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ROBUST FITS FOR COPULA MODELS

Beatriz V. M. Mendes1, Eduardo F. L. de Melo2 and Roger Nelsen3

Abstract

In this paper we propose and compare two different methodologies for fitting 
copulas  robustly.  The  first  proposal  consists  of  a  robustification  of  the  maximum 
likelihood method, where points previously identified as outliers by a high breakdown 
point  covariance  matrix  estimator  are  downweighted  in  a  maximum  likelihood 
optimization procedure. The second proposal obtains robust estimates by minimizing 
selected empirical copula based goodness of fit statistics. We show through simulations 
that  the  proposed  robust  estimators  are  able  to  capture  the  correct  strength  of 
dependence of the data, providing more accurate estimates of copula based dependence 
measures such as the tail dependence coefficient. The experiments considered several ε-
contaminated  copula  models,  for  varying  proportions  ε  of  contaminating  points. 
Another result in this paper is the finite sample distribution of some selected empirical 
copula based statistics and corresponding tables for testing and selecting the best copula 
fit.

1 COPPEAD Graduate School of Business
2 COPPEAD Graduate School of Business
3 Lewis & Clark College, USA
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1) INTRODUCTION

The  dependence  structure  of  any  multivariate  distribution  F may  be  best 
represented by its pertaining copula  C. Given a  d-dimensional data set, many suitable 
parametric copula models (Joe (1999), Nelsen (1999)) are available for this task. Model 
estimation may be carried on by the maximum likelihood method in two steps: first one 
performs the marginal estimation and then the copula fit, the so called  IFM method 
(inference function for margins, introduced by Joe and Xu (1996)). The univariate fits 
typically pose no difficulties. It remains to fit copulas to the d-cube with Uniform(0,1) 
margins. Joe (1999) argues that we can expect the  IFM method to be quite efficient 
since fully based on maximum likelihood estimation. Efficiency may be assessed either 
by comparing the  estimators  asymptotic  covariance matrices,  or  by comparing their 
mean squared error from Monte Carlo simulations.

When all data points are generated by the same data generating process F, the 
maximum  likelihood  method  typically  yield  good  estimates  (MLE),  possessing  the 
usual good statistical properties. However,  contaminations may occur in many ways. 
For example, gross errors generated by some contaminating distribution F* may change 
the  strength  and  type  of  the  association,  resulting  in  inaccurate  estimation  of  joint 
probabilities and dependence measures.  Even more dangerous would be an error on the 
data  columns  alignment,  for  example  when  matching  slow  and  fast  trading  high 
frequency equity data, which would cause no damage to the marginal fits, but could 
result in a completely distorted dependence structure. We also note that the copula [0,1]d 

sample space makes more difficult the graphical inspection of atypical points, especially 
when d > 2. We need thus an automatic robust procedure that would work well when 
there are, and when there are not contaminations in the data.

Alternatives to the maximum likelihood estimation method for copulas exist in 
the literature. They are mainly nonparametric and include Genest, Ghoudi, and Rivest 
(1993), Genest and Rivest (1993), Capéraà, Fougères, and Genest, (1997),  Fermanian 
and Scaillet (2003), Tsukahara (2005), Morettin et al. (2005), among others.  However, 
to the best of our knowledge, no one has proposed yet robust estimates for copulas.

Accordingly, in this paper we propose and compare two different methodologies 
for  fitting  copulas  robustly.  The  first  proposal  consists  in  a  robustification  of  the 
maximum likelihood method, where points previously identified as outliers by a high 
breakdown  point  covariance  matrix  estimator,  are  downweighted  in  a  maximum 
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likelihood  optimization  procedure.  Many  high  breakdown  point  covariance  matrix 
estimators may be used in this preliminary phase. One may select the Minimum Volume 
Ellipsoid  (MVE)  or  the  Minimum  Covariance  Determinant  (MCD)  estimators  of 
Rousseeuw (1983,1985), any redescending M-estimator (Tyler (1983), Tyler (1991)), 
the  S-estimator  (Lopuhaä,  1989),  or  the  CM-estimator  (Kent  and  Tyler,  1996). 
Illustrations  on  the  role  of  robust  covariance  matrix  estimators  may  be  found  in 
Rousseeuw and van Zomeren (1990).

