 505,

e — 0.0%
MLE WMLE TAD 1AD LLADl  LLIADL 2LLIADI
T — 100
.00 107 | 06 1,70 1.03
D.13(07  0AT(— 180 0.8 —40) 018 —30)  0.07(—a4)
T — 300
1.04 203 200 .00 1.0%
0.04(0)  O5(—255) 006 —37) 00629 0. 06 — 33
T — 500
L0 2,06 2.0 1,00 .00
0.02(0)  010(—325)  0.04(—50) 0.04(—54)  0.04{—355)
£ = A.0%
MLE  WMLE Wwe AD2 1AD2  LLIAD? URIAD2
T — 100
1.14 2.0 .48 140 146
O77(0)  0AT(R2)  DARS0)  0.30(40) 0.90(50)
T — 300
117 2,05 150 140 151
Q710 D2(R3) 0.20(50) 0.30( 50 0.20(50)

15



T = 500

1.17 2.07 1.51 1.50 1.52
0.69(0)  0.10{8G) 0.26(62) 0.27(61) 0.26(62)
e=50%
MLE WMLE W TAD2  URIADL URIAD2
T =100
0.77 1.97 1.21 1.19 1.22
1.53(0)  0.87(76) 0.69(55) 0.72(53) 0.70(54)
T = 300
0.74 2.06 1.21 1.20 1.22
1.46(0)  0.14(891) 0.65(58) 0.67(55) 0.64(56)
T = 500
0.80 2.09 1.22 1.2] 1.23
1.44(0)  0.09{(894) 0.62(57) 0.64(56) 0.61(57)

Gumbel copula. Under no contamination, the MLE and the MDE statistics

provided accurate point estimates. The WMLE is not a good choice for the Gumbel

copula, since it overestimates the parameter and this is true for contaminated and non

contaminated data. The LLIAD?2 is the winner for contaminated models, presenting

superior performance with respect to bias and variance.

16



']‘(’I]J]t'\g:

Results for e-contaminated Gumbel(fy = 2, Ap, = 0.00, Ayr = 0.59) copula models and sample sizes T =

100, 300, 500, For the 3 best robust estimates, the first row shows the mean and the second row the MSE(PRIAL%)
from 1000 simulations. Winner in bold face. First ponel: € = 0.0%; Second: € = 3.0%; Third: e = 5.0%.

e=00%
MLE WMLE TAD TAD1 URIAD
T =100
2.02 248 2.00 1.96 1.96
0.03(0) 0.38(-1258) 0.05{-80) 0.05(-67) 0.05{-73)
T = 300
2.00 2.44 2.00 1.98 1.98
0.01{0)  0.24{-2703) 0.0L(—66) 0.0L(-57) 0.01L(—66)
T = 500
2.00 2,44 2.00 1.99 1.99
0.01{0}) 0.23(-3973) 0.01{-67) 0.01{-55) 0.01({-61)
e =3.0%
MLE WMLE W AD2 TAD2 LLTAD?
T = 100
1.62 2,46 1.73 1.73 — 1.73
0.15(0)  0.36(-134) 0.10(34) 0.10(35) — 0.10(33)
T =300
1.62 2.41 1.75 — 1.74 1.75
0.15(0)  0.21(-42)  0.07(51) — 0.07(50)  0.07(52)
T = 500
1.62 2.41 1.75 — 1.74 1.75
0.15(0)  0.19( 31)  0.07(53) — 0.07(52)  0.07(54)
e =509
MLE WMLE w2 1AD32 LLIAD2
T =100
1.44 2.44 1.50 1.58 1.50
0.32(0) 0.32(-2) 019(41) 0.19(40) 0.19(41)
T = 300
1.44 2.38 1.60 1.59 1.60
0.32(0)  0.19(41)  017(47) 0.17(46) 0.16(48)
T = 500
1.44 2.41 1.61 1.60 1.61
0.31(0)  0.19(39) 016(50) 0.16(49) 0.15(51)

Normal copula. As expected, since it is an elliptical copula, the MLE and the

WMLE were the best estimates for models with and without contaminations. We note

though the very good performance of the LLIAD?2.
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Tahle 3: Results for e-contaminated Normal({fy = 0.71, A, = 0.0, Ay = 0.0) copula models and sample sizes
T = 100, 300, 500. For the 3 best robust estimates, the first row shows the mean and second row the MSE{PRIALK)
from 1000 simulations. Winner in bold face. First panel: € = 0.0%; Second: € = 3.0%; Third: e = 5.0%.

