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Chapter 1

Introduction

Recently a lot of attention has been given to fault-tolerant systems. The aim of fault

tolerant control is to design a controller which is able to guarantee stability and satisfactory

performance even if a sensor, actuator or other component begins to behave differently from

what was assumed during the design process.

In 1997 Patton presented a systematic approach to design fault-tolerant control [17]. The

planning and design is made up of three different stages:

1. Fault-tolerant System Requirement Analysis

2. Redundancy Design

3. Fault Accommodation Design

In the first stage an analysis is required to identify the possibility of failure for each com-

ponent as well as their effects on the system. In the redundancy design stage, a location for

each redundancy should be determined. Finally, the configuration of the controllers, sensors

and actuators should be determined. Also in this last step, all the requirements to develop a

controller reconfiguration in case a failure occurs should be determined.

In this work we assume that failures only occur in the actuator and/or controller compo-

nents and that a fault-tolerant control is required to guarantee output regulation. It is assumed

that n identical controllers are connected in parallel, with each one connected to its own actu-

ator and the individual actuator signals are then added to produce the overall actuator signal to

the plant. The objective of this work is to develop a control law which fulfils the requirements

of regulation to the reference and equality between controllers in the sense of equal actuation

by each one.

1



CHAPTER 1. INTRODUCTION 2

1.1 Motivation

The motivation for requiring balanced operation of the controllers comes from the consid-

eration of mean time to failures (MTTF) and mean time between failures (MTBF). It is known

that parallel redundancy, which is being used here, increases MTTF by a factor given by a par-

tial sum of the harmonic series. As far as MTBF is concerned, if a controller operates at a

certain percentage of its rated load, then its MTBF increases nonlinearly, in accordance with

a exponential distribution [11], also motivating the use of a balanced control solution. Also,

in theory, we have the well-known result that the MTBF of a system with k parallel redundant

paths (without repairs) is proportional to the partial sum of the harmonic series where λ is the

parameter of the continuous exponential density function:

MTBF (k) =
1

λ

(
1 +

1

2
+

1

3
+ · · ·+ 1

k

)
.

Since the harmonic series diverges, it follows that a system consisting of an infinite number of

parallel paths, each of which has a mean time to failure of unit of time, would never fail [12].

Several studies can be found in the literature presenting fault-tolerant control approaches.

Nevertheless, equality of controller efforts is not always sought. Furthermore, the usual design

of multiple controller networks relies on communication between them and a central intelli-

gence, which is not always possible or desirable.

1.2 Objective

This work aims to develop a fault-tolerant decentralized control law, which is capable

of signal tracking and disturbance rejection for a certain class of plants. The goal is to

implement several controllers in parallel, which do not have any communication between them

to avoid the use of more components that could induce a higher probability of failure. It is also

important to divide the control action equally between the controllers to ensure that none of

them will be overloaded, leading to extension of device lifetimes. In this work it is considered

that if a component fails, it could be repaired and added back to the system at some instant

posterior to the fault. When this happens, a new distribution of the controller efforts is required

in order to maintain equal individual actuator efforts, and it should be recalled that none of the
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controllers has knowledge of how many controllers are active or, indeed, of their individual

actuation effort.

1.3 Description of the project

This introduction above presented, in a qualitative manner, the fault-tolerant control prob-

lem and the main concepts related to it. The objective of this work was also described as well

as the motivation for this study.

Chapter 2 begins by establishing some theoretical definitions necessary for the compre-

hension of this project. Subsequently a literature review briefly discusses some papers related

to fault-tolerant systems and balanced control laws. A recently proposed method called Control

Allocation is presented. This method, designed to achieve balanced control in multiple actuator

problems for aircrafts and wind turbines is the one which comes closest to providing a solution

to the problem studied in this project.

Chapter 3 starts with an analysis of a linear first order plant in unity feedback configu-

ration with a bank of identical linear controllers. A state space analysis of this system yields

the important insight that the decentralized reliable balanced control (DRBC) problem cannot

be solved in this linear context, and this is verified with some simulations. As a consequence,

each linear controller is now endowed with a piecewise linear switched logic, in addition to an

ordinary PI controller. This natural approach is shown to solve the DRBCP, although with some

limitations.

Chapter 4 formulates a new approach to the DRBC problem. It describes the design and

synthesis of a more sophisticated nonlinear switched control logic that is capable of equalizing

controller efforts as well as regulating the output of the plant to its reference input. This chapter

provides proofs of some of the basic stability results, although a complete proof is still missing.

Simulations verify the theoretical results, the conjecture of stability, as well as the improve-

ment in performance with respect to the piecewise linear switched logic studied in the previous

chapter. Simulation studies of the sensitivity to parameter variations are also presented.

Chapter 5 studies the performance of the proposed DRBC for first order plants with delay.

A study of first order plants with time delay is presented in simulations 5.4 to ??. The aim of
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this chapter is to define the limitations of the proposed method as well possible applications.

The last chapter summarises the content of this project by presenting some conclusions

and suggesting topics for future work.

Finally, a brief explanation about the computer program that generated the results is pre-

sented. This program was developed in Matlab and the code can be found in the Appendices.



Chapter 2

Review of the Literature

A literature search reveals a significant number of papers related to fault-tolerant and

reliable control problems, as well as to consensus and balanced control problems. However the

DRBCP as formulated in the previous chapter does not seem to have been studied before. In

this section a brief summary of currently available literature is presented.

The DRBC problem seeks a decentralized control solution. In [16] Panagi presented a

study of decentralized fault tolerant control of a class of interconnected nonlinear (but lineariz-

able) subsystems. However, faults were considered to occur only in the subsystem instead of

occurring in controller. The motivation of the paper is to propose a decentralized control law for

which there is no need to redesign the control law if a fault occurs in the specified subsystems.

The method proposed by the author is a decentralized adaptive approximation of a fault-tolerant

control and is based on the principle that the controllers are able to identify a fault occurrence

as well as to estimate the approximate effect of this fault in the dynamics system. The prob-

lem formulation permits occurrence of multiple faults at unknown times. This approach does

not satisfy the condition imposed above, namely, that no controller should use any information

about the other controllers.

Much research has been carried out on consensus methods, however, most papers on

the subject assume that there is a fixed number of actuators/subsystems, or a given topology

with information on neighbours. To solve the consensus problem, Model Predictive Control

(MPC), is proposed in [6] where an artificial consensus trajectory is generated by a consensus

algorithm and then each agent in the system follows this trajectory using MPC and respecting

the given constraint. In [10], Kim et al. propose a control law to force output consensus for

5
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heterogeneous systems. The aim is to propose a method which can control the system output

of an uncertain multi-agent system. To reach output consensus of heterogeneous multi-agent

systems, a consensus of certain homogenous parts is achieved and internal models are used

for control synthesis. As mentioned above, in most of the literature on the control consensus

problem, information on the number of controllers/systems in the loop is required and this does

not satisfy the "no-information" requirement of DRBCP.

Some other papers involving balanced control solutions, fault-tolerant systems [5] and

reliable control [9] laws have been published, but all of these presuppose the use of more infor-

mation than allowed in DRBCP. The literature most relevant for DRBC present problem is that

on Control Allocation presented by Bodson and co-workers and it is presented in a little more

detail in the following section.