Any high breakdown robust estimator, able to find the pattern suggested by the 
majority  of  the data,  typically  downweights  some small  proportion of  the data  (see 
Tyler  (1983),  Rousseeuw  and  van  Zomeren  (1990),  among  others).  In  the  first 
exploratory step,  we chose to use the covariance affine equivariant estimator MCD, 
which is implemented in S-Plus. Based on the MCD estimates, a hard rejection weight 
function assigns zero-one weights to selected data points. In the second step, the copula 
model is fitted in a weighted maximum likelihood optimization procedure, yielding the 
Weighted  Maximum Likelihood estimates,  the  WMLE. These estimates  possess  the 
usual  good  asymptotic  properties  under  the  true  model  (Rousseeuw,  1985).  Under 
contaminated models we show in this  paper,  through simulations,  that  they possess 
small bias and variance, and outperform the MLE.

The second proposal obtains robust estimates by minimizing selected empirical 
copula  based  goodness  of  fit  statistics.  These  are  the  so  called  Minimum Distance 
estimators  (MDE),  first  proposed  by  Wolfowitz  (1953,  1957).  Since  the  empirical 
copula is only defined on a lattice £, we define our distance with discrete norms. We 
start with well known statistics (see Ané and Kharoubi, 2003) such as the Kolmogorov 
distance statistic K, the Cramer-von Mises statistic W2, the Anderson-Darling statistic 
AD, the Integrated Anderson-Darling statistic IAD, and apply different redescending 
weight  functions,  yielding  28  Minimum  Distance  estimators.  The  newly  proposed 
statistics downweight the influence of points belonging to selected corners of the unit d-
cube, introducing robustness.

All  estimators  are  compared  in  a  comprehensive  simulation  study.  The 
experiments  consider  ε-contaminated  parametric  copula  families,  containing  varying 
proportions ε of contaminating points. The selected families include elliptical copulas 
(Normal), copulas modeling extreme values, either maxima or exceedances (Gumbel, 
Galambos, Clayton, Husler Reiss), some widely used in practice copula families (Frank, 
Cook-Johnson, Joe, Joe-Clayton, Asymmetric Logistic model copula, and some other 
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copula families defined in Joe (1999)).  For each parametric copula we find the best 
(smaller mean square error) robust estimator, and indicate the best MDE choice for that 
particular  family.  In  this  way  we  aim  to  provide  guidance  to  the  researcher  or 
practitioner when applying our methods.

Another  result  in  the  present  paper  are  the  finite  sample  and  asymptotic 
distributions of the minimum distance statistics identified as best robust estimators by 
the simulation experiments. Some selected quantiles are given in tables for testing when 
searching for the best copula fit. This is an important issue since practitioners usually fit 
several parametric copula families and would like to have a tool for help choosing the 
right copula (Durrleman,  Nikeghbali,  and Roncalli,  2000).  We provide a  means for 
answering this long standing question.

The remainder of this paper is organized as follows. In Section 2, we define 
copulas and review the classical estimation method. In Section 3, we define the new 
robust estimators. In Section 4, we carry out simulation experiments and compare the 
performances of classical and robust estimates. Several copula models are selected and 
contaminated with varying proportions of contaminations. For each family we provide 
three  robust  alternatives  to  the  classical  estimates  possessing  smaller  mean squared 
error. Section 5, we show an application of our methods to a real data set. We conclude 
the paper in section 6.

2) COPULAS AND CLASSICAL ESTIMATION

To simplify the notation, from now on we set d = 2 even though all inference 
methods in the paper are intended and work for dimensions d  > 2. Let (X1, X2) be a 
continuous  random variable  (rv)  in  R2 with  joint  distribution  function  (cdf)  F and 
margins Fi, I = 1, 2. Consider the probability integral transformation of X1 and X2 into 
uniformly distributed rvs on [0,1] (denoted Uuniform(0,1)), that is, (U1, U2) = (F1(X1), 
F2(X2)).  The  copula  C pertaining  to  F is  the  joint  cdf  of  (U1,  U2).  As  multivariate 
distributions with  Uniform(0,1) margins, copulas provide very convenient models for 
studying dependence structure with tools that are scale-free.