e = 0.0%
MLE WMLE TAD 1AD1 LLIAD] URIADL
T =100
0.71 0.77 0.70 0.69 0.69 —
0.00(0)  0.01( 302) 000 84) 0.00( 109) 0.00( 113) —
T = 300
0.71 0.77 0.70 0.70 — 0.70
GO0 0) 0.01{—981) 0.00{ —100)  0.00{—100) — 0.00{ —106)
T = 500
0.71 0.78 0.70 0.70 0.70 —
0.00{0)  0.01(—-1457)  0.00{—81) 0.00(—84)  0.00{ —100) —
e =3.0%
MLE WMLE Koln w? AD2 1AD2 LLIAD2
T = 100
0.42 0.77 0.61 0.61 0.61 — —
0.08(0)  0.01(92) 0.01(82) 0.01(82) 0.01(83) — —
T = 300
0.43 0.77 — 0.62 — 0.62 0.62
0.08(0)  0.00{94) — 0.01(88) — 0.01(88) 0.01(88)
T = 500
0.43 0.77 — 0.62 — 0.62 0.62
0.08(0)  0.01({93) — 0.01(59) — 0.01(89)  0.01(89)
e =5.0%
MLE WMLE w2 TAD2 LLTAD2
T =100
0.28 0.77 0.54 0.54 0.54
0.19(0)  0.01(96) 0.03(83) 0.03(82) 0.03(82)
T = 300
0.28 0.77 0.56 0.55 0.55
0.18(0)  0.01(97) 0.02(87) 0.02(86) 0.02(86)
T = 500
0.20 0.77 0.56 0.55 0.56

0.18(0)  0.00(97) 0.02(87) 0.02(57) 0.02(87)

Frank copula. Under no contamination, MLE is the best estimator. For
contaminated samples, even though the MLE appears as the winner for 5% and T = 300,

500, W2 appears as the winner 3 times and may be considered almost as good.
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']'u]i]t' 4q:

Results for e-confaminated Frank(fy =
T = 100,300,500,

5.74. A = 0.00, Ayy = 0.00) copuln models and sample sizes
Faor the 3 best robust estimates, the first row shows the mean and the second row fhe

MSE{PRIALZ ) from 1000 simulations., Winner in bold face. First panel: € = 0.0%; Second: € = 3.0%; Third:

e =5.0%.
e=0.0%
MLE WMLE w2 TAD TAD1 TAD2
T =100
5.78 T.61 5.506 5.63 5.49 —
0.62(0)  6.46(—-941) 0.78(-26) 0.78(-25) 0.76(-23) —
T = 300
5.74 735 — 5.70 5.65 5.67
02000} 3.65(-1728) — 0.25(-25)  024(-21) 0.25(-25)
T = 500
5.76 7.49 — 5.74 5.71 5.72
0.11{0)  3.60{-3074) — 0.15(-31) 0140237  0.15(-30)
e=3.0%
MLE WMLE wH AD2 1AD2 LLTAD2 URIAD2
T = 100
4.43 7.49 4.46 4.49 4.43 — —
208(0)  B.56(-167) 210(—1) 2.07(0) 2.16(-4) — —
T = 300
4.42 7.39 4.55 — 4.54 4.55 —
1.85(0)  3.61(—95) 1.55(16) — 1.56(16) 1.56(16) —_
T = 500
4.43 7.38 4.58 — 4.58 — 4.58
1.79(0)  3.24(-81) 1.43(20) — 1.43(20) — 1.44(19)
e=5.0%
MLE WMLE W 1AD2 LLIAD2 URIAD?2
T =100
3.62 T.44 3.75 3.72 3.73 —
478(0)  5.72(-20) 4.30(10)  441(8) 4.40(8) —
T =300
3.67 7.35 3.88 3.87 — 3.87
4.37(0)  3.42{22) 3.55(19)  3.60(18) — 3.61(18)
T = 500
3.66 7.35 3.01 3.00 3.90 —
4.36(0)  3.09{29) 3.42(22)  3.45(21)  3.45(21) —
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Table 5: Summary of results from simulations. Winner and runner up ender no contaminations,
and best frobust) option af confaminated models,

Copula Copula fype AL Ap No condamination  Conbaminalion
Clayton Archimedean W MLELLIADDLY WALE
Crumbel Archimedean and EV W MLE{TA D) LLIADZ
Mormal Archimedean and Elliptical MLE{IAD) WAMLE
Frank Archimedean MLE{TADL) W2
Galambes EV W MLE{IA D) LLIAD2
Joe Archimedean W MLE{URIADL}) LLIA T2
Husler-Reiss Archimedean W MLE{TA D) LLIADZ
Tawn Archimedean W [A DM LE) LLIADZ
BEA4 Archimax W W LLIAD (M LE) WHLE
BES EV W IADTA LD LLIA 2
BBEG Archimedean W IA LA LLIA T2
BET Archimedean W W MLE{URIADL) RIADZ

Table S presents a summary of results for all copula models. The table gives the
winner and runner up under no contaminations, and the best (robust) option at
contaminated models. Results are usually not dependent on the sample size. As
expected, under no-contamination the best estimator is the MLE. Under contaminations,
the best estimator for the majority of copula families was the LLIAD2. For the BB7
copula, even though the 2URIAD2 and the WMLE were, respectively, the winners at
3% and 5% contamination, the URIAD?2 is almost as good for all contaminated models
and was chosen as the overall winner. For all copulas possessing just upper tail
dependence the LLIAD2 was the winner.

