Please use this identifier to cite or link to this item: http://hdl.handle.net/11422/11683
Type: Dissertação
Title: Automatic removal of music tracks from tv programmes
Author(s)/Inventor(s): Lordelo, Carlos Pedro Vianna
Advisor: Biscainho, Luiz Wagner Pereira
Abstract: Este trabalho está inserido na área de pesquisa de separação de fontes sonoras. Ele trata do problema de remover automaticamente segmentos de música de programas de TV. A tese propõe a utilização de uma gravação musical pré-existente, facilmente obtida em CDs oficialmente publicados relacionados à obra audiovisual, como referência para o sinal não desejado. O método é capaz de detectar automaticamente pequenos segmentos de uma trilha musical específica espalhados pelo sinal de áudio do programa, mesmo que eles apareçam com um ganho variante no tempo, ou tenham sofrido distorções lineares, como processamento por filtros equalizadores, ou distorções não lineares, como compressão de sua faixa dinâmica. O projeto desenvolveu um algoritmo de busca rápida usando técnicas de impressão digital de áudio e dados do tipo hash-token para diminuir a complexidade. O trabalho também propõe a utilização da técnica de filtragem de Wiener para estimar os coe cientes de um potencial filtro de equalização, e usa um algoritmo de template matching para estimar ganhos variantes no tempo para escalar corretamente os excertos musicais até a amplitude correta com que eles aparecem na mistura. Os componentes-chaves para o sistema de separação são apresentados, e uma descrição detalhada de todos os algoritmos envolvidos é reportada. Simulações com trilhas sonoras artificiais e de programas de TV reais são analisadas e considerações sobre novos trabalhos futuros são feitas. Além disso, dada a natureza única do projeto, é possível dizer que a dissertação é pioneira no assunto, tornando-se uma fonte de referência para outros pesquisadores que queiram trabalhar na área.
Abstract: This work pertains to in the research area of sound source separation. It deals with the problem of automatically removing musical segments from TV programmes. The dissertation proposes the utilisation of a pre-existant music recording, easily obtainable from o cially published CDs related to the audiovisual piece, as a reference for the undesired signal. The method is able to automatically detect small segments of the speci c musictrack spread among the whole audio signal of the programme, even if they appear with time-variable gain, or after having su ered linear distortions, such as being processed by equalization lters, or non-linear distortions, such as dynamic range compression. The project developed a quick-search algorithm using audio ngerprint techniques and hash-token data types to lower the algorithm complexity. The work also proposes the utilisation of a Wiener ltering technique to estimate potential equalization lter coe cients and uses a template matching algorithm to estimate time-variable gains to properly scale the musical segments to the correct amplitude they appear in the mixture. The key components of the separation system are presented, and a detailed description of all the algorithms involved is reported. Simulations with arti cial and real TV programme soundtracks are analysed and considerations about new future works are made. Furthermore, given the unique nature of this project, it is possible to say the dissertation is pioneer in the subject, becoming an ideal source of reference for other researchers that want to work in the area.
Keywords: Engenharia elétrica
Separação da fonte sonora
Extração de música
Sinais multimídia
Trilha sonora
Impressão digital de áudio
Subject CNPq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Program: Programa de Pós-Graduação em Engenharia Elétrica
Production unit: Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Publisher: Universidade Federal do Rio de Janeiro
Issue Date: Sep-2018
Publisher country: Brasil
Language: eng
Right access: Acesso Aberto
Appears in Collections:Engenharia Elétrica

Files in This Item:
File Description SizeFormat 
888966.pdf2.89 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.