Please use this identifier to cite or link to this item: http://hdl.handle.net/11422/10163
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSzwarcfiter, Jayme Luiz-
dc.contributor.authorLima, Carlos Vinícius Gomes Costa-
dc.date.accessioned2019-10-18T17:32:15Z-
dc.date.available2023-12-21T03:01:43Z-
dc.date.issued2017-04-
dc.identifier.urihttp://hdl.handle.net/11422/10163-
dc.description.abstractThis thesis addresses the problems associated with conversions on graphs and editing by removing a matching. We study the f-reversible processes, which are those associated with a threshold value for each vertex, and whose dynamics depends on the number of neighbors with different state for each vertex. We set a tight upper bound for the period and transient lengths, characterize all trees that reach the maximum transient length for 2-reversible processes, and we show that determining the size of a minimum conversion set is NP-hard. We show that the AND-OR model defines a convexity on graphs. We show results of NP-completeness and efficient algorithms for certain convexity parameters for this new one, as well as approximate algorithms. We introduce the concept of generalized threshold processes, where the results are NP-completeness and efficient algorithms for both non relaxed and relaxed versions. We study the problem of deciding whether a given graph admits a removal of a matching in order to destroy all cycles. We show that this problem is NP-hard even for subcubic graphs, but admits efficient solution for several graph classes. We study the problem of deciding whether a given graph admits a removal of a matching in order to destroy all odd cycles. We show that this problem is NP-hard even for planar graphs with bounded degree, but admits efficient solution for some graph classes. We also show parameterized results.pt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal do Rio de Janeiropt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectEngenharia de Sistemas e Computaçãopt_BR
dc.subjectProcessos reversíveispt_BR
dc.subjectProcessos de limiarpt_BR
dc.titleComplexity and algorithms related to two classes of graph problemspt_BR
dc.typeTesept_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/9245122165772401pt_BR
dc.contributor.advisorCo1Dourado, Mitre Costa-
dc.contributor.advisorCo2Souza, Uéverton dos Santos-
dc.contributor.referee1Barbosa, Valmir Carneiro-
dc.contributor.referee2Protti, Fábio-
dc.contributor.referee3Faria, Luerbio-
dc.description.resumoEsta tese aborda problemas associados a conversões em grafos e de edição pela remoção de um emparelhamento. Estudamos processos f-reversíveis, que são aqueles associados a um valor de limiar para cada vértice e cuja dinâmica depende da quantidade de vizinhos com estado contrário para cada vértice. Estabelecemos um limite superior justo para o tamanho do período e transiente, caracterizamos todas as árvores que alcançam o transiente máximo em processos 2-reversíveis e mostramos que determinar o tamanho de um conjunto conversor mínimo é NP-difícil. Mostramos que o modelo AND-OR define uma convexidade sobre grafos. Mostramos resultados de NP-completude e algoritmos eficientes para certos parâmetros de convexidade para esta nova, assim como algoritmos aproximativos. Introduzimos o conceito de processos de limiar generalizados, onde mostramos resultados de NP-completude e algoritmos eficientes para ambas as versões não relaxada e relaxada. Estudamos o problema de decidir se um dado grafo admite uma remoção de um emparelhamento de modo a remover todos os ciclos. Mostramos que este problema é NP-difícil mesmo para grafos subcúbicos, mas admite solução eficiente para várias classes de grafos. Estudamos o problema de decidir se um dado grafo admite uma remoção de um emparelhamento de modo a remover todos os ciclos ímpares. Mostramos que este problema é NP-difícil mesmo para grafos planares com grau limitado, mas admite solução eficiente para algumas classes de grafos. Mostramos também resultados parametrizados.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenhariapt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia de Sistemas e Computaçãopt_BR
dc.publisher.initialsUFRJpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOpt_BR
dc.embargo.termsabertopt_BR
Appears in Collections:Engenharia de Sistemas e Computação

Files in This Item:
File Description SizeFormat 
878071.pdf3.9 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.