Please use this identifier to cite or link to this item: http://hdl.handle.net/11422/11671
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSilva, Eduardo Antônio Barros da-
dc.contributor.authorRibeiro, Felipe Moreira Lopes-
dc.date.accessioned2020-03-31T02:44:28Z-
dc.date.available2023-12-21T03:06:58Z-
dc.date.issued2018-08-
dc.identifier.urihttp://hdl.handle.net/11422/11671-
dc.description.abstractThis work presents a data-driven condition-based maintenance system based on similarity-based modeling (SBM) for automatic machinery fault diagnosis. The proposed system provides information about the equipment current state (degree of anomaly), and returns a set of exemplars that can be employed to describe the current state in a sparse fashion, which can be examined by the operator to assess a decision to be made. The system is modular and data-agnostic, enabling its use in different equipment and data sources with small modifications. The main contributions of this work are: the extensive study of the proposition and use of multiclass SBM on different databases, either as a stand-alone classification method or in combination with an off-the-shelf classifier; novel methods for selecting prototypes for the SBM models; the use of new similarity functions; and a new production-ready fault detection service. These contributions achieved the goal of increasing the SBM models performance in a fault classification scenario while reducing its computational complexity. The proposed system was evaluated in three different databases, achieving higher or similar performance when compared with previous works on the same database. Comparisons with other methods are shown for the recently developed Machinery Fault Database (MaFaulDa) and for the Case Western Reserve University (CWRU) bearing database. The proposed techniques increase the generalization power of the similarity model and of the associated classifier, having accuracies of 98.5% on MaFaulDa and 98.9% on CWRU database. These results indicate that the proposed approach based on SBM is worth further investigation.pt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal do Rio de Janeiropt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectEngenharia elétricapt_BR
dc.subjectDiagnósticopt_BR
dc.subjectDetecção de falhas de máquinaspt_BR
dc.subjectAprendizado de máquinapt_BR
dc.titleSimilarity-based methods for machine diagnosispt_BR
dc.typeTesept_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/3791521581034094pt_BR
dc.contributor.advisorCo1Lima Netto, Sergio-
dc.contributor.referee1Haddad, Diego Barreto-
dc.contributor.referee2Souza Filho, João Baptista de Oliveira e-
dc.contributor.referee3Campos, Mario Cesar Mello Massa de-
dc.description.resumoEste trabalho apresenta um sistema de manutenção preditiva para diagnóstico automático de falhas em máquinas. O sistema proposto, baseado em uma técnica denominada similarity-based modeling (SBM), provê informações sobre o estado atual do equipamento (grau de anomalia), e retorna um conjunto de amostras representativas que pode ser utilizado para descrever o estado atual de forma esparsa, permitindo a um operador avaliar a melhor decisão a ser tomada. O sistema é modular e agnóstico aos dados, permitindo que seja utilizado em variados equipamentos e dados com pequenas modificações. As principais contribuições deste trabalho são: o estudo abrangente da proposta do classificador SBM multi-classe e o seu uso em diferentes bases de dados, seja como um classificador ou auxiliando outros classificadores comumente usados; novos métodos para a seleção de amostras representativas para os modelos SBM; o uso de novas funções de similaridade; e um serviço de detecção de falhas pronto para ser utilizado em produção. Essas contribuições atingiram o objetivo de melhorar o desempenho dos modelos SBM em cenários de classificação de falhas e reduziram sua complexidade computacional. O sistema proposto foi avaliado em três bases de dados, atingindo desempenho igual ou superior ao desempenho de trabalhos anteriores nas mesmas bases. Comparações com outros métodos são apresentadas para a recém-desenvolvida Machinery Fault Database (MaFaulDa) e para a base de dados da Case Western Reserve University (CWRU). As técnicas propostas melhoraram a capacidade de generalização dos modelos de similaridade e do classificador final, atingindo acurácias de 98.5% na MaFaulDa e 98.9% na base de dados CWRU. Esses resultados apontam que a abordagem proposta baseada na técnica SBM tem potencial para ser investigada em mais profundidade.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenhariapt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia Elétricapt_BR
dc.publisher.initialsUFRJpt_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA ELETRICApt_BR
dc.embargo.termsabertopt_BR
Appears in Collections:Engenharia Elétrica

Files in This Item:
File Description SizeFormat 
888705.pdf1.02 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.