5) APPLICATION TO REAL DATA

The application of the methods shown in this article was done in a data set
provided by Insurance Services Office, Inc. This data set consists of 1,500 general
insurance claims. One of the variables is the loss of each claim, or the amount of each of
the claims (LOSS) and the other one represents the allocated administrative expense to
pay the claim (ALAE). In the following table, it can be observed the statistical summary
of each variable:
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Table 6: Summary Stalistics of the variables allocated administrative erpense (ALAE) and Losses (LOSS),

Summary Statistics of ALAE and LOSS

ALAE LOSS
Number 1, 500 1, HiH)
Minimmm L} 15
First Quartile 4, O 2,333
Median 12,000 5471
Third Quartile 35,000 12,572
Maximim 2,173,595 501,863
Mean 41,208 12,588
St. Deviation 02,745 28,146
Skewness 0.16 0.25
Kurtosis 145.20 127.70
Pearson correlation (.40
Spearman correlation 1. 46
Kendall's tan .33

Based in these association measures it is possible to infer a high positive
dependence. From the next plot, we can observe the dependence relationship between
the two variables LOSS and ALAE.
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Figure 3 - Scatter plot in the logarithm scale

In order to fit the marginals, it was used the following procedure: (i) definition
of a threshold representing the 95% empirical quantile of each variable LOSS and
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ALAE, (ii) fit of a GPD distribution using l-moments estimation for the exceedances

above the threshold (iii) empirical distribution for the rest of the data.

This procedure was used because the empirical distribution usually don't show a
good fit for the distribution tails. When there are several data points, the empirical
distribution can provide a good fit for the tails. It is possible to observe the histograms
of the exceedances above the threshold for the variable LOSS and the exceedances
above the threshold for the variable ALAE.
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Figure 4 - Histogram: LOSS excedances above the threshold - 95%,
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Fizure 5 - Histogram: ALAE excedances above the threshold - 95%,

In the next table, we show the estimates marginals parameters with their

respective standard errors, evaluated with the bootstrap algorithm.
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Table T: Estimates af the marginals parameters, (GPD fiited with the l-moments estimabion procedure,

The standard error was obloined with boolsbap algovithms,

Parameter  Estimate  Standard Error

LOSS &) 1700, 05,0 30,051.72
3 (1.1638 0.1s8

ALAE ] 26.394.12 0,642,854
3 (1.4393 0.09

After the marginals fitting, we modeled the copulas. In the next plot, we can

observe the upper tail dependence between the variables LOSS and ALAE.
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Figure 6 - Scatter plot of the percentiles - ALAE versus LOSS

Once the data presented a clearly upper tail dependence, it was fitted copulas
with this characteristic. Then we fitted the following copulas: (i) AKS (Associated
Kimeldorf Sampson), (ii) Gumbel, (iii) Galambos, (iv) Joe, (v) Husler Reiss, (vi) BB5 e

(vil) BB6. The chosen estimates for each copula were the winners obtained in the last

section of this paper. The results were:
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Tahle 8: Fstimates 0 af the poramelers of the fitled copulas, chi-square goodness of fit estimate, L1 and

L2 worms values.

Copuln MLE WM LE W [EYE] Al LLIAD LLIAD2 LRIAIN
AKE 0.61[ 148, 18) OLET[ 140, 45) 0.81(133.42)
025 1.02e-3 0.20 9. h8e-d4 1.25 85904
Cumbsal L44[ 123, 64) 1.446(129.54)
024 83.810-4 0.24 3.Ele-4
Calambas 0.7 12ET.Ta) 0.7%

024 8.750-4 0,24 8.7he-4
Joa 163 145.99)

H-R 1.10[ 129.581)
024 5.8%0-4

BBz

EBo

Table 9: Estimates Ao af the upper tail dependence cocfficients of the fitked copulas and their respective
standard deviations obtained by bootstrap algorithms.

