Please use this identifier to cite or link to this item: http://hdl.handle.net/11422/8525
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMoriconi, Luca-
dc.contributor.authorPereira, Rodrigo Miranda-
dc.contributor.authorGrigorio, Leonardo de Sousa-
dc.date.accessioned2019-06-25T18:29:30Z-
dc.date.available2023-12-21T03:06:04Z-
dc.date.issued2014-10-09-
dc.identifier.issn1742-5468pt_BR
dc.identifier.urihttp://hdl.handle.net/11422/8525-
dc.description.abstractThe Recent Fluid Deformation Closure (RFDC) model of lagrangian turbulence is recast in path-integral language within the framework of the Martin–Siggia–Rose functional formalism. In order to derive analytical expressions for the velocity-gradient probability distribution functions (vgPDFs), we carry out noise renormalization in the low-frequency regime and find approximate extrema for the Martin–Siggia–Rose effective action. We verify, with the help of Monte Carlo simulations, that the vgPDFs so obtained yield a close description of the single-point statistical features implied by the original RFDC stochastic differential equations.en
dc.languageengpt_BR
dc.publisherIOP Publishingen
dc.relation.ispartofJournal of Statistical Mechanics: Theory and Experimenten
dc.rightsAcesso Abertopt_BR
dc.subjectIntermittencyen
dc.subjectLagrangian dynamicsen
dc.subjectTurbulenceen
dc.subjectStochastic processesen
dc.titleVelocity-gradient probability distribution functions in a lagrangian model of turbulenceen
dc.typeArtigopt_BR
dc.identifier.doi10.1088/1742-5468/2014/10/P10015pt_BR
dc.description.resumoIndisponível.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentNúcleo Interdisciplinar de Dinâmica dos Fluidospt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOSpt_BR
dc.embargo.terms365 diaspt_BR
Appears in Collections:Engenharias



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.