Please use this identifier to cite or link to this item:
http://hdl.handle.net/11422/8525
Type: | Artigo |
Title: | Velocity-gradient probability distribution functions in a lagrangian model of turbulence |
Author(s)/Inventor(s): | Moriconi, Luca Pereira, Rodrigo Miranda Grigorio, Leonardo de Sousa |
Abstract: | Indisponível. |
Abstract: | The Recent Fluid Deformation Closure (RFDC) model of lagrangian turbulence is recast in path-integral language within the framework of the Martin–Siggia–Rose functional formalism. In order to derive analytical expressions for the velocity-gradient probability distribution functions (vgPDFs), we carry out noise renormalization in the low-frequency regime and find approximate extrema for the Martin–Siggia–Rose effective action. We verify, with the help of Monte Carlo simulations, that the vgPDFs so obtained yield a close description of the single-point statistical features implied by the original RFDC stochastic differential equations. |
Keywords: | Intermittency Lagrangian dynamics Turbulence Stochastic processes |
Subject CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS |
Production unit: | Núcleo Interdisciplinar de Dinâmica dos Fluidos |
Publisher: | IOP Publishing |
In: | Journal of Statistical Mechanics: Theory and Experiment |
Issue Date: | 9-Oct-2014 |
DOI: | 10.1088/1742-5468/2014/10/P10015 |
Publisher country: | Brasil |
Language: | eng |
Right access: | Acesso Aberto |
ISSN: | 1742-5468 |
Appears in Collections: | Engenharias |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
MoriconiEtAl-Velocity-GradientProbabilityDistributionFunctionsInALagrangianModelOfTurbulence-min.pdf | 409.14 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.