Please use this identifier to cite or link to this item: http://hdl.handle.net/11422/12127
Type: Tese
Title: Análise experimental e modelagem do atrito em escoamento turbulento totalmente desenvolvido de fluido não-Newtoniano em tubulações de superfície lisa e rugosa
Author(s)/Inventor(s): Santos, Cecilia Mageski Madeira
Advisor: Daniel Onofre de Almeida Cruz, Daniel Onofre de Almeida
Abstract: Escoamento de fluidos newtonianos sobre superfícies lisas e rugosas são temas de grande interesse no âmbito acadêmico há muitas décadas. Com o avanço da indústria de exploração de petróleo e gás, o transporte de fluidos considerados não newtonianos, tem gerado muita pesquisa, e pouco se sabe sobre seu comportamento sobre superfície rugosa, devido à complexidade e dificuldade de gerar dados experimentais. Na literatura existem trabalhos apresentando equação para o fator de atrito de fluido não-newtoniano para superfície lisa (DODGE e METZNER, 1959; SHAVER e MERRILL, 1959; SZILAS et al., 1981), e para superfície rugosa (SHUKRI, 2016; SZILAS et al., 1981), onde a influencia do tipo de fluido no termo rugoso da equação de atrito é desprezada. Para a realização deste trabalho foi utilizado e adaptado um aparato experimental contendo seis circuitos de tubulação em aço inox com diferentes rugosidades, sendo testado e validado com fluido newtoniano (água), e o fluido de trabalho não-newtoniano para cada ensaio foi preparado e conduziram-se campanhas de medições. As medições de perda de carga e vazão utilizando fluido newtoniano para validação do aparato e fluido não-newtoniano (CMC - Carboximetilcelulose) visando identificar o comportamento do escoamento nestas superfícies. As características reológicas do fluido foram quantificadas através de testes em areômetro rotacional durante todas as campanhas de ensaio experimental. O objetivo final desta tese consiste em analisar a influencia da mudança de rugosidade da tubulação no escoamento de fluido newtoniano e não-newtoniano.
Abstract: Flow of newtonian fluids over smooth and rough surfaces have been a topic of great academic interest for many decades. With the advancement of oil and gas exploration the transport of non-newtonian fluids, has generated much research, and little is known about the flow over rough surfaces due to the complexity and difficulty of generating experimental data. In the literature there are papers that present the friction factor equation for the non-newtonian fluid for smooth surfaces (DODGE e METZNER, 1959; SHAVER e MERRILL, 1959; SZILAS et al., 1981), and for rough surface (SHUKRI, 2016; SZILAS et al., 1981). On all of those papers, the influence of the fluid rheology on the rough component of the friction equation is neglected. An experimental apparatus, including six stainless steel pipe circuits with different roughness, was tested and validated with newtonian fluid (water), and the non-newtonian working fluid for each test was prepared, and an extensive measurement campaigns conducted. Measurements of pressure drop and flow rate, using newtonian fluid for validation of the apparatus and non-newtonian fluid (CMC - Carboxymethylcellulose) were made, aiming to identify the behavior of the flow in this types of surfaces. The rheological characteristics of the fluid were made by rotational rheometer testing throughout the experimental run. The final objective of this thesis is to analyze the influence of the change of the surface roughness in the flow of newtonian and non-newtonian fluid.
Keywords: Equação do atrito
Rugosidade
Subject CNPq: CNPQ::ENGENHARIAS::ENGENHARIA MECANICA
Program: Programa de Pós-Graduação em Engenharia Mecânica
Production unit: Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Publisher: Universidade Federal do Rio de Janeiro
Issue Date: Jan-2018
Publisher country: Brasil
Language: por
Right access: Acesso Aberto
Appears in Collections:Engenharia Mecânica

Files in This Item:
File Description SizeFormat 
CeciliaMageskiMadeiraSantos.pdf111.4 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.