2.1 Control Allocation

This new method is used for over-actuated systems, that is, when there are more control

inputs than the outputs to be controlled. Control allocation is the problem of distributing control

effort among multiple and redundant actuators. In brief, this can be thought of as the minimiza-

tion of control effort by the minimization of the maximum actuator action. A survey about this

new control technique can be found in [1].

In [4], Bodson converts the problem to a linear programming problem and the solution

is based on the simplex algorithm. This solution was developed in order to solve the control

allocation problem of an aircraft, for which the controlled variable is represented by a vector of

deflection angles of control surface of the aircraft.

The ganging concept, which is the use of multiple redundant actuators, can be represented

mathematically by:

u = Gν
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ν : pseudo effectors

u : actuator command vector

G : ganging matrix

The control allocation solution is introduced in the context of model reference control.

The mathematical representation of the state-space model is given by (2.1) and (2.2).

ẋA = AAxA +Bu+ d (2.1)

yA = CxA (2.2)

The state vector xA ∈ Rn, in the aircraft system, may represent the angle of attack, the

pitch rate, the roll rate and the yaw rate. The output vector yA ∈ Rq may contain the pitch

rate, the roll rate and the yaw rate. The control input vector u ∈ Rp consist in the commanded

actuator positions and the vector d ∈ Rn the forces and moments that disturb the aircraft system.

The desired dynamics for the reference model is given in (2.3). The vector rM is defined

as the reference input vector.

ẏM = AMyM +BMrM (2.3)

The derivative of yA is given by:

ẏA = CAAxA + CBu+ Cd. (2.4)

Equating ẏM with ẏA, the following expression can be achieved:

CBu = −CAxA − Cd+ AMyA +BMrM . (2.5)

To calculate the control output vector, it is required to solve a system of linear equations

which has more unknowns than equations where u is constrained by (2.6).

umin,i ≤ ui ≤ umax,i, for i = 1, 2, ..., p (2.6)

This constraints for ui come from the actuator limitations.

Now that the problem has been specified, the control allocation problem can be defined

as a combined error minimization and control optimization problem. The problem formulation

for each case is presented below.
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1. Error minimization problem

Given matrix CB, it is desired to find u such that

J = ‖CBu− ad‖

is minimized and the vector u satisfies the constraint given by (2.6).

2. Control minimization problem

If the solution of the error minimization problem, given by u1 is not unique, control

minimization is performed. For this problem the matrix CB and the solution u1 are

known. Given the vector up which represents some preferred actuator output, it is desired

to find u (that satisfy the constraint condition in (2.6)) such that

J = ‖u− up‖ (2.7)

is minimized and (CB)u = (CB)u1.

The mixed optimization is the combination of the error minimization problem and the

control minimization problem defined as follows:

Given matrix CB and vector up, find u such that

J = ‖CBu− ad‖+ ξ‖u− up‖

is minimized, such that this solution is subject to umin ≤ u ≤ umax.

The term ξ is a weight or penalty that is added to a optimization problem to prioritise one

of its terms. In this case, ξ is usually chosen to be small with the aim of prioritising the first

term of J (error minimization).

Note that this solution requires ad and up values, that is, the desired control action for

each controller and the preferred values for the actuators. In the present problem these values

are unknown since there is no information about how many controllers are functioning inside

the unity feedback configuration. The allocation problem and the ganging concept is close to

the DRBCP formulation except for the fact that the controllers must have global information

about the status of other controllers.



Chapter 3

Problem formulation

3.1 Introduction: The Decentralized Reliable Balanced Con-
trol Problem (DRBCP)

This project studies the problem of reliable, balanced control of a plant in unity feedback

configuration, using a bank of k identical controllers, denoted S(P,Ck) (see Fig.3.1), to regulate

the plant output to a constant reference input. A decentralized solution is required, in other

words there is no communication between the controllers and thus no information about their

functioning. The terms reliable and balanced are now made more precise.

C

C

x0
1

x0
k

P
r y

u1

uk

−

Actuator

Actuador

Figure 3.1: Plant with bank of k identical controllers and actuators in unity feedback configu-
ration, denoted S(P,Ck).

• The term reliable refers to the fact that the system S(P,Cm) should remain stable and

regulate the output to the constant reference input, for all m between 1 and k−1. In other

words, even if k −m controllers fail, the remaining m controllers guarantee the system

stabilization.

9
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• The term balanced refers to the fact that all the m active controllers are expected to

participate equally in the regulation of the output to the constant input. In other words,

it is required that all the m active controllers have the same output, for all values of m

between 1 and k.

We will consider the simple case of k = 2 (Fig. 3.2), which is going to be the main

focus of this project. Given the fact that the actual problem does not depends on the actuators

configuration, from now on they will be considered as a unitary gain and so their representation

will not be made explicit in the diagrams.

C

C

x0
1

x0
2

P
r y

u1

u2

−

Figure 3.2: Plant with (bank of) 2 identical controllers in unity feedback configuration, denoted
S(P,C2).

Temporarily assuming that the controllers are distinct and are denoted C1 and C2, it is

easy to compute the transfer function between r and y, denoted hyr:

hyr = P (I + C1P + C2P )
−1(C1 + C2) (3.1)

Assuming that the plant and controllers are single-input, single-output (SISO) and that C1 =

C2 = C,

hyr =
2PC

1 + 2PC

so that, as expected, with identical controllers having the same initial conditions, the effect of

2 controllers in parallel is additive and equivalent to using the controller 2C with the plant P

in unity feedback configuration. Note that this also means that if C stabilizes P with a certain

gain margin, then the parallel combination of two identical controllers, in the configuration

S(P,C2), stabilizes P with half this gain margin. It is also clear that the problem of balancing

controllers only arises if there is an initial unbalance, either in the initial conditions, or because a
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failure occurs. In view of these observations, we arrive at the following statement of the general

decentralized reliable balanced control problem (DRBCP):

Suppose that the controller C stabilizes the LTI plant P and solves the regulation

problem. Is it possible to connect k identical controllers C in parallel to plant P in

unity feedback configuration (as in Figure 3.1), so that, if some nonempty subset

of controllers, with possibly different initial conditions, is active at any given time,

this subset stabilizes the plant P and solves the regulation problem, with all active

controllers tending to attain the same output asymptotically?

Note that this problem looks superficially like the problem of requiring the controllers to attain

consensus with regard to their outputs; however, a completely decentralized solution is being

asked for, in which there is no communication between the controllers and the only information

that is available to all the controllers is the error between the plant output and the reference

input. In a typical consensus problem, a controller would exchange information with some

’neighboring’ controllers in order to achieve consensus.

3.1.1 A naive switching approach to solving the RBCP for the case of two
parallel controllers

Let us consider the two parallel controller case. A switching control solution, as depicted

in Figure 3.3 appears to solve the RBCP.

−
r

C1

C2

PSL
+

+

+ e ys

Figure 3.3: Plant P with 2 identical controllers plus switching logic SL defined in (3.2), in unity
feedback configuration.

SL is the switching logic, defined as follows:

w =

{
e, if e > r

2
e
2
, otherwise (3.2)
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Note however that this solution assumes that the controllers are either active or completely

inactive and, furthermore, does not generalize to the case of three or more controllers.

In view of this, some questions that arise immediately are as follows:

• Is it possible to solve the DRBCP for an LTI plant using a bank of LTI controllers? If not,

what kind of controller should be used?

