Please use this identifier to cite or link to this item:
http://hdl.handle.net/11422/22093
Type: | Dissertação |
Title: | New methodologies for machine learning assisted turbulence based on the transport equations for the Reynolds stress tensor and the Reynolds force vector |
Author(s)/Inventor(s): | Macedo, Matheus de Souza Santos |
Advisor: | Thompson, Roney Leon |
Abstract: | A antiga demanda por melhores modelos de turbulência e o custo computacional ainda proibitivo de simulações de alta- delidade em dinâmica dos uidos, como DNS e LES, levaram ao crescente interesse em acoplar dados de simulações de alta- delidade com as populares, porém de cientes, simulações RANS, através de técnicas de Aprendizado de Máquina. Estas técnicas usam dados nobres como alvos para previsões de grandezas a serem propagadas pelas equações RANS. Muitos dos avanços recentes utilizaram o tensor de Reynolds como alvo destas correções. Mais recentemente, uma metodologia alternativa utilizou o divergente do tensor de Reynolds, denominado Vetor de Força de Reynolds, como alvo do Aprendizado de Máquina. Uma nova estratégia é o uso de equações de transporte de grandezas turbulentas contendo termos fonte previstos por Aprendizado de Máquina. Neste contexto, duas novas metodologias foram propostas, uma delas utilizando a equação de transporte do tensor de Reynolds e outra utilizando uma equação para o Vetor de Força de Reynolds. A combinação destas equações com o balanço de momento e um acoplamento com a pressão formou dois modelos de turbulência com base em dados. Redes Neurais foram treinadas utilizando dados DNS para prever os termos fonte de cada equação. Em seguida, os modelos foram usados para corrigir o escoamento turbulento em um duto de seção quadrada. Resultados razoáveis foram obtidos pelos dois modelos de turbulência, consistentemente recuperando o escoamento secundário no duto, que não existia nas simulações iniciais que utilizaram o modelo κ - . As duas metodologias foram também comparados com abordagens alternativas previamente apresentadas na literatura. |
Abstract: | The long lasting demand for better turbulence models and the still prohibitively computational cost of high- delity uid dynamics simulations, like DNS and LES, have led to a rising interest in coupling available high- delity datasets and popular, yet poor, RANS simulations through Machine Learning techniques. These techniques use noble sources as training targets for predicting quantities to be propagated by RANS equations. Many of the recent advances used the Reynolds stress tensor as the target for these corrections. More recently, an alternate methodology used the divergence of the Reynolds stress, denominated the Reynolds Force Vector, computed indirectly by manipulating mean momentum balance, as the target for the Machine Learning techniques. An unexplored strategy in this e ort is to use transport equations for turbulent quantities fueled by Machine Learning predicted source terms. In this context, two new methodologies were proposed, one using a transport equation for the Reynolds Stress and another one using a transport equation for the Reynolds Force Vector. The combination of these transport equations along with the momentum balance and a pressure coupling formed two data-driven turbulence models. Neural Networks were trained using DNS data to predict the source terms of each equation. Subsequently, both proposed models were employed to correct the turbulent ow on a square-duct. Reasonable results were obtained by both datadriven turbulence models, consistently recovering the secondary ow on the duct, which was not present in the baseline simulations that used the κ - model. Results from both methods were compared with alternate strategies previously presented in literature. |
Keywords: | Turbulência Aprendizado de máquina OpenFOAM |
Subject CNPq: | Engenharia Mecânica |
Program: | Programa de Pós-Graduação em Engenharia Mecânica |
Production unit: | Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia |
Publisher: | Universidade Federal do Rio de Janeiro |
Issue Date: | Jul-2020 |
Publisher country: | Brasil |
Language: | eng |
Right access: | Acesso Aberto |
Appears in Collections: | Engenharia Mecânica |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
943878.pdf | 7.97 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.