Please use this identifier to cite or link to this item:
http://hdl.handle.net/11422/8590
Type: | Artigo |
Title: | The Walker Function |
Author(s)/Inventor(s): | Mikhailov, Mikhail Dimitrov Freire, Atila Pantaleão Silva |
Abstract: | Indisponível. |
Abstract: | The special function (the Walker function) and its derivatives are important for the description of near-wall turbulent flows. This article gives exact expressions for these functions, based on original identities for the hypergeometric functions 1F1 and pFp . We also introduce a new initial value problem that generates interpolating functions for (the Walker function) and its derivatives. |
Keywords: | Walker function Turbulent flows Hypergeometric functions |
Subject CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS |
Production unit: | Núcleo Interdisciplinar de Dinâmica dos Fluidos |
In: | The Mathematica Journal |
Volume: | 14 |
Issue Date: | 19-Mar-2019 |
DOI: | 10.3888/tmj.14-11 |
Publisher country: | Brasil |
Language: | eng |
Right access: | Acesso Aberto |
Appears in Collections: | Engenharias |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2012_FREIRE_TMJ_v14_p1-9-min.pdf | 264.64 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.