• Is it possible to propose a solution to the DRBCP in which each active controller is un-

aware of the total number of active controllers and of the instants at which they become

active?

The next section attempts to throw some light on the answer to the first question, using state

space analysis, which allows the explicit consideration of different initial states for the two

controllers.

3.2 State Space analysis of the two parallel controllers and
plant in unity feedback configuration

Suppose that the identical controllers, with states called x1 and x2, have the state space

representations (A,B,C,D), with initial states x01 and x02 and the input v is given by the system

error. In other words, controller i, for i = 1, 2 has the representation:

ẋi = Axi +Bv (3.3)

yi = Cxi +Dv (3.4)

The outputs y1 and y2 are added to give the input u to the plant P , which has the state space

representation (Ap, Bp, Cp), with its state denoted as xp:

ẋp = Apxp +Bpu (3.5)

yp = Cpxp (3.6)

With the controllers and plant interconnected as in Fig. 3.4, the overall interconnected system,
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C

C

x0
1

x0
2

P
r y

y1 = u1

y2 = u2

−

ẋ1 = Ax1 +Bv
y1 = Cx1 +Dv

ẋ2 = Ax2 +Bv
y2 = Cx2 +Dv

ẋp = Axp +Bv
y = Cpxp

Figure 3.4: Plant P with 2 identical controllers, in unity feedback configuration, with state
space representations specified.

which has state vector x = [x1, x2, xp], has the state space representation shown in 3.7 and 3.8.

ẋ1 = Ax1 +B(r − Cpxp) = Ax1 −BCpxp +Br

ẋ2 = Ax2 +B(r − Cpxp) = Ax2 −BCpxp +Br

ẋp = Apxp +Bp[Cx1 +Dv + Cx2 +Dv]

ẋp = Apxp +BpCx1 +BpCx2 + 2BpD(r − Cpxp)

ẋp = (Ap − 2BpCpD)xp +BpCx1 +BpCx2 + 2BpDr



ẋ1
ẋ2
ẋp


 =




A 0 −BCp
0 A −BCp

BpC BpC Ap − 2BpCpD





x1
x2
xp


+




B
B

2BpD


 r (3.7)

y = [0 0 Cp]



x1
x2
xp


 (3.8)

The class of admissible controller faults F is defined as the one in which each controller can

become active at any given time, but always with zero initial condition when it transitions from

inactive to active and, of course, with the proviso that, at any given time, at least one controller

is active.

In this state space setting, DRBCP (for two parallel controllers) can be formulated pre-

cisely as follows:

Given a plant P with state space representation (Ap, Bp, Cp), find a controller, if
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such exists, with state space representation (A,B,C,D), such that in the configu-

ration of Figure 3.4, for all initial conditions x01, x
0
2, and for all faults in the class F ,

the following conditions are both satisfied:

• y → r for a positive constant reference input r, (i.e., reliable regulation).

• |y1(t) − y2(t)| → 0 as t → ∞, whenever both controllers are active, (i.e.,

balanced controllers).

Remark: Observe that, if an error e is defined as y1 − y2, then, from the state space equations

above, it follows that

ė(t) = CA(x1(t)− x2(t)),

whence ∫ t2

t1

ė(t)dt = e(t2)− e(t1) = CA

∫ t2

t1

(x1(t)− x2(t))dt, (3.9)

which shows the effect of the initial conditions and evolution of the state on evolution of the

error on the interval [t1, t2].

3.2.1 Controllability analysis

From (3.7), the controllability matrix C for the overall system is calculated to be:

C =




B AB − 2BBpCpD ?
B AB − 2BBpCpD ?

2BpD 2BBpC + 2BpD(Ap − 2BpCpD) �


 (3.10)

where

? = B(A2 −BBpCCp)− 2BpD(ABCp +BCp(Ap − 2BpCpD))−B2BpCCp

� = 2B(ABpC +BpC(Ap − 2BpCpD)) + 2BpD((Ap − 2BpCpD)2 − 2BBpCCp).

The first two block rows of C are identical, indicating that it is not full rank, so that the

system is not controllable from the input r. This has the following interpretation. Even if it is

permitted to choose the control input r arbitrarily, it may not be possible to steer from a state

where x1(ti) 6= x2(ti) to a final state where x1(tf ) = x2(tf ) (and hence y1(tf ) = y2(tf )). Of

course, this interpretation holds a fortiori with a constant input r.

This controllability analysis gives a clue that the DRBCP may not admit a solution with a

bank of LTI controllers. In other words, some nonlinear control may be necessary.
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3.2.2 Observability analysis

From (3.7) and (3.8), the observability matrix O is calculated to be:

O =




0 0 Cp
CpBpC CpBpC Cp(Ap − 2BpCpD)
? ? �


 (3.11)

where

? = ABpCCp +BpCCp(Ap − 2BpCpD)

� = Cp(Ap − 2BpCpD)2 − 2BBpCC
2
p .

The first two block columns of O are identical, so that it is not full rank and the overall

system is not observable. The interpretation of this is that, for zero input, the overall state x of

the system cannot be deduced from observation of the output y alone.

3.2.3 Simulation results for linear controllers and plant

To illustrate the problem presented above and to analyse the methods (hereafter proposed),

a computer program based on Euler numerical method for ODE solution was created on Matlab

platform (see Appendix). The switching controller proposed above results in an ODE with

discontinuous right hand side. Thus higher order methods to solve it, which depend on the

existence of higher order derivatives, are inappropriate and the first order forward Euler method

must be used. For this study, a system composed of a first-order process was used to explore

the DRBCP where, for the simulations in this chapter, β = 1.

P (s) =
β

s+ β

Before starting the analysis of the decentralized reliable balanced control problem, a

controller for a simple feedback configuration should be chosen and calibrated (recall that the

controller should be able to stabilize and solve the regulation problem for a constant reference).

The Internal Model Principle [7] says that if it is desired that a system track a reference

r(t) or reject a disturbance d(t), with dynamics given by the polynomial T (s), then a controller

that has a copy of this polynomial in the standard one degree-of-freedom control architecture

is able to reject the effect of the disturbance or make the output track the reference. Therefore
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to control a first order plant and to guarantee reference regulation, which is a constant, a PI

(Proportional-Integrative) controller is sufficient. To calibrate the controller gains a system

composed of a PI controller and the chosen plant is considered:

C P
r yu

−
e

Figure 3.5: LTI system containing a PI controller and the plant in unity feedback configuration.

The PI controller expression is represented by 3.12.

C(s) = Kpe(t) +KI

∫ tf

ti

e(τ)dτ (3.12)

The Root Locus was chosen to obtain a quick analysis of the system stability (Fig. 3.5).

From Fig. 3.6, it is easy to observe that all root locus branches are contained in the left half

plane,

C− := {z ∈ C|<(z) < 0}

i.e., the LTI system is stable for any system gain.

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
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Real Axis (seconds
−1

)

Im
a
g
in
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ry

 A
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s
e
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n
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−
1
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Figure 3.6: Root Locus for the system given by a first order plant and a PI controller in unity
feedback configuration.
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(a) System output yp(t)
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(b) Controllers output u1(t) and u2(t).

Figure 3.7: Simulation results for a feedback system with two controllers (initialized with null
initial conditions) in parallel connected to a first order plant. Note that u1(t) = u2(t) for all t.