As an alternative definition, for every (x1,x2) belonging to [-∞,∞]2 consider the 
point in [0,1]3 with coordinates (F1(x1), F2(x2), F(x1,x2) ). This mapping from [0,1]2 to 
[0,1] is a 2-dimensional copula. From Sklar's theorem (Sklar, 1959) we know that for 
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continuous rvs there exists a unique 2-dimensional copula C such that for all (x1,x2) 
belonging to [-∞,∞]2,

To measure monotonic dependence, one may use the copula based Kendall's τ 
correlation coefficient. Kendall's τ does not depend upon the marginal distributions and 
is given by:

This invariance property is not shared by the linear correlation coefficient ρ, 
which is actually the Spearman correlation coefficient between X1 and X2. To measure 
(upper) tail dependence one may use the upper tail dependence coefficient defined as

if this limit exists, and where Fi
-1 is the generalized inverse of Fi, i.e., Fi

-1(ui) = 
, for i = 1, 2. The lower tail dependence coefficient λL is defined in a 

similar  way.  Both  the  upper  and  the  lower  tail  dependence  coefficients  may  be 
expressed using the pertaining copula:

if these limits  exist.  The measures λU belonging to (0,1] (or λL belonging to 
(0,1]) quantify the amount of extremal dependence within the class of asymptotically 
dependent distributions. If λU = 0 (λL = 0) the two variables X1 and X2 are said to be 
asymptotically independent in the upper (lower) tail.

In the case the true copula belongs to a parametric family , estimates 
of  the  parameters  may  be  obtained  through  the  IFM  method  mentioned  in  the 
Introduction,  in  the  context  of  independent  and  identically  distributed  observations. 
There are mainly two versions: the fully parametric and the semiparametric approaches, 
detailed in Genest et al. (1993), Shih and Louis (1995), Joe (1999), and Chebrian et al. 
(2002). The fully parametric approach relies on the assumption of parametric marginal 
distributions. The Uniform(0,1) data, obtained from the estimated marginals, are used to 
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maximize  the  copula  density  function  with  respect  to  θ.  The  final  results  are  very 
sensitive to the right specification of all marginals. In the semiparametric method, in the 
first  step the standardized data  are  obtained as the empirical  cdfs.  In  this  case,  the 
estimation procedure suffers from loss of efficiency, see Genest and Rivest (1993), even 
though many authors use it  to  avoid misidentification of the marginal  cdfs  (Frahm, 
Junker, Schmid, 2004).

The behavior of the maximum likelihood estimators of copula parameters were 
investigated  through  simulations  by  Capéerà  (1997)  in  the  case  of  the  Gumbel  or 
logistic model, by Genest (1987) in the case of the Frank family, and by Mendes (2005) 
in the case of the Joe-Clayton copula. Genest (1987) investigated the performance of 
four estimators considering samples of size 10 to 50,  and found that the method of 
moments  estimator  appears  to  have  smaller  mean squared  error  than  the  maximum 
likelihood estimator. Goodness of fit tests for copulas and alternative tools for checking 
the quality of fits are discussed in Fermanian (2003), Chen and Fan (2005),  among 
others.

In what follows we assume the margins have been already properly estimated 
and concentrate on fitting copulas robustly.

3) ROBUST ESTIMATES

3.1) The robust weighted maximum likelihood estimates (WMLE)

Let  { (u11,u12),  (u21,u22),  ...,  (uT1,uT2)  } represent  T independent and identically 
distributed (iid) observations of a bivariate copula.  We first  estimate the covariance 
matrix associated to the data using the high breakdown point affine equivariant MCD 
estimator. For a given integer h, the MCD location estimator  is defined as the mean 
of the h points of the T.2 data set for which the determinant of the sample covariance is  
minimal.

