Please use this identifier to cite or link to this item:
http://hdl.handle.net/11422/11669
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Campista, Miguel Elias Mitre | - |
dc.contributor.author | Barreto, Hugo de Freitas Siqueira Sadok Menna | - |
dc.date.accessioned | 2020-03-31T01:47:47Z | - |
dc.date.available | 2023-12-21T03:06:58Z | - |
dc.date.issued | 2018-10 | - |
dc.identifier.uri | http://hdl.handle.net/11422/11669 | - |
dc.description.abstract | Over the last decades, shared systems have contributed to the popularity of many technologies. From Operating Systems to the Internet, they have all brought significant cost savings by allowing the underlying infrastructure to be shared. A common challenge in these systems is to ensure that resources are fairly divided without compromising utilization efficiency. In this thesis, we look at problems in two shared systems—software middleboxes and datacenter task schedulers—and propose ways of improving both efficiency and fairness. We begin by presenting Sprayer, a system that uses packet spraying to load balance packets to cores in software middleboxes. Sprayer eliminates the imbalance problems of per-flow solutions and addresses the new challenges of handling shared flow state that come with packet spraying. We show that Sprayer significantly improves fairness and seamlessly uses the entire capacity, even when there is a single flow in the system. After that, we present Stateful Dominant Resource Fairness (SDRF), a task scheduling policy for datacenters that looks at past allocations and enforces fairness in the long run. We prove that SDRF keeps the fundamental properties of DRF—the allocation policy it is built on—while benefiting users with lower usage. To efficiently implement SDRF, we also introduce live tree, a general-purpose data structure that keeps elements with predictable time-varying priorities sorted. Our trace-driven simulations indicate that SDRF reduces users’ waiting time on average. This improves fairness, by increasing the number of completed tasks for users with lower demands, with small impact on high-demand users. | pt_BR |
dc.language | eng | pt_BR |
dc.publisher | Universidade Federal do Rio de Janeiro | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.subject | Engenharia elétrica | pt_BR |
dc.subject | Caixas intermediárias | pt_BR |
dc.subject | Agendadores de tarefas | pt_BR |
dc.subject | Equidade | pt_BR |
dc.title | Improving software middleboxes and datacenter task schedulers | pt_BR |
dc.type | Dissertação | pt_BR |
dc.contributor.authorLattes | http://lattes.cnpq.br/4850263679929088 | pt_BR |
dc.contributor.advisorCo1 | Costa, Luís Henrique Maciel Kosmalski | - |
dc.contributor.referee1 | Duarte, Otto Carlos Muniz Bandeira | - |
dc.contributor.referee2 | Cunha, Ítalo Fernando Scotá | - |
dc.description.resumo | Nas últimas décadas, sistemas compartilhados contribuíram para a popularidade de muitas tecnologias. Desde Sistemas Operacionais até a Internet, esses sistemas trouxeram economias significativas ao permitir que a infraestrutura subjacente fosse compartilhada. Um desafio comum a esses sistemas é garantir que os recursos sejam divididos de forma justa, sem comprometer a eficiência de utilização. Esta dissertação observa problemas em dois sistemas compartilhados distintos—middleboxes em software e escalonadores de tarefas de datacenters—e propõe maneiras de melhorar tanto a eficiência como a justiça. Primeiro é apresentado o sistema Sprayer, que usa espalhamento para direcionar pacotes entre os núcleos em middleboxes em software. O Sprayer elimina os problemas de desbalanceamento causados pelas soluções baseadas em fluxos e lida com os novos desafios de manipular estados de fluxo, consequentes do espalhamento de pacotes. É mostrado que o Sprayer melhora a justiça de forma significativa e consegue usar toda a capacidade, mesmo quando há apenas um fluxo no sistema. Depois disso, é apresentado o SDRF, uma política de alocação de tarefas para datacenters que considera as alocações passadas e garante justiça ao longo do tempo. Prova-se que o SDRF mantém as propriedades fundamentais do DRF—a política de alocação em que ele se baseia—enquanto beneficia os usuários com menor utilização. Para implementar o SDRF de forma eficiente, também é introduzida a árvore viva, uma estrutura de dados genérica que mantém ordenados elementos cujas prioridades variam com o tempo. Simulações com dados reais indicam que o SDRF reduz o tempo de espera na média. Isso melhora a justiça, ao aumentar o número de tarefas completas dos usuários com menor demanda, tendo um impacto pequeno nos usuários de maior demanda. | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia | pt_BR |
dc.publisher.program | Programa de Pós-Graduação em Engenharia Elétrica | pt_BR |
dc.publisher.initials | UFRJ | pt_BR |
dc.subject.cnpq | CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA | pt_BR |
dc.embargo.terms | aberto | pt_BR |
Appears in Collections: | Engenharia Elétrica |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
888696.pdf | 727.07 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.