The chosen proportional and integrative gains as well as the plant parameters are in Table

3.1. The given reference is considered as a constant.

Table 3.1: System parameters

Plant Controller
Parameters β KP KI

Value 1 2 2

Once these system parameters are chosen, the simulation for two PI controllers placed

in parallel and connected to a first-order plant can be analysed. In Figure 3.7a and 3.7b, both

controllers are initialized at t = 0s with null initial conditions. From simulation results one

can observe a balance between controller outputs. However, Figure 3.8a and 3.8b depict what

happens when a failure occurs in the second controller. In this new scenario, when C2 zeros its

output, C1 takes on the control of system and guarantees tracking of the reference. At t = 15s

the controller C2 is reconnected to the system with null initial conditions. However it is not able

to act on the system, since the error signal that drives it and its initial condition are null (see

the equations from the controller state space representation). This preliminary analysis of the

LTI system shows that by using a linear controller, tracking is guaranteed, however for different

initial conditions, the controllers could not reach the same levels of effort.
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(b) Controllers output u1(t) and u2(t).

Figure 3.8: Simulation results for a feedback system with two controllers in parallel connected
to a first order plant. A fault in C2 occurs at t = 5s (red dashed line). At t = 15s C2 is fixed
and returned to the system with null initial conditions.

3.3 Analysis of the naive switching approach in state space

The results presented above show the necessity of a nonlinear logic for DRBCP. Consid-

ering the approach given by Figure 3.3, the new state space representation is presented in two

different cases:

• For e ≥ 0.5r : in this case, the system state space is given by (3.7) and (3.8).

• For e < 0.5r for which the state space representation is given by the following expres-

sion: 

ẋ1
ẋ2
ẋp


 =




A 0 −(BCp)/2
0 A −(BCp)/2

BpC BpC Ap −BpCpD





x1
x2
xp


+



B/2
B/2
BpD


 r (3.13)

y = [0 0 Cp]



x1
x2
xp


 (3.14)

From the state representation, it is easy to see that the controllability matrix is not full

rank (note that it is the same case as presented for the LTI system, and the two first block rows

from C are identical) which means that for x1(t) 6= x2(t), the final state x1(tf ) = x2(tf ) is never

reached.

An analysis can also be made by looking at the piecewise linear switching logic equation

in (3.2). The controller output yi is calculated based on the error variable only. This means that
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when the controllers have different initial conditions, the control output decreases/increases

by the same rate, and so, the difference between y1 and y2 remains the same. The results

presented in Fig.3.9 illustrate the system behaviour when using the naive controller. Note that

the convergence time for this system is two times slower than for the linear case. This behaviour

comes from the fact that now, for errors smaller than r/2, the controllers gains are multiplied

for a factor with value 0.5.
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(b) Controllers output u1(t) and u2(t).

Figure 3.9: Simulation results for the naive solution with two controllers. A fault in C2 occurs
at t = 5s. At t = 15s C2 is fixed and added to the system with null initial conditions.



Chapter 4

Decentralized Reliable Balanced Control
Law

The new proposal presented in Figure 4.1 is a nonlinear improvement on the piecewise

linear logic proposed above and it is now called Kci. The aim of this new logic is to solve the

consensus problem between y1 and y2 without affecting the reference tracking.

y

y1 = u1

y2 = u2

r

−

e

Kc1

α

1
s sat

1
s

x1

xp

β
+

kI

Kc2

α

1
s sat

x2
kI

Figure 4.1: Plant P with 2 identical controllers, each containing (nonlinear) switching logicKci

defined in (4.1), in unity feedback configuration.

The Switched Gain Law is represented by (4.1),

Kci =

{
1, if e ≥ 0

1 + µ xi(t)
xmax

, if e < 0
(4.1)

where µ is a constant and it is constrained by µ > 1 and xmax represents the physical system

limitation (saturation of the integrator).

21
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The purpose of this asymmetry between positive- and negative-error gains is to ensure

that, if the error falls below zero (either because of a disturbance in the process or by a change

in the reference), whenever a controller is more stressed than the others, both its integrator state

and its overall output is the fastest to fall.

4.1 Analysis of the Decentralized Reliable Balanced Control
Law

The system in Fig.4.1 is represented by the set of ordinary differential equations (ODEs)

listed in (4.2). The nonlinear logic Kci is described by the switching function s(·, ·) as defined

in (4.3) and the function sat(·) represents the saturation of the integrator.

ẋ1 = s(e, x1)

y1 = αs(e, x1) + sat(x1)

ẋ2 = s(e, x2)

y2 = αs(e, x2) + sat(x2)

ẋp = β(y1 + y2 − xp)

y = xp

e = r − xp

(4.2)

s(e, xi) =

{
e, if e ≥ 0
1 + µ xi

xmax
, if e < 0

(4.3)

Thus, for the full system, assuming that we are in the linear region of the controller satu-

ration function (sat(xi)), the state space representation is given by the two cases listed below.

1. For e ≥ 0, which represents a linear system:
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ẋ1 = r − xp

y1 = α(r − xp) + x1

ẋ2 = r − xp

y2 = α(r − xp) + x2

ẋp = β(y1 + y2 − xp)

y = xp

(4.4)

2. For e < 0, a non linear system:

ẋ1 = (1 + µ x1
xmax

)(r − xp)

y1 = α(1 + µ x1
xmax

)(r − xp) + x1

ẋ2 = (1 + µ x2
xmax

)(r − xp)

y2 = α(1 + µ x2
xmax

)(r − xp) + x2

ẋp = β(y1 + y2 − xp)

y = xp

e = r − y

(4.5)

The two problems formulated below are required to be solved in order to analyse the new

proposal:

Problem 1: In steady state, i.e. once the error has converged to zero, small perturbations

in x1, x2 and xp should be rejected, in the sense that in the presence of these perturbation:

a) e should return to zero and

b) y1 → y2.

Problem 2: After reaching steady state,

a) if Ci drops out (yi → 0), then e should return to zero.

b) if yi becomes different from yj (step disturbance), then yi(t)→ yj(t), as t→∞.
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4.1.1 Analysis in state space

For positive errors, the system state space representation (A,B,C) is given by:


ẋ1
ẋ2
ẋp


 =




0 0 −1
0 0 −1
β β −2αβ




︸ ︷︷ ︸
A



x1
x2
xp


+




1
1

2αβ


 r (4.6)

y = [0 0 1]



x1
x2
xp


 (4.7)

A stability analysis can be made by calculating the eigenvalues of the matrix A from the state

space representation:

The characteristic polynomial of A is defined by:

a(s) , det(sI − A)

= sn + a1s
n−1 + ..+ an−1s+ an

and the roots of the polynomial are referred to as eigenvalues { λi } of A:

a(s) = (s− λ1)(s− λ2)...(s− λn).

The system is said to be stable if its eigenvalues lie in the left half plane (i.e. have

negative real parts).

since the roots will be on the negative complex plane.

By calculating the characteristic polynomial of A from (4.7), we can analyze the stability of the

transfer function from r to y.

a(s) = s(s2 + 2αβs+ 2β) (4.8)

The eigenvalues of A are given in (4.9):

λ =
{
0,
−2αβ ±

√
4αβ2 − 8β)

2

}
= {0,−αβ ±

√
β(α2β − 2)}. (4.9)
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Since the stability was guaranteed for the linear case, an analysis of the system stability

for the zero eigenvalue correspond to the eigendirection
[
1 −1 0

]T , which means that pertur-

bations in this eigendirections neither grow nor decay to zero, whereas perturbation in the other

two eigendirections, which correspond to the two eigenvalues, do decay to zero. Thus, a kind

of partial stability holds for positive values of e.