The MCD covariance estimator is the sample covariance of those h points. By 

taking , the MCD attains the best possible breakdown point at any 
data  set  in  general  position.  To  obtain  consistency  at  the  normal  model  the  “raw” 
covariance estimate based on the h points is usually multiplied by a factor. We note that 
no particular distributions (marginals or joint) were assumed for the data. For the cases 
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d > 2, Davies (1987) showed that at an elliptical distribution, the MCD estimators are 
consistent for the true mean and covariance matrix.

At this first step we are not concerned with efficiency. We just want to identify 
data points which seem not to follow the (linear) dependence structure defined by the 
majority  of  the  points.  Points  identified  as  atypical  will  be  given  zero  weight. 
Identification of points is based on the robust distances being the cutoff point the 0.90-
quantile of a chisquare distribution with 1 degree of freedom. To illustrate, Figure 1 
shows the scatter plot of data simulated from a 5% contaminated Normal copula4 with ρ 
=  0.8,  and  the  ellipsoids  of  constant  probability  equal  to  0.90  associated  with  the 
covariances matrices estimated by the 0.50 breakdown point MCD and by the classical 
MLE.

\
Figure 1: Data simulated from a 5% contaminated Normal copula with ρ = 0.8 

and the ellipsoids of constant probability equal to 0.90 from the robust MCD and the 
classical MLE.

In the second step we obtain the maximum likelihood estimates   of copula 
parameters θ, using just those data points assigned weights equal to one.
4 The contamination scheme is explained in Section 4.
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3.2) Minimum distance estimators

The empirical copula function was introduced by Deheuvels (1979), and their 
limit properties studied in Deheuvels (1981a, 1981b). Let (x1,t, x2,t), t = 1, ..., T, denote a 
sample of T iid bivariate observations from the distribution F with marginals F1 and F2, 
copula C with density c, and let {x1,(t), x2,(t)} be the component wise order statistics of the 
sample. Consider the lattice

The empirical copula  is defined on £ by

where I[.] is the indicator function.

According to Deheuvels (1979, 1981a, 1981b) the following identity

holds,  where FT is  the empirical  distribution function of  a sample of  F,  and 
FT,1(x1) = FT(x1,+∞), FT,2(x2) = FT(+∞,x2) are the marginal empirical distributions. It is 

shown that Deheuvels's copula  converges to C as T increases.

The empirical copula density  may be obtained from  (Nelsen, 1999) and is 
given by

Copula  measures  of  goodness  of  fit  may  be  obtained  by  minimizing  some 

distance  between  the  empirical  copula   and  a  fitted  parametric  copula  C = 
.  To  obtain  the  MDE  estimates  we  propose  minimizing  the  following 
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selected  empirical  copula  based  goodness  of  fit  statistics.  The  first  discrete  norm 
defined on £ used is the Kolmogorov statistic K defined by

Deheuvels (1979, 1981a, 1981b) also studied the asymptotic properties of the 
Cramér-Von Mises statistic W2, which is the second empirical copula-based statistic 
used 

The third empirical copula-based statistic used, ADAK, is based on the Anderson-
Darling statistic (Stephens, 1974) and given in Ané and Kharoubi (2003).

Ané and Kharoubi (2003) also considered a more global measure of discrepancy 
given by the Integrated Anderson-Darling  statistic, IADAK, given by:

The statistics (9) and (10) emphasize deviations in the tails (the corners of the 
unit square) by applying a weight function to (7) and (8). The weight function is

The perspective and contours of (11) in the case of a Gumbel copula with θ=2 
are shown in column 1 of Figure 2.  However,  this goal may be better  achieved by 
multiplying (7) and (8) by the weight function w1:
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which emphasizes just the points in the lower left (LL) and the upper right (UR) 
corners5. The factors  correspond to the cdf on the "L" 
shaped areas located at the LL and the UR quadrants of the unit square. This weight 
function is illustrated in column 2 of Figure 2, again for the Gumbel copula.