WMLE WA TAD [EY LLIADI LLIAD2 [N EYH

-|.:}i|:-|_-|||:: D4300.019)

AKS
Cum bzl
Crlambos
Jaz
H-R
BREn
BE&

.39(0.021)
101]
1011 a.61[0.001%
101]
101]
s [0.a01]

It can be noted that the best copula fitted to the variables LOSS and ALAE,
using the chi-square goodness of fit criteria, was the Galambos copula, with the
parameter estimated by maximum likelihood. The estimators IADI and LLIAD2
provided very similar results in comparison to the MLE. For the Gumbel fit, the
estimators IAD1 and LLIAD2 also provided similar results in comparison to the MLE
method. On the other hand, for the AKS copula, the robust estimators LLIAD1 and
WMLE provided better results than the MLE method.

6) CONCLUSIONS

In this paper we proposed alternative robust estimators for copulas, motivated by
the fact that even high quality data usually possess a small proportion of contaminating
points. The first new estimator is based on the robust Minimum Covariance
Determinant estimator (MCD). This is a two-step procedure where the weights returned
by the MCD are used to identify outlying data points. The maximum likelihood
estimates based on selected data are computed in the second step. We note that extreme
atypical points are of great importance, but they require specific models, for example,
models based on extreme value theory. The second proposal is based on the
minimization of selected goodness of fit statistics.
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Simulation experiments indicated that the proposed estimators perform well
under e-Contaminated copula models. For any other copula family not considered here,
the simulations may be easily implemented and run relatively fast. Estimators sample
distributions may be assessed by simulations. For those already experimented we found
a well behaved distribution for small sample sizes. Tables may be constructed for
testing hypothesis. We are not addressing the important problem Which one is the right
copula?, but we are indeed providing guidance for estimating several copula models. Of
course conclusion may change with the MCD specification of breakdown point and
cutoff point for outliers identification. A sensitive analysis may be carried on to assess

the robustness of results with respect to these choices.

7) APPENDIX

7.1) Appendix 1: MDE statistics

The definitions of the other MDE statistics designed to emphasize just the points
in one of the corners, based on variations of AD1, AD2, IAD1, and IAD2 are given
here. They are the Lower Left tail Anderson-Darling LLAD1 and LLAD2, the Upper
Right tail Anderson-Darling URAD1 and URAD?2, the Lower Left tail Integrated
Anderson-Darling LLIAD1 and LLIAD2, and the Upper Right tail Integrated Anderson-
Darling URIAD1 and URIAD2.
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The second degree statistics, 2LLADI1, 2LLAD2, 2URADI,

2LLIADI1, 2LLIAD2, 2URIAD1 and 2URIAD?2, and are defined as:
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7.2) Appendix 2: Copula families

Elliptical Copulas: The class of elliptical distributions provides useful examples
of multivariate distributions because they share many of the tractable properties of the
multivariate normal distribution. Elliptical copulas are simply the copulas pertaining to

elliptical distributions. in this paper, we used the Normal copula.

Normal Copula: The Gaussian or Normal copula is the copula pertaining to the

multivariate normal distribution. It is given by

o 5% — dpst 4+ t*
C.IJ W arrma I:'H u :I = [ [ D[__ ! ; jd-’*'-df I::J:E_]
‘ Ir(1 — Irf]ll /2 2(1 - p7)

where p is simply the linear correlation coefficient between the two random
variables.

Clayton copula: The symmetric Clayton or Kimeldorf-Sampson copula was
obtained by Juri and Wiithrich (2002) as the copula characterizing the limiting
dependence structure in the upper-tails of two random variables assuming their
dependence structure is Archimedean. It was also obtained by Frees and Valdez (1998)

as the copula pertaining to the bivariate Pareto distribution. It is given by

Chm () = (L [0 = )7 4 (o= — 1)1/ =1
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Associated to Kimeldorf and Sampson copula: Copula used for the real data
application. It was also obtained by Frees and Valdez (1998) as the copula pertaining to

the bivariate Pareto distribution. This is a symmetric copula with the form:
sttt =u+o— 14+ [(1—u) V41— )71 —1]7° (a7

Gumbel copula: Well known Gumbel copula (Gumbel, 1960), an Extreme Value

copula as well as an Archimedean copula class, has the following form:

Cf (w, 1) = exp {— (i + ") U'ﬁ} : (28]

The coefficient of tail dependence is given by Ay = 2 - 2'° and corresponds to

the symmetric logistic model (see Ghoudi, Khoudraji and Rivest, 1998).