4.1.1.1 Local stability analysis around the desired equilibrium point

For the actual problem, it is desired that the system stabilizes at the equilibrium point

given by:

{x1, x2, x3} =
{r
2
,
r

2
, r
}
.

A linear approximation around this point is made by using the Jacobian matrix defined as:

J ,




∂f1
∂x1

· · · ∂f1
∂xn

... . . . ...
∂fm
∂x1

· · · ∂fm
∂xn




From (4.5), we have:

J =




(r − xp)µ 0 −(1 + µx1)
0 (r − xp)µ −(1 + µx2)

βα(r − xp)µ βα(r − xp)µ −βα[µ(x1 + x2) + 2]− β


 . (4.10)

By making the substitutions,
(
x1, x2, xp

)
=
(
r
2
, r
2
, r
)
, the Jacobian matrix becomes:

J =




0 0 −(1 + µr
2
)

0 0 −(1 + µr
2
)

0 0 −βα(µr + 2)− β


 (4.11)

and its eigenvalues are given by: λ = {0, 0,−βα(µr + 2) − β}. Once again, there is neutral

stability in the eigendirections
[
1 0 0

]T ,
[
0 1 0

]T and stability in the third eigendirection.

It is important to observe that there are, in fact, infinitely many other equilibrium points:

when e = 0 (i.e. r = xp), then yi = xi, i = 1, 2 and so all xi such that

x1 + x2 = xp = r
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are then points s.t. (λ, r − λ, r) are equilibrium points for λ ∈ [0, r]. Geometrically, the

equilibrium points are those given by the intersection between the planes

xp = r

x1 + x2 = r.

Figure 4.2 represents these planes in (x1, x2, xp) space. All these points have the same stability

characteristics as
(
r
2
, r
2
, r
)
.

Figure 4.2: The line (in blue) consisting of the intersection between two planes represents the
set of all equilibrium points for the nonlinear system.

In Figure 4.3 the (x1, x2) space is shown. Note that there are infinitely many points that

satisfy the equation x1 + x2 = r, however, for the present problem, it is desired that the system

reaches the equilibrium point given by x1 = x2.

Since all these points have the same stability characteristics, we can already conjecture

the necessity of an external excitation to balance the controller states in case they arrive at points

of the type (λ, r − λ, r) .

Now it would be important to find a region of attractivity around this set of equilibrium

points, by using the Lyapunov Direct Method.
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Figure 4.3: Desired equilibrium point, in green represented by the intersection between the two
lines of balanced control and reference tracking.

A natural candidate for a Lyapunov function is:

V (e, z) = 0.5e2 + 0.5z2 (4.12)

where z = x1 + x2 − r. For the equilibrium point given by e = 0 and z = 0 (x1 + x2 = r),

the function V (e, z) is null. From Lyapunov Direct Method, V (e, z) is said to be a Lyapunov

function if V (t, e(t), z(t)) is continuous and positive definite and if

d

dt

(
t, e(t), z(t)

)
= V̇

(
t, e(t), z(t)

)
≤ 0.

For the function chosen in (4.12), which is positive definite and continuous, we can at-

tempt to show that V̇
(
t, e, z

)
is negative definite, and so that V can be defined as a Lyapunov

function:

V̇ (t, e, z) = eė+ zż
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where,

e = r − xp

ė = −ẋp

z = x1 + x2 − r

ż = ẋ1 + ẋ2

ẋi =

(
1 + µ

xi
xmax

)
(r − xp)

By making the substitutions and some simplifications we arrive at the following expres-

sion:

V̇ = −2βαe2+
(

µ

xmax

)
z2e−βα

(
µ

xmax

)
(z + r)e2

︸ ︷︷ ︸
t3

+ ze

[
2 +

(
µ

xmax

)
r − β

]

︸ ︷︷ ︸
t4

+βe(xp−r).

(4.13)

The two first terms from (4.13) are negative as well the last term (by definition, e = r−xp).
For z > 0, the term t3 is always negative and t4 is negative if

β < 2 +

(
µ

xmax

)
r.

For z < 0, t3 is positive if |z| > r and negative if |z| < r and t4 is negative only if

β > 2 +

(
µ

xmax

)
r.

From this analysis we can see that the chosen function V (e, z) is not a Lyapunov function and

so, it is not possible to find a stability region with this particular function.

4.1.2 Simulation results for the Decentralized Reliable Balanced Control

In this section some results are presented with the objective of testing the validity of this

solution (for the chosen plant) and to point out some weaknesses. The chosen scenario is the

same as presented in the other simulations. The system parameters are listed in Table 4.1.

Figure 4.4 illustrates (a) the system output and (b) the controller outputs. Note that the

error is always positive and so the switched gain never reaches the nonlinear region given by:

Kci = 1 + µ
xi(t)

xmax
.
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(b) Controllers output u1(t) and u2(t).

Figure 4.4: Simulation results for the Decentralized Reliable Balanced Control solution with
two controllers. A fault in C2 occurs at t = 5s. At t = 15s C2 is fixed and returned to the
system with null initial conditions.
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Table 4.1: System parameters for the Decentralized Reliable Balance Control

Plant Controller Switched Gain
Parameters β α KI xmax µ

Value 1 2 2 1 10

This behaviour suggests using a periodic disturbance signal added to the error signal in order

to make it negative and force the system to enter the nonlinear case. By choosing a zero-

mean square-wave disturbance, we seek a solution that allows the controllers to asymptotically

approach a distribution of equal effort, while asymptotically tracking the mean reference. The

only disadvantage of using such a persistent excitation is that the system output will never

be exactly equal to the reference value, because of the presence of ripple from the zero-mean

square-wave.

4.1.3 Simulation results for the Decentralized Reliable Balanced Control
by adding a square wave to the error

The analysis presented in Chapter 3 revealed the necessity of nonlinearity to solve the

RBCP. A solution given in this chapter was based on a switched logic with nonlinear gain.

From the results above we see that a periodic disturbance added to the system error is required

(see Fig. 4.5) to guarantee that Kci changes each time it is used.

C
x0
2

P
r y

u1

uk

−

Kc2

e

C
x0
1

Kc1

+

SquareWave

x1

x2

Figure 4.5: Plant P with 2 identical controllers, each containing (nonlinear) switching logic
Kci defined in (4.1), in unity feedback configuration. A zero-mean square wave disturbance is
added to the error to force the system to enter the nonlinear case.

Figure 4.6 and 4.7 presents the results by applying the decentralized balanced redundant

control and a zero-mean square wave added to the error, with an amplitude and frequency given
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by A = 0.01 and F = 2 respectively. With the aim to show with more details the system

behavior, the graphs in Fig. 4.8 presents the same results but with zoom applied at t = 0s to

t = 40s.

The results show that when the controller C2 is out of service, the controller C1 is capable

of tracking the reference by increasing its control action. At t = 15s, when the controller C2

is added back to the system with null initial conditions, the RBC leads the controller outputs to

the equilibrium given by x1 = x2 = 0.25. The controller state behaviour is presented in Figure

4.7a. In Fig. 4.7b the system states are represented in a 3D plot.