Note that when using the functions introduced above, points in the LR quadrant, 
in the UL quadrant, as well as those points in the middle will have the same influence 
on the resulting statistic, and this may be further improved. Accordingly, we propose 
the redescending weight functions  w2,.(t1/T, t2/T), which assign more weight to points 
located at the LL, the UR, and both corners, respectively.

The weight function w2,LL(. , .) represents the cdf of the square close to (1,1) and 
it is larger when the point is close to (0,0). The weight function w2,UR( . , .) represents the 
cdf of the square close to corner (0,0) and it is larger when the point is close to (1,1). 
The weight function w2,LL-UR( . , . ), illustrated in column 3 of Figure 2,  represents the 
sum of the previous cdfs, and possesses the nice property of downweighting just points 
located at the LR and UL corners6.  These weights are more natural since they all are in 
(0,1), whereas those w1 are all greater than 1.

Figure 2 shows the three weight functions associated to the LL-UR case. We 
observe that the weight function given by (11), in column 1, is too flat in the middle and 
gives  much  more  weight  to  LL when compared  to  UR.  Our  first  proposed  weight 
function  w1,  illustrated  in  column  2,  is  an  improvement,  since  it  enhances  almost 
equally  the  two LL and UR corners,  and  does not  emphasize the  LR and the UL 
corners. The second weight function proposed w2, in column 3, is even more promising 
5 We are estimating positive dependence, as explained in Section 4.
6 Note this may be considered a smoothed version of the (hard) weight function used by the WMLE. See 
also Figure 3.

11



because it gives equal weights to the LL and UR corners and to the middle points, just 
downweighting the points in LR and UL corners.

Figure  2:  Perspective  and  contours  of  the  weight  functions  designed  to 
introduce robustness in the case of the Gumbel copula with θ = 2. Column 1 shows 
(wAK), column 2, (w1), and column 3 illustrates (w2).

We now define robust variations of the Kolmogorov and of the Cramér-Von 
Mises statistics based on the proposed weight functions, w1 and w2. They are
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According  to  the  copula  type  (possessing  or  not  tail  dependence)  one  may 
consider emphasizing just the LL or the UR quadrant. Thus we consider MDE statistics 
designed to  emphasize just  the points  in one of the corners,  based on variations of 
(AD1), (AD2), (IAD1), and (IAD2). They are the Lower Left tail Anderson-Darling 
(LLAD1 and LLAD2), the Upper Right tail Anderson-Darling (URAD1 and URAD2), 
the Lower Left tail Integrated Anderson-Darling (LLIAD1 and LLIAD2), and the Upper 
Right tail Integrated Anderson-Darling (URIAD1 and URIAD2). They are all based on 
weights (w1 and w2). For example,

The other statistics are defined in Appendix 1. Still more weight may be given to 
the tails if we consider second degree statistics7. The second degree statistics, denoted as 
2LLAD1,  2LLAD2,  2URAD1,  2URAD2,  2LLIAD1,  2LLIAD2,  2URIAD1  and 
2URIAD2, use squared weights and are given in Appendix 1.

4) SIMULATIONS

In this section we report the results from simulation experiments carried on to 
assess the performance of the proposed estimators. The copula families selected are 
those  usually  chosen  in  applications.  For  example,  elliptical  copulas  are  used  to 
represent the dependence structure of many real life situations, such as modeling a set of 
financial  log-returns  (Embrechts  et  al.,  2003).  Our  selection  was  also  driven  by 
theoretical considerations, for example, asymptotic results.  The Gumbel copula is the 
limit  copula  pertaining  to  the  asymptotic  distribution  of  bivariate  componentwise 
maxima (Charpentier  (2004),  Juri  and  Wüthrich  (2002)).  Bivariate  excesses  beyond 
high  thresholds  should  be  modeled  by  a  Clayton  (or  Kilmedorf-Sampson)  copula 
(Charpentier  (2004),  Juri  and  Wüthrich  (2002)).  Almost  all  copula  families 
implemented in S-Plus (software used for computations) were considered. The copula 
families selected are given in Appendix 2.