Galambos copula: Galambos copula (Galambos, 1975) is an Extreme Value

copula:

Ol vy = wvexp([(— logw) ™ + (— log o)~ 71 (30)

for & = 0. Tt has upper tail dependence given by Ay = 2 — 21/8,

Joe copula: The Joe copula (Joe, 1993) is an Archimedean copula and has the
form

Choeltn ) =1 [(1—u) + (1 —v)* — {1 —w)*(1— vy’ (40)

where & = 1. The upper tail (]l:']‘.ll'llll"lll_'(' cocthoient 1s given |:_‘\' f'\y 2 — ol/d,

Husler Reiss copula: The Husler and Reiss copula (Husler and Reiss, 1989) is

an extreme value copula given by
R N 7 S S 7.
8 gl 1) = L":\:pl:—ﬂfI’[—i + 59 log{ —)] — e"IJ[E +3? log(—=1]) {41}
[i i (A

where —|H_:; .o —]H;_';."_ 0 o= and & iz the edl of a standard Normal, The npper tail

dependence coeflicient is given by Ay = 2 — 20 L/
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Frank copula: The Frank copula (Frank, 1979) is an Archimedean copula with

the following distribution function:

n—(1—e?u1 .--‘""j\l

&

Cf, () = =6 Mog(

—
=
[}

T

where & = 0 and i 1 —« "'i. For the Frank n'l:|ll1|'r1: /IIII..I'_, z"'w L),

Tawn copula: The Tawn copula (Tawn, 1988, 1997) is an asymmetric extreme
value copula, which is an extension of the Gumbel copula. It has the following

dependence function

Alfy =13+ {8 —a)f+ [a"t" + 471 — )"V (43)

where () =i, H < 1 and = 1.

BB4 copula: Capéraa et al. (2000) combined EV and Archimedean copula
classes into a single class called Archimax copulas. The Archimax copulas are copulas

which can be represented in the following form:

r_'.lI:.'.':I

Clu.v) = & [(o(u) + 6(u))A( (44)

_]
i) + gfe)”’

where A(t) is a valid dependence function and ¢ a valid Archimedean generator.
Archimax copulas reduce to Archimedean copulas for A(t) = 1 and to EV copulas for
o(t) = -log(t). Capéraa et al (2000) proved that it is a valid copula for any combination
of valid function ¢(t) and A(t). BB4 copula is a example of this class of copula with:

oty =+ —1and A(t) = 1—(t (1 -5 018 e e . .
/ - \ : . The distribution function is given by:

Oty (me) = (7w =1 [0 — )7 4 (70— 1))V (45)

where 0 > 0, 8 > 0. The upper tail dependence coefficient is given by Ay = 2.

BB5 copula: BB5 copula (Joe, 1997), an EV copula, is a two-parameter

extension of the Gumbel copula and has the form of:
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f‘f,‘fﬁ[ﬂ. v) = expf—[i? + 0% — (@ % 4 o~ 0 —LE L (46)

where v = —logu, v = —log e, 4 =0 and ¢ = 1.

BB6 copula: BB6 copula (Joe, 1997), an Archimedean copula, has the form of:

Chgalw ) =1— (1 — exp(—[(—log(1 — (1 — w)®))* + (~log(1 — (1 — v)")F V)% (47)

where & = 1 and & = 1.
BB7 copula: BB7 copula (Joe, 1997), an Archimedean copula, has the form of:

Chmltv) =1 — (1= [(1— (1= a)")™" + (1 — (1 —p)®)~" — 1= 1/51e (48)

where # = 1 and & = (0,

Empirical copula: 1f u(1) <u(2) < ... <u(n) and v(1) < v(2) < ... < v(n) are the
order statistics of the univariate samples, the empirical copula Eemp is defined at the

point (i/n, j/n) by the formula:

iod
non

. s
f-_: ||'|_|.l|: J = ; Z 1||g|_.{_:u|:_|.r'|_-i:r.'-:_.ijj (49_]
k=1

fori, i=1.2, .. n

7.3) Appendix 3: Tables
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Tahle 10:

and for sample sizes T

and the second row the MSE(PRIALS) from 1000 simulations. Winner in bold face. First panel: «

Resulta for the e-confaminaled Galambos(ih

1.258, AL

0.00, Au

0.68] r-r.-||;.'.'|'r| mrodels

100, 300, 500, For the three best wobust estimates, the first row shows the mean

.05,

Sevond panel: ¢ = 3.05. Third panel: ¢ = 505,
e = (0%
MLE WMLE FTAD FAM FAD?2 URIADL
T =100
1.29 1.71 1.28 1.24 1.24
003707 0311128y 0.05(—85)  0.05(—86) 0.06]—85)
T =300
1.29 1.Ga 1.27 1.98 1.27
0.01{07  0L18{—2048) 0.0Lf—69)  0.02(-827  0.01{-75)
T = 500
1.29 1.66 1.28 1.27 1.27
0.01(0)  0.17(-3221) 0.01(-85) 0.01(—73) 0.01(—80)
e = 3.0%
MLE WMLE Wt TAD2 LLTAD1T LLTAD?
T =100
(.39 168 1.02 1.01 1.03
070y 027 =564y 0.00(44) 0100423 0.09{45)
T =300
.88 1.64 1.02 1.02 1.03
0.7 0.17(1) 0.08(54)  0.05(54) 0.08(55)
e = 5.0%
MLE WMLE W TAD?2 LILTAD2
T =100
(.66 156G (.87 (.56 (L8T
0.20(0)  0.26(33)  0.19(51) 0.20(50) 0.19(51)
T =300
.67 1.64 .85 .58 .50
03300y 0.16(57)  017(5G)  0.17(E5) D.16(5T)
T =500
(.67 1.63 (.88 (.58 (.50
03800y 0.15(62)  016(57) 0.17(EG) 01G6{58)
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Tahle 11:

