Please use this identifier to cite or link to this item: http://hdl.handle.net/11422/27280

Full metadata record
DC FieldValueLanguage
dc.contributor.authorMenezes, Juliana Perrone Bezerra de-
dc.contributor.authorCunha, Antônio Ricardo Khouri-
dc.contributor.authorOliveira, Camila Victoria Sousa-
dc.contributor.authorPetersen, Antonio Luis de Oliveira Almeida-
dc.contributor.authorAlmeida, Taís Fontoura de-
dc.contributor.authorMendes, Flávia R. L.-
dc.contributor.authorRebouças, Amanda do Amor Divino-
dc.contributor.authorLorenzt, Amanda Lopes-
dc.contributor.authorLuz, Nívea Farias-
dc.contributor.authorLima, Jonilson Berlink-
dc.contributor.authorRamos, Pablo Ivan Pereira-
dc.contributor.authorSoares, Rodrigo Pedro-
dc.contributor.authorRugani, Jeronimo Nunes-
dc.contributor.authorBuck, Gregory A.-
dc.contributor.authorKrieger, Marco Aurélio-
dc.contributor.authorMarchini, Fabrício Klerynton-
dc.contributor.authorVivarini, Áislan de Carvalho-
dc.contributor.authorLopes, Ulisses Gazos-
dc.contributor.authorBorges, Valéria de Matos-
dc.contributor.authorVeras, Patricia Sampaio Tavares-
dc.date.accessioned2025-10-02T17:10:22Z-
dc.date.available2025-10-04T03:00:10Z-
dc.date.issued2019-06-28-
dc.identifier.citationMENEZES, Juliana Perrone Bezerra de; KHOURI, Ricardo; OLIVEIRA, Camila Victoria Sousa; PETERSEN, Antonio Luis de Oliveira Almeida; ALMEIDA, Taís Fontoura de; MENDES, Flávia R. L.; REBOUÇAS, Amanda do Amor Divino; LORENTZ, Amanda Lopes; LUZ, Nívea Farias; LIMA, Jonilson Berlink; RAMOS, Pablo Ivan Pereira; SOARES, Rodrigo Pedro; RUGANI, Jeronimo Nunes; BUCK, Gregory A.; KRIEGER, Marco Aurélio; MARCHINI, Fabrício Klerynton; VIVARINI, Áislan de Carvalho; LOPES, Ulisses Gazos; BORGES, Valéria de Matos; VERAS, Patricia Sampaio Tavares. Proteomic Analysis Reveals a Predominant NFE2L2 (NRF2) Signature in Canonical Pathway andUpstream Regulator Analysis of Leishmania-Infected Macrophages. Frontiers in Immunology, v. 10, p. 1362, 2019.pt_BR
dc.identifier.issn1664-3224pt_BR
dc.identifier.urihttp://hdl.handle.net/11422/27280-
dc.description.abstractCBA mice macrophages (MØ) control infection by Leishmania major and are susceptive to Leishmania amazonensis, suggesting that both parasite species induce distinct responses that play important roles in infection outcome. To evaluate the MØ responses to infection arising from these two Leishmania species, a proteomic study using a Multidimensional Protein Identification Technology (MudPIT) approach with liquid chromatography tandem mass spectrometry (LC-MS/MS) was carried out on CBA mice bone-marrow MØ (BMMØ). Following SEQUEST analysis, which revealed 2,838 proteins detected in BMMØ, data mining approach found six proteins significantly associated with the tested conditions. To investigate their biological significance, enrichment analysis was performed using Ingenuity Pathway Analysis (IPA). A three steps IPA approach revealed 4 Canonical Pathways (CP) and 7 Upstream Transcriptional Factors (UTFs) strongly associated with the infection process. NRF2 signatures were present in both CPs and UTFs pathways. Proteins involved in iron metabolism, such as heme oxigenase 1 (HO-1) and ferritin besides sequestosome (SQSMT1 or p62) were found in the NRF2 CPs and the NRF2 UTFs. Differences in the involvement of iron metabolism pathway in Leishmania infection was revealed by the presence of HO-1 and ferritin. Noteworty, HO-1 was strongly associated with L. amazonensis infection, while ferritin was regulated by both species. As expected, higher HO-1 and p62 expressions were validated in L. amazonensis-infected BMMØ, in addition to decreased expression of ferritin and nitric oxide production. Moreover, BMMØ incubated with L. amazonensis LPG also expressed higher levels of HO-1 in comparison to those stimulated with L. major LPG. In addition, L. amazonensis-induced uptake of holoTf was higher than that induced by L. major in BMMØ, and holoTf was also detected at higher levels in vacuoles induced by L. amazonensis. Taken together, these findings indicate that NRF2 pathway activation and increased HO-1 production, together with higher levels of holoTf uptake, may promote permissiveness to L. amazonensis infection. In this context, differences in protein signatures triggered in the host by L. amazonensis and L. major infection could drive the outcomes in distinct clinical forms of leishmaniasis.en
dc.languageporpt_BR
dc.publisherFrontierspt_BR
dc.relation.ispartofFrontiers in Immunologyen
dc.rightsAcesso Abertopt_BR
dc.subjectLeishmaniapt_BR
dc.subjectMacrófagospt_BR
dc.subjectMetabolismopt_BR
dc.subjectFerropt_BR
dc.subjectCamundongospt_BR
dc.subjectMacrophagesen
dc.subjectMetabolismen
dc.subjectIronen
dc.subjectMiceen
dc.titleProteomic analysis reveals a predominant NFE2L2 (NRF2) signature in canonical pathway and upstream regulator analysis of Leishmania-infected macrophagesen
dc.typeArtigopt_BR
dc.identifier.doi10.3389/fimmu.2019.01362pt_BR
dc.description.resumoIndisponível.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Ciências Médicaspt_BR
dc.subject.cnpqCNPQ::CIENCIAS DA SAUDE::MEDICINA::CLINICA MEDICA::DOENCAS INFECCIOSAS E PARASITARIASpt_BR
dc.citation.volume10pt_BR
dc.citation.spage1pt_BR
dc.citation.epage17pt_BR
dc.embargo.termsabertopt_BR
Appears in Collections:Ciências da Saúde

Files in This Item:
File Description SizeFormat 
JPBMenezes.pdf2.16 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.