Simulations scheme: Data were generated from 12 bivariate parametric copula 
families. The sample sizes T were 100, 300 and 500. We considered ε-contaminated 
models,  where  a  fraction  ε.T of  observations  is  replaced  by  atypical  ones  from  a 

7 For the sake of completeness, we also experimented the concept of entropy used by Ané and Kharoubi 
(2003). However, it did not lead to good solutions, and thus are not reported.
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contaminating distribution F*. We set ε equal to 0%, 3%, and 5%, and F* as a normal 
distribution with very small  variance and centered close to  some corner  of  the unit 
square8.  We had a total  of 108 experiments,  and the number of repetitions for each 
model was 1000.

Our experiments  considered just  the  cases  where the  rvs  U1 and  U2 possess 
positive association. For the sake of comparisons, for all copula models we set the true 
parameter value θ0 such that corresponding Kendall's correlation coefficient would be 
equal to 0.50. The data simulated from F* is expected to act similarly to a point mass 
contamination,  not  following  the  dependence  structure  implied  by  the  true  copula 
parameters.  They are supposed to weaken the strength of dependence shared by the 
remaining  data.  Thus  our  contaminating points  are  located  at  the  LR or  at  the UL 
corners. For data showing  negative association the same copulas could be fitted to the 
transformed (U1, 1-U2) data.

Let   represent, respectively, the classical and a robust estimate of 

the copula parameter θ0. The notation  may represent either the WMLE  or any of the 

28 MDE estimates. To assess the performance of the proposed robust estimators  we 

use the squared loss function L(θ0,  ), and compare the Mean Squared Error (MSE). 

We also compute the percentage reduction in average loss (PRIAL) for   compared 

with MLE, i.e, we compute an estimate of

Simulations results: The simulations results are given in the tables that follow. 
The tables show the MSE and the (PRIAL %) for the 3 best robust estimates and for 
each one out of the 108 experiments. The overall winner is in bold face. We analyse in 
detail the results for the Clayton, Gumbel, Normal, and Frank copulas, given  in Tables 
1, 2, 3, and 4. The remaining tables are given in Appendix 3.

Clayton  copula.  Under  0% of  contamination  all  procedures  resulted  in  very 
accurate  point  estimates.  Accuracy  and  precision  increase  with  T.  The  IAD shows 

8 A less subjective procedure for defining the outlying values could have been used by applying the 
concept of robust distances of Rousseeuw and van Zomeren (1990).
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excellent results very close of the winner, the MLE. Under contaminated models the 
MLE never won. The WMLE was clearly superior with point estimates very close to the 
true value.
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Gumbel  copula.  Under  no  contamination,  the  MLE  and  the  MDE  statistics 
provided accurate point estimates. The WMLE is not a good choice for the Gumbel 
copula, since it overestimates the parameter and this is true for contaminated and non 
contaminated data.  The  LLIAD2 is  the  winner  for  contaminated models,  presenting 
superior performance with respect to bias and variance.
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Normal copula. As expected, since it is an elliptical copula, the MLE and the 
WMLE were the best estimates for models with and without contaminations. We note 
though the very good performance of the LLIAD2.

17



Frank  copula.  Under  no  contamination,  MLE  is  the  best  estimator.  For 
contaminated samples, even though the MLE appears as the winner for 5% and T = 300, 
500, W2 appears as the winner 3 times and may be considered almost as good.

18
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Table 5 presents a summary of results for all copula models. The table gives the 
winner  and  runner  up  under  no  contaminations,  and  the  best  (robust)  option  at 
contaminated  models.  Results  are  usually  not  dependent  on  the  sample  size.  As 
expected, under no-contamination the best estimator is the MLE. Under contaminations, 
the best estimator for the majority of copula families was the LLIAD2. For the BB7 
copula, even though the 2URIAD2 and the WMLE were, respectively, the winners at 
3% and 5% contamination, the URIAD2 is almost as good for all contaminated models 
and  was  chosen  as  the  overall  winner.  For  all  copulas  possessing  just  upper  tail 
dependence the LLIAD2 was the winner.