aample sizes T

the second row the MSEPRIALR) from 1000 simulationas,

100, 300, 500,

Results for the e-contaminaled Joe(in

2086, AL = 0,00, Ay

Winner in bold face. Fivsl panel: «

0.73) copula models and for

For the three best robust esbimales, the firsl vow shows the mean ond

0.0

Second parel: £ = 305, Third panel: ¢ = 505,
£ = .05
MLE WMLE TAM LTRIAIM L'RIFAD2 ATRIAD2
T =100
28R 3.60 2706 270 276
00800y 0.85(-014) D18 —-114) 01X —-127) 0.19(—-123)
T =300
286 3.52 283 2,83 284
0.03(0)  0.54(—1044) 0.05(—108)  0.05(-99)  0.06(—113)
T =500
285 348 2RI 2R3 253
0.02(0)  0.45(—2702)  0.04(-123)  0.03(-112) f1.04{—127)
e = 4.0
MLE WMLE we AD2 TAD?  LLTAD1 LLIAD?
T =1
208 3.55 2.34 2.33 243
0.62(0) 078(—25) 0.36(43)  0.37(41)  0.37(41)
T = 300
208 347 237 235 238
naL(ny  048(20) 0.27{56) [.28{55) 0.27T(56)
T =500
2,09 3.45 238 2.38 2,40
0.60(0)  0.41(31)  0.24(50) 0.25(58)  0.24(61)
£ = G6.0%
MLE WMLFE W= LLiAmM LLTAD?
T =100
Th .50 2.09 2.09 211
1.23(0)  0.75(30) 0.65(47) 0.66(48) 0.63(49)
T =300
1.7 3.45 212 a1 213
LO1(0)  0.45(63) 0.57(53)  0.53(52)  0.55(54)
T =500
1.76 344 211 211 213
1.21(07  0.40(67) 056(53) 057(53) 0.54(55)
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Tabhle 12: Results for e c-contaminaied Husler

els and for sample sizes T
and the second row the MSE{PRIALR) from 1000 simulations, Winrer in bold face. First panel:

[k"'ih“'\-l:ul:l

180 AL = 0,00, Ay = 058 copula mod-

100, 300, 500, For the three best robust estimates, the first vow shows e mean

.05

Second panel; e = 305, Third panel; ¢ = 50%,
e = (.0%
MLE WMLE TAD FAmM LTRTAD]
T =100
1.82 221 120 1.75 1.74
00300 0.310—889) 007 -122)  0.06(-107) 0.07-112)
T =300
1.81 R | 1.81 1.70 1.70
0.01{0)  0.21{—-19047 002 —85) 0.02( =79 0.02{—-01)
T =500
1.81 219 120 1.70 1.70
0.O01(0)  DA8(—3047)  0.01(-121) 001106 0.01{-113)
e =3.0%
MLE WMLE W AD? FTAD2 LETAD?
T =100
1.05 2.2 1.49 1.50 1.49
BRI 0.20040)  0.14(7E)  0.14(76) 0.14(76)
T =300
1.05 2,16 1.49 1.40 1.50
ER(0) 07Ty 0.11(81) 0.11(81)  0.11082)
T =600
1.05 217 1.50 1.50 1.51
0.57(0)  0.16(72)  0.10(53) 0.10(83)  0.09(83)
£ = L.0%
MLE WMLE W= TADY  LLETADZ
=100
.69 217 1.32 1.30 1.32
1.33(0)  0.25(R1) 0.26(30) 0.27(70)  0.26(30)
T =3m
.75 213 1.32 1.32 1.33
LIG(OY  DL15(88)  0.24(70)  0.24(79)  (0.24(80)
T =3
[1.80 215 1.33 1.33 1.34
L03(0)  0.14(R6)  0.23(78)  0.23(78)  0.22(70)
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Tahble 13:

