Please use this identifier to cite or link to this item: http://hdl.handle.net/11422/8525
Type: Artigo
Title: Velocity-gradient probability distribution functions in a lagrangian model of turbulence
Author(s)/Inventor(s): Moriconi, Luca
Pereira, Rodrigo Miranda
Grigorio, Leonardo de Sousa
Abstract: Indisponível.
Abstract: The Recent Fluid Deformation Closure (RFDC) model of lagrangian turbulence is recast in path-integral language within the framework of the Martin–Siggia–Rose functional formalism. In order to derive analytical expressions for the velocity-gradient probability distribution functions (vgPDFs), we carry out noise renormalization in the low-frequency regime and find approximate extrema for the Martin–Siggia–Rose effective action. We verify, with the help of Monte Carlo simulations, that the vgPDFs so obtained yield a close description of the single-point statistical features implied by the original RFDC stochastic differential equations.
Keywords: Intermittency
Lagrangian dynamics
Turbulence
Stochastic processes
Subject CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
Production unit: Núcleo Interdisciplinar de Dinâmica dos Fluidos
Publisher: IOP Publishing
In: Journal of Statistical Mechanics: Theory and Experiment
Issue Date: 9-Oct-2014
DOI: 10.1088/1742-5468/2014/10/P10015
Publisher country: Brasil
Language: eng
Right access: Acesso Aberto
ISSN: 1742-5468
Appears in Collections:Engenharias



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.