5) APPLICATION TO REAL DATA

The application of the methods shown in this  article was done in a data set 
provided  by  Insurance Services  Office,  Inc.  This  data  set  consists  of  1,500 general 
insurance claims. One of the variables is the loss of each claim, or the amount of each of 
the claims (LOSS) and the other one represents the allocated administrative expense to 
pay the claim (ALAE). In the following table, it can be observed the statistical summary 
of each variable:
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Based  in  these  association  measures  it  is  possible  to  infer  a  high  positive 
dependence. From the next plot, we can observe the dependence relationship between 
the two variables LOSS and ALAE.

In order to fit the marginals, it was used the following procedure: (i) definition 
of  a  threshold  representing  the  95% empirical  quantile  of  each  variable  LOSS and 
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ALAE, (ii) fit of a GPD distribution using l-moments estimation for the exceedances 
above the threshold (iii) empirical distribution for the rest of the data.

This procedure was used because the empirical distribution usually don't show a 
good fit  for  the distribution tails.  When there are  several  data  points,  the empirical 
distribution can provide a good fit for the tails. It is possible to observe the histograms 
of  the exceedances above the threshold for  the variable  LOSS and the exceedances 
above the threshold for the variable ALAE.

In  the  next  table,  we  show  the  estimates  marginals  parameters  with  their 
respective standard errors, evaluated with the bootstrap algorithm.
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After the marginals fitting, we modeled the copulas. In the next plot, we can 
observe the upper tail dependence between the variables LOSS and ALAE.

Once the data presented a clearly upper tail dependence, it was fitted copulas 
with  this  characteristic.  Then we fitted  the  following copulas:  (i)  AKS (Associated 
Kimeldorf Sampson), (ii) Gumbel, (iii) Galambos, (iv) Joe, (v) Husler Reiss, (vi) BB5 e 
(vii) BB6. The chosen estimates for each copula were the winners obtained in the last 
section of this paper. The results were:
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It can be noted that the best copula fitted to the variables LOSS and ALAE, 
using  the  chi-square  goodness  of  fit  criteria,  was  the  Galambos  copula,  with  the 
parameter  estimated  by  maximum  likelihood.  The  estimators  IAD1  and  LLIAD2 
provided  very  similar  results  in  comparison  to  the  MLE.  For  the  Gumbel  fit,  the 
estimators IAD1 and LLIAD2 also provided similar results in comparison to the MLE 
method. On the other hand, for the AKS copula, the robust estimators LLIAD1 and 
WMLE provided better results than the MLE method.

6) CONCLUSIONS

In this paper we proposed alternative robust estimators for copulas, motivated by 
the fact that even high quality data usually possess a small proportion of contaminating 
points.  The  first  new  estimator  is  based  on  the  robust  Minimum  Covariance 
Determinant estimator (MCD). This is a two-step procedure where the weights returned 
by  the  MCD  are  used  to  identify  outlying  data  points.  The  maximum  likelihood 
estimates based on selected data are computed in the second step. We note that extreme 
atypical points are of great importance, but they require specific models, for example, 
models  based  on  extreme  value  theory.  The  second  proposal  is  based  on  the 
minimization of selected goodness of fit statistics.
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Simulation  experiments  indicated  that  the  proposed  estimators  perform well 
under ε-Contaminated copula models. For any other copula family not considered here, 
the simulations may be easily implemented and run relatively fast. Estimators sample 
distributions may be assessed by simulations. For those already experimented we found 
a  well  behaved  distribution  for  small  sample  sizes.  Tables  may  be  constructed  for 
testing hypothesis. We are not addressing the important problem Which one is the right  
copula?, but we are indeed providing guidance for estimating several copula models. Of 
course conclusion may change with the MCD specification of breakdown point and 
cutoff point for outliers identification. A sensitive analysis may be carried on to assess 
the robustness of results with respect to these choices.