In the long term, the control action ui is given by:

ui =
uT

n−m

where uT is the control action necessary to guarantee tracking of the reference, n is the total

number of controllers in the system and m the number of controllers which has failed (recall

that it is assumed that the controllers are either active or completely inactive).

By implementing the controller failures at different times in the simulation, a study was

made in which failures of C2 could even occur during the transient period, when the system

is regulating to its steady state. In Figure 4.9a the difference between the controller outputs is

shown and in Figure 4.9b the system error is calculated (In Fig. 4.10a and Fig 4.10b, a zoom

is used in the begining of the simulation to illustrate with more details the results). This shows

that, independently of when the failure occurs, the remaining controller is able to track the

reference and when C2 returns to activity, the controller outputs tend to reach the equilibrium

u1(t) = u2(t).

4.1.4 Study of the effect of the square wave amplitude and frequency

It is evident that the amplitude and frequency parameters from the square wave can influ-

ence the system output, and this is the objective of study in this section.

The most notable consequence of the square wave persistent excitation (p.e.) is the ap-

pearance of ripples in the system output. It is obvious that the greater the amplitude of the p.e.,

the greater the ripple will be. But what can we say about the system convergence time? And
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Figure 4.6: Plant and controller outputs for the Decentralized Reliable Balanced Control solu-
tion with two controllers and a zero-mean square-wave added to the system error. A fault in C2

occurs at t = 5s. At t = 15s C2 is fixed and returned to the system with null initial conditions.
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Figure 4.7: System states for the Decentralized Reliable Balanced Control solution with two
controllers and a zero-mean square-wave added to the system error. A fault in C2 occurs at
t = 5s. At t = 15s C2 is fixed and returned to the system with null initial conditions.
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Figure 4.8: A zoom view of the simulation results for the Decentralized Reliable Balanced
Control solution with two controllers and a zero-mean square-wave added to the system error.
A fault in C2 occurs at t = 5s. At t = 15s C2 is fixed and returned to the system with null
initial conditions.
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Figure 4.9: Simulation results with failures of C2 occurring at different times. The results
demonstrate the correct functioning of the RBC law.



CHAPTER 4. DECENTRALIZED RELIABLE BALANCED CONTROL LAW 35

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

u
1
(t

)−
u
2
(t

)

Behavior of controller outputs

 

 

Ti: 1

Ti:4

Ti:8

Ti:10

(a) Difference between controller outputs.

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time

s
y
s
te

m
 e

rr
o
r 

e
(t

)

Behavior of system error

(b) System error versus time.

Figure 4.10: A zoom view of the simulation results with failures of C2 occurring at different
times. The results demonstrate the correct functioning of the RBC law.

about the influence of the frequency of the square wave? Some graphs are presented in this

section to illustrate the effect of variations of these parameters.

In Figure 4.11a the system output is plotted by considering different amplitude values for

the square-wave. The ripple value for each amplitude values for the square wave is presented in

Fig. 4.11c. In this study the ripple has been defined by the difference between the largest value

of system output with the smallest one after the system has reached steady state, i. e. how much

the signal will oscillate with respect to the reference.

While studying the influence of frequency variation, the first observation is that the system

time constant should never be slower than the period of the square wave. This means that the

controller should reach steady-state at the end of every half cycle of the disturbance signal. In

Figure 4.12, for frequency f = 10, the system does not have enough time to track the reference

and so a steady state error appears in the output.
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Figure 4.11: Behavior of the system for different values of amplitude of the persistence excita-
tion.
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Figure 4.12: Study of the influence of frequency variation on the system output.



Chapter 5

DRBC for first order plants with time
delays

Delays are frequently found in feedback loops. It is expected that time delays will affect

the system stability and so it is important to study this case to verify if the DRBC solution

is applicable in the presence of a delay. In this chapter a study of a first order plant with time

delay is presented. The idea is to add a time delay to the same first order plant from the previous

chapter and verify its behaviour.

5.1 First order plant with time delay

A first order plant with time delay is expressed as follows:

P (s) =
β

s+ β
e−τs (5.1)

where β = 1 and the time delay is represented by the exponential term, which is a transcendental

function. To analyse this plant, the Padé-approximation is implemented, and the exponential

term is now represented by a nth-order polynomial as presented below.

e−τs ≈ 1− k1s+ k2s
2 + ...± knsn

1 + k1s+ k2s2 + ...+ knsn

The coefficients ki are functions of n and the approximation precision increases with as n grows.

Observe that the Padé approximation adds some right-half plane zeros to the system transfer

function, and so that this system presents a non-minimum phase behaviour. To study the influ-

ence of time delay on the RBC, the first-order Padé approximation was used, i.e., n = 1 and by

38
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definition, k1 = τ/2:

P (s) =

(
β

s+ β

)
1− (τ/2)s

(1 + (τ/2)s)
=

β − (βτ/2)s

(τ/2)s2 + (1 + βτ/2)s+ β

The new system is represented by (5.2).

ẋ1 = s(e, x1)

y1 = αs(e, x1) + sat(x1)

ẋ2 = s(e, x2)

y2 = αs(e, x2) + sat(x2)

u = y1 + y2

ẋp1 = xp2

ẋp2 = −
(
β
ξ

)
xp1 −

(
1+βξ
ξ

)
xp2 +

(
β
ξ

)
u− βu̇

y = xp1

e = r − xp1

(5.2)

The study about first order plants with time delays is performed by using Simulink and

Matlab platform. The block diagram presented in Fig.5.1 represents the system composed by

a first order plant with time delay with two controllers in parallel. The controllers are based

on the DRBC law. Note that the first order Padé approximation was used to calculate the time

delay. In Fig. 5.2 the controller C1 is shown. The controller is resumed by a proportional gain

α, a integrator with saturation and its gain kI and the Switch bloc which, with the Knonlinear

bloc, represents the switching logic Kci. For those simulations, the same system parameters as

in Chapter 4 (see Table 4.1) were used. As before, it is considered here that the controller C2

fails at t = 5s and at t = 15s it is fixed and returned to the system with null initial conditions.

In Figure 5.3 a simulation was performed with τ = 0.1. In this case, the system remains

stable and, after a long time, it is able to achieve the consensus between the controller outputs.

By increasing the parameter τ , as expected, the system becomes unstable. Figure 5.4 presents

the results for τ = 0.3.
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Figure 5.1: Blocks diagram (from Simulink) of the first order plant with time delay with DRBC.

Figure 5.2: Representation of controller C1 on Simulink.
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Figure 5.3: Simulation results for a first order plant with time delay given by τ = 0.1.
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Figure 5.4: Simulation results for a first order plant with time delay given by τ = 0.3.

5.1.1 Smith Predictor Control

To control a system which incorporates time-delay, the compensation scheme known as

Smith Predictor Control is frequently used. The method proposed by O.J.M.Smith in 1959 [2]

is shown in the block diagram in Fig. 5.5. The Smith Predictor aims to minimize the undesired

effects of the time delay. Since the time delay is approximated by a polynomial with poles in the

RHP, system stability is affected and thus, the transient response for a system with time delay

will be worse than for the system without the delay.

