Please use this identifier to cite or link to this item: http://hdl.handle.net/11422/8646
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSilva, Geraldo Zimbrão da-
dc.contributor.authorAlmeida, Julio César Barbieri Gonzalez de-
dc.date.accessioned2019-07-03T17:44:52Z-
dc.date.available2023-12-21T03:01:02Z-
dc.date.issued2017-03-
dc.identifier.urihttp://hdl.handle.net/11422/8646-
dc.description.abstractCollaborative Filtering to Supervised Learning (COFILS) transforms a Collaborative Filtering (CF) problem into classical Supervised Learning (SL) problem. Applying COFILS reduce data sparsity and make it possible to test a variety of SL algorithms rather than matrix decomposition methods. It main steps are: extraction, mapping and prediction. Firstly, a Singular Value Decomposition (SVD) generates a set of latent variables from a ratings matrix. Next, on the mapping phase, a new data set is generated where each sample contains a set of latent variables from an user and it rated item; and a target that corresponds the user rating for that item. Finally, on the last phase, a SL algorithm is applied. One problem of COFILS is it’s dependency on SVD, that is not able to extract non-linear features from data and it is not robust to noisy data. To address this problem, we propose switching SVD to a Stacked Denoising Autoencoder (SDA) on the first phase of COFILS. With SDA, more useful and complex representations can be learned in a Deep Network with a local denoising criterion. We test our novel technique, namely Deep Learning COFILS (DL-COFILS), on MovieLens, R3 Yahoo! Music and Movie Tweetings data sets and compare to COFILS, as a baseline, and state of the art CF techniques. Our results indicate that DL-COFILS outperforms COFILS for all the data sets and with an improvement up to 5.9%. Also, DL-COFILS achieves the best result for the MovieLens 100k data set and ranks on the top three algorithms for these data sets. Thus, we show that DL-COFILS represents an advance on COFILS methodology, improving it’s results and that is a suitable method for CF problem.pt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal do Rio de Janeiropt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectEngenharia de Sistemas e Computaçãopt_BR
dc.subjectSistemas de recomendaçãopt_BR
dc.subjectFiltragem colaborativapt_BR
dc.titleWhen autoencoders meet recommender systems : COFILS approachpt_BR
dc.typeDissertaçãopt_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/3485168307071951pt_BR
dc.contributor.advisorCo1Alvim, Leandro Guimarães Marques-
dc.contributor.referee1Xexéo, Geraldo Bonorino-
dc.contributor.referee2Mello, Carlos Eduardo Ribeiro de-
dc.description.resumoCollaborative Filtering to Supervised Learning (COFILS) transforma um problema de filtragem colaborativa (CF) em um problema clássico de aprendizado supervisionado (SL). Sua aplicação reduz a esparsidade e torna possível a utilização de variados algoritmos de SL em oposição aos métodos de decomposição de matrizes. Primeiramente, a Decomposição em Valores Singulares (SVD) gera um conjunto de variáveis latentes a partir da matriz de avaliações. Na fase de mapeamento, um novo conjunto de dados é gerado, do qual cada amostra contém um conjunto de variáveis latentes de um usuário e do item avaliado; e um valor que corresponde a avaliação que o usuário atribuiu a esse item. Por fim, o algoritmo de SL é aplicado. Um ponto negativo do COFILS é sua dependência ao SVD, incapaz de extrair características não-lineares e sem robustez `a dados ruidosos. Nesse caso, propomos a troca do SVD por um Stacked Denoising Autoencoder (SDA). Com o uso de um SDA, representações mais úteis e complexas podem ser aprendidas em uma rede neural profunda com um critério local de remoção de ruído. Executamos nossa técnica, chamada Deep Learning COFILS (DL-COFILS), nos conjuntos de dados MovieLens, R3 Yahoo! Music e Movie Tweetings comparando os resultados com o COFILS padrão, como baseline, e demais técnicas de estado da arte de CF. Com os resultados obtidos, é possível mencionar que DL-COFILS supera COFILS para todos os conjuntos de dados, com uma melhora de até 5.9%. Além disso, o DLCOFILS alcança o melhor resultado para o MovieLens 100k e se encontra entre os três melhores algoritmos nos demais conjuntos de dados. Dessa forma, mostraremos que DL-COFILS representa um avanço na metodologia COFILS, melhorando seus resultados e se mostrando um método adequado para CF.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenhariapt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia de Sistemas e Computaçãopt_BR
dc.publisher.initialsUFRJpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOpt_BR
dc.embargo.termsabertopt_BR
Appears in Collections:Engenharia de Sistemas e Computação

Files in This Item:
File Description SizeFormat 
880216.pdf757.09 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.