7) APPENDIX

7.1) Appendix 1: MDE statistics

The definitions of the other MDE statistics designed to emphasize just the points 
in one of the corners, based on variations of AD1, AD2, IAD1, and IAD2 are given 
here. They are the Lower Left tail Anderson-Darling LLAD1 and LLAD2, the Upper 
Right  tail  Anderson-Darling  URAD1  and  URAD2,  the  Lower  Left  tail  Integrated 
Anderson-Darling LLIAD1 and LLIAD2, and the Upper Right tail Integrated Anderson-
Darling URIAD1 and URIAD2.
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The  second  degree  statistics,  2LLAD1,  2LLAD2,  2URAD1,  2URAD2, 
2LLIAD1, 2LLIAD2, 2URIAD1 and 2URIAD2, and are defined as:
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7.2) Appendix 2: Copula families

Elliptical Copulas: The class of elliptical distributions provides useful examples 
of multivariate distributions because they share many of the tractable properties of the 
multivariate normal distribution. Elliptical copulas are simply the copulas pertaining to 
elliptical distributions. in this paper, we used the Normal copula.

Normal Copula: The Gaussian or Normal copula is the copula pertaining to the 
multivariate normal distribution. It is given by

where ρ is  simply the linear  correlation coefficient  between the two random 
variables.

Clayton  copula:  The  symmetric  Clayton or  Kimeldorf-Sampson copula  was 
obtained  by  Juri  and  Wüthrich  (2002)  as  the  copula  characterizing  the  limiting 
dependence  structure  in  the  upper-tails  of  two  random  variables  assuming  their 
dependence structure is Archimedean. It was also obtained by Frees and Valdez (1998) 
as the copula pertaining to the bivariate Pareto distribution. It is given by
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Associated to Kimeldorf  and Sampson copula: Copula used for the real  data 
application. It was also obtained by Frees and Valdez (1998) as the copula pertaining to 
the bivariate Pareto distribution. This is a symmetric copula with the form:

Gumbel copula: Well known Gumbel copula (Gumbel, 1960), an Extreme Value 
copula as well as an Archimedean copula class, has the following form:

The coefficient of tail dependence is given by λU = 2 - 21/δ, and corresponds to 
the symmetric logistic model (see Ghoudi, Khoudraji and Rivest, 1998).

Galambos  copula: Galambos copula  (Galambos,  1975)  is  an  Extreme Value 
copula:

Joe copula: The Joe copula (Joe, 1993) is an Archimedean copula and has the 
form

Husler Reiss copula: The Husler and Reiss copula (Husler and Reiss, 1989) is 
an extreme value copula given by
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Frank copula: The Frank copula (Frank, 1979) is an Archimedean copula with 
the following distribution function: 

Tawn copula: The Tawn copula (Tawn, 1988, 1997) is an asymmetric extreme 
value  copula,  which  is  an  extension  of  the  Gumbel  copula.  It  has  the  following 
dependence function

BB4  copula: Capéraà  et  al.  (2000)  combined  EV  and  Archimedean  copula 
classes into a single class called Archimax copulas. The Archimax copulas are copulas 
which can be represented in the following form: 

where A(t) is a valid dependence function and φ a valid Archimedean generator. 
Archimax copulas reduce to Archimedean copulas for A(t) = 1 and to EV copulas for 
φ(t) = -log(t). Capéraà et al (2000) proved that it is a valid copula for any combination 
of valid function φ(t) and A(t). BB4 copula is a example of this class of copula with: 

. The distribution function is given by:

where θ > 0, δ > 0. The upper tail dependence coefficient is given by λU = 2-1/δ.

BB5  copula: BB5  copula  (Joe,  1997),  an  EV  copula,  is  a  two-parameter 
extension of the Gumbel copula and has the form of:
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BB6 copula: BB6 copula (Joe, 1997), an Archimedean copula, has the form of:

BB7 copula: BB7 copula (Joe, 1997), an Archimedean copula, has the form of:

Empirical copula: If u(1) < u(2) < ... < u(n) and v(1) < v(2) < ... < v(n) are the 

order statistics of the univariate samples, the empirical copula  emp is defined at the 
point (i/n, j/n) by the formula:

7.3) Appendix 3: Tables
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