C(s) G(s)e−Ls

G̃(1− e−L̃s)

r e y

Figure 5.5: Smith Predictor Control scheme for a plant with time delay.

In the scheme presented, G represents a stable and strictly proper rational function and L

a positive constant which stands for the time delay. G̃ and L̃ represents the nominal versions of

G and L. The Smith Predictor, as can be seen in the Figure, adds a feedback loop around the

controller to make the predicted output more precise, which is some times referred to as "delay

cancellation".
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5.1.2 Decentralized Reliable Balanced Control with Smith Predictor

In this section a new control structure is proposed for the time delay plant represented

by (5.1). This new proposal combines the DRBC method with the Smith Predictor Control as

shown in Fig. 5.6. The Simulink diagram for the new solution is represented in 5.7.

C(s)

P (s)e−τs

P̃ (1− e−τ̃s)r e y

Kc1

x1
0

C(s)

P̃ (1− e−τ̃s)

Kc2

x2
0

−+

+

+

−

−

ỹ1

ỹ2

u1 = y1

u2 = y2

u

Figure 5.6: Smith Predictor added to DRBC method for first order plants with time delay.

Figure 5.7: Blocks diagram (from Simulink) of the first order plant with time delay with DRBC
and Smith Predictor.

The simulation results presented in Fig.5.8 were generated by using the same control

parameters as in Fig. 5.4. However, for the Smith predictor, the time delay has a estimation error

of 0.05. The idea is to simulate a real scenario where the delay and/or the plant are unknown
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Figure 5.8: Simulation results for a first order plant with time delay given by τ = 0.3 and
estimation delay given by τ = 0.35. The Smith Predictor added to the DRBC comprises the
control law for this system.

and so, the Smith predictor is built with an estimate of the plant delay which is erroneous.

Figure 5.9 shows the system behavior for the first 30s of simulation. As can be seen, there

is an impact on the system caused by the inexact estimation of τ however, the system maintains

stable and it is capable of tracking the reference and guaranteeing the consensus between the

controller outputs.

A new analysis by assuming errors in the estimation of the plant parameter β is presented

in Fig.5.10. The estimated plant is given by:

P (s) =
β̃

s+ β̃
=

0.9

s+ 0.9
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Figure 5.9: Simulation results for a first order plant with time delay estimation given by τ =
0.35 from t = 0s to t = 30s. The Smith Predictor added to the DRBC comprises the control
law for this system.

In Fig.5.11 a zoom is applied with the aim of showing the system behavior during the first

30s. Even with the estimation error of β, the system is capable of guaranteeing the reference

tracking and satisfying the consensus condition. Thus, the DRBC appears to be robust to small

errors in the estimation of the delay. Systematic robustness studies of the Smith predictor have

been carried out and could be applied to obtain precise bounds on the estimation error [3, 14,

13, 8, 15].
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Figure 5.10: Simulation results for a first order plant with time delay given by τ = 0.3 and es-
timation plant parameter given by β = 0.9. The Smith Predictor added to the DRBC comprises
the control law for this system.



CHAPTER 5. DRBC FOR FIRST ORDER PLANTS WITH TIME DELAYS 46

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time(s)

y
(t

)

System output

(a) System output.

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

2

2.5

time (s)

u
i(
t)

Controllers output

 

 

u1(t)

u2(t)

(b) Controllers output

Figure 5.11: Simulation results for a first order plant with time plant parameter estimation given
by β = 0.9 from t = 0s to t = 30s. The Smith Predictor added to the DRBC comprises the
control law for this system.



Chapter 6

Conclusions

The purpose of the current study was to design a decentralized fault tolerant control for

first order plants, based on a set of controllers placed in parallel, and for which it is desired

that the control actions be equally divided between the functioning controllers. The class of

faults is defined by the total failure of a controller. Faults occurrence can occur in multiple

controllers simultaneously. A decentralized solution is required, meaning that each controller

has no information about the status of the other controllers.

A linear solution is attempted first. In the presence of failures, this solution satisfies the

regulation objectives but there is no consensus between the controller actions if different initial

conditions are chosen. A nonlinearity was added to the first proposal and the results revealed

that consensus between controller outputs would only be achieved if the control law depends on

the actual state of the controller.

The Balanced Redundant Control is then presented in Chapter 5. In this solution, for

negative errors the control action depends on the controller state and so the consensus of u1 and

u2 becomes possible by modifying this state. Results revealed that an external signal is required

to force the error to become negative from time to time. A zero-mean square wave with a

small amplitude was then chosen to do this. The results show that the modified scheme would

simultaneously satisfy all the problem objectives: when failures occur, the system is capable of

tracking the reference and when a controller is added to the system, the consensus between the

controllers output is attained.

To complement this study, time delays were considered and as expected, even for small

delays the system could become unstable. To compensate the time delay, a Smith Predictor
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was added to each controller resulting from the DRBC method. The results suggest that the

robustness and consensus are guaranteed.

This study has provided a solution for completely decentralized fault-tolerant control so-

lution also achieving a consensus between the controller outputs. The method proposed is only

applicable for first-order plants, including those with delays. The proposed control law mini-

mizes the actuator efforts and is therefore expected to increase lifetime of the latter.

6.1 Future work

Future work should explore the validity of the Balanced Redundant Control solution for

other classes of plants. Studies about the stability of this solution and adaptations to other plants

may be interesting to generalize or to find further limitations.

The redundant balanced control problem formulated in this project is of interest for more

general plants and future work should certainly consider the generalization of the ideas consid-

ered here. Within the scope of this work, the treatment of stability issues was incomplete and a

complete stability proof would be very useful. Issues of practical implementation, for example

in plants with nonnegative states are also expected to be topics of future research. Finally, the

theoretical question of achieving consensus with minimal information exchange between agents

is also richly deserving of further study.
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Chapter 7

Matlab Code
LTI Systems

1 function [M] = LTISSolution1 (T,Ti,Tf)
2

3 %--------------------
4 % Initialization
5 %--------------------
6 t = 0;
7 x1 = 0;
8 x2 = 0;
9 xp = 0;

10

11 dt = 0.001; %Euler step
12 N = T/dt;
13 M = zeros(N,8);
14 %--------------------
15

16 %----------------
17 % Parameters
18 %----------------
19 r = 1;
20 kI = 2;
21 alpha = 2;
22 beta = 1;
23 index = 0;
24 %----------------
25

26 for i = 0:dt:T
27

28 index = index + 1;
29 e = r - xp;
30

31 %----------------
32 %Faillure in C2
33 %----------------
34 if t≥Ti && t≤Tf
35 f = 0;
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36 x2 = 0;
37 else
38 f = 1;
39 end
40 %----------------
41

42 k1 = 1;
43 k2 = 1;
44

45 %-----------------------
46 % Controllers output
47 u1 = x1 + alpha*k1*e;
48 u2 = x2 + alpha*k2*e*f;
49 %-----------------------
50

51 dx1 = kI*k1*e*dt;
52 dx2 = kI*k2*e*dt*f;
53 dxp = beta*(u1+u2-xp)*dt;
54

55 x1 = x1+dx1;
56 x2 = x2+dx2*f;
57 xp = xp+dxp;
58

59 t = t+dt;
60

61 %matrix M: t,x1,x2,xp,y,error
62 M(index,:) = [t,x1,x2,xp,xp,e,u1,u2];
63

64 end



Chapter 8

Matlab Code
Switched Logic Solution

1 function [M] = SLSolution1 (T,Ti,Tf)
2

3 %--------------------
4 % Initialization
5 %--------------------
6 t = 0;
7 x1 = 0;
8 x2 = 0;
9 xp = 0;

