Please use this identifier to cite or link to this item: http://hdl.handle.net/11422/13154
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorXexéo, Geraldo Bonorino-
dc.contributor.authorPereira, Fabrício Raphael Silva-
dc.date.accessioned2020-10-03T12:04:39Z-
dc.date.available2023-12-21T03:02:20Z-
dc.date.issued2018-03-
dc.identifier.urihttp://hdl.handle.net/11422/13154-
dc.description.abstractSocial media allow users read, post, and share information about real-world events. There are several techniques to detect or discover real-world events from online news or posts. However, a problem that is often overlooked in this context corresponds to discovering relationships between events. A particular kind of relationship is the similarity between two events, which can be used to organize and filter the flow of information provided to users. This thesis presents an approach to identify similarity relationships between events previously detected in short texts from online media. Thus, it proposes the Autoencoder Neural Event Model (AutoNEM ), an autoencoder-based unsupervised neural network model to discover similarity relations between events structured according to the 5W1H representation standard. This model meets the combination of a set of requirements that have not been satisfied in a single approach in the literature. AutoNEM can encode events in latent space, including each 5W1H -attribute separately, which allows the search for similarity relationships between events through their embeddings. The experiments use data collected from the news corpus EventRegistry to validate the proposed approach. The experimental evaluation indicates that proposed neural model for detecting similarity relationships is effective, and by comparing with some baselines is competitive too. The experiments also evidence some degree of similarity in other pairs of events that had not been evidenced by the manual curators of EventRegistrypt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal do Rio de Janeiropt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectrelationship between eventspt_BR
dc.subjectunsupervised learningpt_BR
dc.subjectautoencoderspt_BR
dc.subjectevent modelpt_BR
dc.subjectevent detectionpt_BR
dc.subjectonline mediapt_BR
dc.subjectnewspt_BR
dc.subjectshort textpt_BR
dc.subjectneural networkspt_BR
dc.subjectdeep learningpt_BR
dc.subjecttext processingpt_BR
dc.titleRelationship between detected events in online mediapt_BR
dc.title.alternativeRelações entre eventos detectados em mídias onlinept_BR
dc.typeTesept_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/4783565791787812pt_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/2425467784030941pt_BR
dc.contributor.referee1Souza, Jano Moreira de-
dc.contributor.referee2Lima, Alexandre de Assis Bento-
dc.contributor.referee3Siqueira, Sean Wolfgand Matsui-
dc.contributor.referee4Ogasawara, Eduardo Soares-
dc.description.resumoAs mídias sociais permitem que os usuários leiam, publiquem e compartilhem informações sobre eventos do mundo real. Existem várias técnicas para detectar ou descobrir eventos do mundo real a partir de notícias ou publicações online. No entanto, um problema que muitas vezes é ignorado neste contexto corresponde à descoberta de relações entre eventos. Um tipo particular de relacionamento é a semelhança entre dois eventos, que podem ser usada para organizar e filtrar o fluxo de informações fornecidas aos usuários. Esta tese apresenta uma abordagem para identificar relações de similaridade entre eventos previamente detectados em textos curtos das mídias online. Dessa forma, é proposto o Autoencoder Neural Event Model (AutoNEM ), um modelo de rede neural não-supervisionado baseado em autoencoder para descobrir relações de similaridade entre eventos estruturados de acordo com o padrão de representação do 5W1H. Este modelo atende à combinação de um conjunto de requisitos que até então não foram satisfeitos em uma única abordagem na literatura. O AutoNEM pode codificar eventos em um espaço latente, incluindo cada atributo 5W1H separadamente, o que permite a busca de relações de similaridade entre eventos através de suas novas representações. Os experimentos usam dados coletados do corpus de notícias EventRegistry para validar a abordagem proposta. Os resultados experimentais indicam que o modelo neural proposto para a detecção de relações de similaridade é efetivo, e ao comparar com alguns baselines também se demonstra competitivo. E ainda evidencia algum grau de similaridade em outros pares de eventos que não foram evidenciados pelos curadores manuais do EventRegistrypt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenhariapt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia de Sistemas e Computaçãopt_BR
dc.publisher.initialsUFRJpt_BR
dc.subject.cnpqCNPQ::ENGENHARIASpt_BR
dc.embargo.termsabertopt_BR
Appears in Collections:Engenharia de Sistemas e Computação

Files in This Item:
File Description SizeFormat 
FabricioRaphaelSilvaPereira.pdf6.48 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.