sample sizes T

Results for the c-conbaminaled Tow n(fh

100, 300, 500,

2.AL =000, A0

For the three best robust estimales, the first row shows the memn and

0.5%) copula models and for

the second row the MSE{PRIALSE) from 1000 simulations. Winner in bold face. First panel: € = 005,
Second panel: ¢ = 3.0%. Third panel: ¢ = 505,
e = 0.0%
MLE WMLE W TAD ram TAD2 LFRIAD
T =100
217 a.m 1.89 1.06 1.95
013007 60240 —48212) 0.05(61)  0.05(63) 0.05(52)
T =300
207 2.45 1.50 2.00 1.494
0.02(0) 0.26{—-1055) 001035 0.02(207  0.02{31)
T =500
2004 244 .00 1.09 1.99
0.01(0y 0.22(—2137) L0170y DL0L—2y 0014
= 3.0
MLE WMLE K W AD2 TAD2 LLTADN LLTAD?2
T = 100
247 a3 L7 1.7a T
040000 32095 —82204)  0.12(70)y  0.12(70)  0.12{70)
T =300
2.23 241 1.74 1.74 1.75
0.13(0) 0.21{ —58) 00745 0.05(44)  0.07{46)
T = &0
23 241 1.74 1.75 1.75
01200y (.19 —&7) 0077407 0.07(39) 0.07(41)
£ = h0%
MLE WMLE W TAD?2 LLTAD?
T =100
254 2 RE 1.561 1.60 1.61
052007 24.76(—40681) 0190647 0.19(62)  0.19(63)
T =300
244 244 1.61 1.60 161
0.23(0) 1.75( —G44) 01631y 017307 0.16(31)
T = 500
242 241 1.561 1.60 1.61
0.20¢0) 0.19¢5) 0.16(21)  0.16020)  0.16(23)
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Tahle 14: Results for the e-confaminated BE4(d = 0,

aample sizes T

100, 300, 500,

33, AL = 029, Ay

0.60) copula models and for

Far the three best robust estimates, the first row shows the mean and

the second row bhe MSE{PRIALS ) from 1000 simulations. Winrer in bold face. First panel: ¢ = D05,
Second panel: ¢ = 305, Third panel: ¢ = 50%.
e = [.0%
MLE WMLE TAD LIAD1 LILTAD1 2LLAD1 2LLIAD]
T =100
.35 (.40 .30 .24 .25
0.05(0)  0.06(—42) 0.04(12) 0.03(29)  0.04(8)
T =300
0.35 (.40 .30 .24 .25
050y 006]—42) 0.04012)  0.03(29) 0.04(8)
T =500
.34 (.38 .23 .32 n.a1
00L(0)  0.01(-55)  0.01(20) 0.01(14) 0.01(31)
e=230%
MLE WMLE IAD LLAD? LLTAD2 ALLAD1  2LEADY2  2LLTADI
T =100
.19 .2s n11 ni2 n.12
0.05(0)  0.06(—20) 0.06(—30)  0.06(—30) 0.06(—27)
T =300
niv 0.ar n.1n 0.14 0.1
00300 0.02(37) .06 —80)  0.06[—71) 0.06] —74)
T =500
niv 0.ar .10 n.1a nin
0.03(0)  0.01{56) 0.06(—100)  0.04(—55) 0.06(—01)
e =hH0%
MLE WMLE fTAD ALLADY1  2LLIAD1  2LLTAD2
T =100
n.1s .39 .04 .06 .04
0.06(0) 0.07(—16) 0.09(—46)  0.08(—37) 0.00(—48)
T =230
.15 .28 0.0z .11 n.o2
005(0)  0.02(54) 0.00(—105) 0.07(—45) 0.00(—107)
T =500
.14 .36 n.nz2 niz n.nz2
0.04(0)  0.01(71) 0.00(—119) 0.06(—39) 0.00(—120)
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Tahle 15: Reswlts for the

sample sizea T

100, 300, 500,

-confaminated BES (g

1,17, AL = 0,00, Ay

0.68) copula models and for

Fov the three best robust eslimates, the first row shows the mean and

the second vow the MSEPRIALS) from 1000 simulations. Winner in bold face. Fivst panel: ¢ = 005,
Second panel; £ = 3.0%. Third panel: © = 5.0%,
e = (0%
MLE WMLE TAD TAD1 TAD?  LITAD1 URIAIM
T =100
1.51 1.40 1.14 1.15 1.14
02600y 0.22(185) 0.01¢95)  0.01(95) .01 95)
T =300
1.50 1.44 1.16 1.15 1.15
0.25(0y  0.11(58)  0.01798)  O.01(9%) 0LO0L¢ 98
T =500
1.47 1.44 1.16 1.16 1.16
0.22(0)  0.10(57) 0.00(08)  0.00(98) 0.00(98)
e = A.0%
MLE WMLE K wH AD2 LLADY LLTAD? 2LLIAD2
T =100
1.51 1.47 1.05 1.05 1.06
021(0)  0.20(7)  0.02(01) 0.02(01)  0.02(01)
T =300
1.62 1.44 1.03 1.04 1.03
0.21(0)  0.11(50) 0.02(01) 0.02(81)  0.02(51)
T =500
1.62 1.42 1.02 1.03 1.03
0.21(0)  0.08(61) 00.02(00) 0.02(90)  0.02(00)
e = 00%
MLE WMLE W LLIAD? 2LLAD? 2URAD1 2LLTAD32
T =100
1.45 1.4%8 1.01 1.01 1.01
O09¢0y - 0.210-142 002071y 0.03(71) 0.03(71)
T =300
1.44 1.44 1.00 1.00 1.00
0OR(0)  0.10(-27)  0.03(66) 0.03(66) 0.03(56)
T =5
1.44 1.42 1.00 1.00 .00
(LR 0) 0.08(—-1) 0037667 .03{568) 0.03(66)
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Table 16: Results for the c-contaminated BEG( o

