Please use this identifier to cite or link to this item:
http://hdl.handle.net/11422/8646
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Silva, Geraldo Zimbrão da | - |
dc.contributor.author | Almeida, Julio César Barbieri Gonzalez de | - |
dc.date.accessioned | 2019-07-03T17:44:52Z | - |
dc.date.available | 2023-12-21T03:01:02Z | - |
dc.date.issued | 2017-03 | - |
dc.identifier.uri | http://hdl.handle.net/11422/8646 | - |
dc.description.abstract | Collaborative Filtering to Supervised Learning (COFILS) transforms a Collaborative Filtering (CF) problem into classical Supervised Learning (SL) problem. Applying COFILS reduce data sparsity and make it possible to test a variety of SL algorithms rather than matrix decomposition methods. It main steps are: extraction, mapping and prediction. Firstly, a Singular Value Decomposition (SVD) generates a set of latent variables from a ratings matrix. Next, on the mapping phase, a new data set is generated where each sample contains a set of latent variables from an user and it rated item; and a target that corresponds the user rating for that item. Finally, on the last phase, a SL algorithm is applied. One problem of COFILS is it’s dependency on SVD, that is not able to extract non-linear features from data and it is not robust to noisy data. To address this problem, we propose switching SVD to a Stacked Denoising Autoencoder (SDA) on the first phase of COFILS. With SDA, more useful and complex representations can be learned in a Deep Network with a local denoising criterion. We test our novel technique, namely Deep Learning COFILS (DL-COFILS), on MovieLens, R3 Yahoo! Music and Movie Tweetings data sets and compare to COFILS, as a baseline, and state of the art CF techniques. Our results indicate that DL-COFILS outperforms COFILS for all the data sets and with an improvement up to 5.9%. Also, DL-COFILS achieves the best result for the MovieLens 100k data set and ranks on the top three algorithms for these data sets. Thus, we show that DL-COFILS represents an advance on COFILS methodology, improving it’s results and that is a suitable method for CF problem. | pt_BR |
dc.language | eng | pt_BR |
dc.publisher | Universidade Federal do Rio de Janeiro | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.subject | Engenharia de Sistemas e Computação | pt_BR |
dc.subject | Sistemas de recomendação | pt_BR |
dc.subject | Filtragem colaborativa | pt_BR |
dc.title | When autoencoders meet recommender systems : COFILS approach | pt_BR |
dc.type | Dissertação | pt_BR |
dc.contributor.authorLattes | http://lattes.cnpq.br/3485168307071951 | pt_BR |
dc.contributor.advisorCo1 | Alvim, Leandro Guimarães Marques | - |
dc.contributor.referee1 | Xexéo, Geraldo Bonorino | - |
dc.contributor.referee2 | Mello, Carlos Eduardo Ribeiro de | - |
dc.description.resumo | Collaborative Filtering to Supervised Learning (COFILS) transforma um problema de filtragem colaborativa (CF) em um problema clássico de aprendizado supervisionado (SL). Sua aplicação reduz a esparsidade e torna possível a utilização de variados algoritmos de SL em oposição aos métodos de decomposição de matrizes. Primeiramente, a Decomposição em Valores Singulares (SVD) gera um conjunto de variáveis latentes a partir da matriz de avaliações. Na fase de mapeamento, um novo conjunto de dados é gerado, do qual cada amostra contém um conjunto de variáveis latentes de um usuário e do item avaliado; e um valor que corresponde a avaliação que o usuário atribuiu a esse item. Por fim, o algoritmo de SL é aplicado. Um ponto negativo do COFILS é sua dependência ao SVD, incapaz de extrair características não-lineares e sem robustez `a dados ruidosos. Nesse caso, propomos a troca do SVD por um Stacked Denoising Autoencoder (SDA). Com o uso de um SDA, representações mais úteis e complexas podem ser aprendidas em uma rede neural profunda com um critério local de remoção de ruído. Executamos nossa técnica, chamada Deep Learning COFILS (DL-COFILS), nos conjuntos de dados MovieLens, R3 Yahoo! Music e Movie Tweetings comparando os resultados com o COFILS padrão, como baseline, e demais técnicas de estado da arte de CF. Com os resultados obtidos, é possível mencionar que DL-COFILS supera COFILS para todos os conjuntos de dados, com uma melhora de até 5.9%. Além disso, o DLCOFILS alcança o melhor resultado para o MovieLens 100k e se encontra entre os três melhores algoritmos nos demais conjuntos de dados. Dessa forma, mostraremos que DL-COFILS representa um avanço na metodologia COFILS, melhorando seus resultados e se mostrando um método adequado para CF. | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia | pt_BR |
dc.publisher.program | Programa de Pós-Graduação em Engenharia de Sistemas e Computação | pt_BR |
dc.publisher.initials | UFRJ | pt_BR |
dc.subject.cnpq | CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO | pt_BR |
dc.embargo.terms | aberto | pt_BR |
Appears in Collections: | Engenharia de Sistemas e Computação |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
880216.pdf | 757.09 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.