Please use this identifier to cite or link to this item: http://hdl.handle.net/11422/8590
Type: Artigo
Title: The Walker Function
Author(s)/Inventor(s): Mikhailov, Mikhail Dimitrov
Freire, Atila Pantaleão Silva
Abstract: Indisponível.
Abstract: The special function (the Walker function) and its derivatives are important for the description of near-wall turbulent flows. This article gives exact expressions for these functions, based on original identities for the hypergeometric functions 1F1 and pFp . We also introduce a new initial value problem that generates interpolating functions for (the Walker function) and its derivatives.
Keywords: Walker function
Turbulent flows
Hypergeometric functions
Subject CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
Production unit: Núcleo Interdisciplinar de Dinâmica dos Fluidos
In: The Mathematica Journal
Volume: 14
Issue Date: 19-Mar-2019
DOI: 10.3888/tmj.14-11
Publisher country: Brasil
Language: eng
Right access: Acesso Aberto
Appears in Collections:Engenharias

Files in This Item:
File Description SizeFormat 
2012_FREIRE_TMJ_v14_p1-9-min.pdf264.64 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.