ammple sizes T

100, 300, 500,

286, AL

0,00, A

0.73) copula models ard for

For the three best robust estimales, the firsl row shows the mean and

the second row the MSE(PRIALS) from 100 simulations. Winner in bold face. Fivst panel: ¢ = 005,
Second panel: ¢ = 3.0%. Third panel: ¢ = 505,
e = 0.0%
MLE WMLE wH TAD A URIAD1 URIAD?2
T =100
1.26 1.47 268 2.69 368
955(0)  1.07(23)  0.10(06) 0.10(96) 0.10{96)
T =300
1.25 1.42 275 2.78 275
2570y 2.09010) 003058 003099 0.0300)
T =500
1.25 1.40 257 v a7
258(0)  2.13(18) 0.0200)  0.02(99)  0.02(09)
= 3.0%
MLE WMLE wH TADR?  LLITAIM LLIAD?
T =100
1.21 140 2.36 235 2306
273(0)  2.01(26) 0.34(87) 0.35(87)  0.35(87)
T =300
1.21 1.40 2.39 288 2.40
2TA0) 0 212022y 0.25(91)  0.26(91) 0.25(91)
T =500
1.20 1.38 2.38 238 2.40
D7A(0) 215(21)  0.24{01) 025(01)  0.23(91)
e = 5.0
MLE WMLE wH LLTAD1 LLIAD?2
T =100
1.18 1.44 210 210 213
D80(0)  2.03(28) 0.62(78) 06377 0.61(TR)
T =300
1.18 1.39 211 211 213
DSL(0)  2.15(23)  0.57(S0)  0.50(79)  0.56(R0)
T = 500
1.18 1.38 213 211 2,13
DS0(0)  2.18(22)  0.56(80)  0.57(80)  0.54(81)
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Tahle 17:

sample sizes T

o]

Resulls for the e-contaminated BE T

00, 300, 500, For the three besl rabust

the secomd row Hhe MSE(PRIALR) from 100N simulations.

AL

050, Ay
eabimales, the first row shows the mesn and

0.0,

0.5 sopula models and for

Winner in bold face. Fivst panel: «

Second panel: ¢ = 1,05, Third panel: ¢ = 505,
£ = (L0%
MLE WMLE TAM URIADT  AWTRAD2 2URIAD2
T =100
a2 252 1.62 1.04 1.96
00770y 062 —815) 0.12(—81y 012(-81) 0.13(-84)
T =300
211 248 1.90 1.99 1.949
002000 0.20(—1573) 004094y 0.04(-90y  0.04{-96)
T = 4500
200 249 1.98 1.98 1.98
0.01(0)  0.20(—2182y  0.03(—-102) 0020 —26) (.02 —8T)
e = 3.0%
MLE WMLE JAD? URAD2  URIAD2 2URIAD2
T =100
1.62 2.52 1.58 1.50 1.50
L1800} 0.69(—286) 0.24(—-37) 0.23(—31) 0.22{-2§)
T =300
1.59 2.40 1.58 L.E0 1.51
01700} 0.34(-05)  0.200-16) 0.18(—4) 0.18(-2)
T =500
1.59 247 1.549 161 161
0.17(0) 0.27(—53) 0.19(—8) 0.17(4) 016(7)
£ = 0.0%
MLE WMLE W URIAD1T URIAD2  2TRAD2 2UTRIAD2
T =100
1.43 2.43 1.35 1.32 1.35
0.3400)  0.417-20) 0.47(—37)  0.50{—46)  0.46{—38)
T = 300
1.43 2.42 1.34 1.37 1.8
0.33(0) 0,260 22 0.45(—36)  0.41(-22) 0.20{ -1
T =500
1.42 2,42 1.35 1.38 1.38
0.34(0) 0.22(35)  0.44(-27) 0.30{—15) 0.309{—13)
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