10

11 dt = 0.001;
12 N = T/dt;
13 M = zeros(N,8);
14 %--------------------
15

16 %----------------
17 % Parameters
18 %----------------
19 kI = 2;
20 xmax = 1;
21 xmin = 0;
22 r = 1;
23 alpha = 2; %kp
24 beta = 1;
25 mu = 10;
26 index = 0;
27 %----------------
28

29 for i = 0:dt:T
30

31 index = index + 1;
32 e= r - xp;
33

34 %--------------------
35 % Faillure in C2
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36 if t≥Ti && t≤Tf
37 f = 0;
38 x2 = 0;
39 else
40 f = 1;
41 end
42 %--------------------
43

44 if e> r/2
45 k1 = 1;
46 k2 = 1;
47 else
48 k1 = 1/2;
49 k2 = 1/2;
50 end
51

52 %-----------------------
53 % Controllers output
54 u1 = x1 + alpha*k1*e;
55 u2 = x2 + alpha*k2*e*f;
56 %-----------------------
57

58 dx1 = k1*e*dt*kI;
59 dx2 = k2*e*dt*kI;
60 dxp = beta*(u1+u2-xp)*dt;
61

62 x1 = x1+dx1;
63 x2 = x2+dx2*f;
64 xp = xp+dxp;
65

66 %----------------
67 %Saturation
68 %----------------
69 if x1>xmax
70 x1=xmax;
71 end
72

73 if x2>xmax
74 x2=xmax;
75 end
76

77 if x1<xmin
78 x1=xmin;
79 end
80

81 if x2<xmin
82 x2=xmin;
83 end
84 %----------------
85

86 t = t + dt;
87

88 %matrix M: t,x1,x2,xp,y,error
89 M(index,:) = [t,x1,x2,xp,xp,e,u1,u2];
90 end
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Matlab Code
Decentralized Reliable Balanced Control

9.1 Decentralized Reliable Balanced Control without the square
wave:

1 function [M] = BalancedSolutionNoSWpcode
2

3 %--------------------------
4 % General Parameters
5 %--------------------------
6 T = 25; % Simulation max time
7 Ti = 5;
8 Tf = 15;
9

10 %--------------------
11 % Initialization
12 %--------------------
13 t = 0;
14 x1 = 0;
15 x2 = 0;
16 xp = 0;
17 dt = 0.001; %Euler step
18 N = T/dt;
19 M = zeros(N,8);
20 %--------------------
21

22 %----------------
23 % Parameters
24 %----------------
25 kI = 2;
26 xmax = 1;
27 xmin = 0;
28 r = 1;
29 alpha = 2;
30 beta = 1;
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31 mu = 10;
32 %----------------
33

34 index = 0;
35

36 h=waitbar(0,'Waiting...');
37

38 for i = 0:dt:T
39

40 if i==fix(i)
41 waitbar(i/T);
42 end
43

44 index = index + 1;
45 error = r - xp;
46 e = error;
47

48 %----------------
49 %Faillure in C2
50 %----------------
51 if t≥Ti && t≤Tf
52 f = 0;
53 x2 = 0;
54 else
55 f = 1;
56 end
57 %----------------
58

59 if e≥ 0
60 k1 = 1;
61 k2 = 1;
62 else
63 k1 = 1 + mu*x1/xmax;
64 k2 = 1 + mu*x2/xmax;
65 end
66

67 %-----------------------
68 % Controllers output
69 u1 = x1 + alpha*k1*e;
70 u2 = x2 + alpha*k2*e*f;
71 %-----------------------
72

73 dx1 = kI*k1*e*dt;
74 dx2 = kI*k2*e*dt;
75 dxp = beta*(u1+u2-xp)*dt;
76

77 x1 = x1+dx1;
78 x2 = x2+dx2*f;
79 xp = xp+dxp;
80

81 %----------------
82 %Saturation
83 %----------------
84 if x1>xmax
85 x1=xmax;
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86 end
87

88 if x2>xmax
89 x2=xmax;
90 end
91

92 if x1<xmin
93 x1=xmin;
94 end
95

96 if x2<xmin
97 x2=xmin;
98 end
99 %----------------

100

101 t = t+dt;
102

103 %matrix M: t,x1,x2,xp,y,error,u1,u2
104 M(index,:) = [t,x1,x2,xp,xp,error,u1,u2];
105

106 end

9.2 Decentralized Reliable Balanced Control with the square
wave:

1 function [M] = BalancedSolutionpcode
2

3 %--------------------------
4 % General Parameters
5 %--------------------------
6 T = 100; % Simulation max time
7 Ti = 5;
8 Tf = 15;
9 % Square wave

10 Amplitude = 0.01;
11 freq = 2;
12

13 %--------------------
14 % Initialization
15 %--------------------
16 t = 0;
17 x1 = 0;
18 x2 = 0;
19 xp = 0;
20 dt = 0.001; %Euler step
21 N = T/dt;
22 M = zeros(N,8);
23 %--------------------
24

25 %----------------
26 % Parameters
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27 %----------------
28 kI = 2;
29 xmax = 1;
30 xmin = 0;
31 r = 1;
32 alpha = 2;
33 beta = 1;
34 mu = 10;
35 %----------------
36

37 %--------------------
38 % Square Wave
39 %--------------------
40 time = 0:dt:T; % Sampling frequency
41 d = Amplitude*square(2*pi*freq*time);
42 %--------------------
43

44 index = 0;
45

46 h=waitbar(0,'Waiting...');
47

48 for i = 0:dt:T
49

50 if i==fix(i)
51 waitbar(i/T);
52 end
53

54 index = index + 1;
55 error = r - xp;
56 e = error + d(index);
57

58 %----------------
59 %Faillure in C2
60 %----------------
61 if t≥Ti && t≤Tf
62 f = 0;
63 x2 = 0;
64 else
65 f = 1;
66 end
67 %----------------
68

69 if e≥ 0
70 k1 = 1;
71 k2 = 1;
72 else
73 k1 = 1 + mu*x1/xmax;
74 k2 = 1 + mu*x2/xmax;
75 end
76

77 %-----------------------
78 % Controllers output
79 u1 = x1 + alpha*k1*e;
80 u2 = x2 + alpha*k2*e*f;
81 %-----------------------
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82

83 dx1 = kI*k1*e*dt;
84 dx2 = kI*k2*e*dt;
85 dxp = beta*(u1+u2-xp)*dt;
86

87 x1 = x1+dx1;
88 x2 = x2+dx2*f;
89 xp = xp+dxp;
90

91 %----------------
92 %Saturation
93 %----------------
94 if x1>xmax
95 x1=xmax;
96 end
97

98 if x2>xmax
99 x2=xmax;

100 end
101

102 if x1<xmin
103 x1=xmin;
104 end
105

106 if x2<xmin
107 x2=xmin;
108 end
109 %----------------
110

111 t = t+dt;
112

113 %matrix M: t,x1,x2,xp,y,error,u1,u2
114 M(index,:) = [t,x1,x2,xp,xp,error,u1,u2];
115

116 end


