Please use this identifier to cite or link to this item:
http://hdl.handle.net/11422/11572
Type: | Tese |
Title: | A monitoring and threat detection system using stream processing as a virtual function for big data |
Author(s)/Inventor(s): | Lopez, Martin Esteban Andreoni |
Advisor: | Duarte, Otto Carlos Muniz Bandeira |
Co-advisor: | Pujolle, Guy |
Abstract: | A detecção tardia de ameaças de segurança causa um significante aumento no risco de danos irreparáveis, impossibilitando qualquer tentativa de defesa. Como consequência, a detecção rápida de ameaças em tempo real é essencial para a administração de segurança. Além disso, A tecnologia de virtualização de funções de rede (Network Function Virtualization - NFV) oferece novas oportunidades para soluções de segurança eficazes e de baixo custo. Propomos um sistema de detecção de ameaças rápido e eficiente, baseado em algoritmos de processamento de fluxo e de aprendizado de máquina. As principais contribuições deste trabalho são: i) um novo sistema de monitoramento e detecção de ameaças baseado no processamento de fluxo; ii) dois conjuntos de dados, o primeiro ´e um conjunto de dados sintético de segurança contendo tráfego suspeito e malicioso, e o segundo corresponde a uma semana de tráfego real de um operador de telecomunicações no Rio de Janeiro, Brasil; iii) um algoritmo de pré-processamento de dados composto por um algoritmo de normalização e um algoritmo para seleção rápida de características com base na correlação entre variáveis; iv) uma função de rede virtualizada em uma plataforma de código aberto para fornecer um serviço de detecção de ameaças em tempo real; v) posicionamento quase perfeito de sensores através de uma heurística proposta para posicionamento estratégico de sensores na infraestrutura de rede, com um número mínimo de sensores; e, finalmente, vi) um algoritmo guloso que aloca sob demanda uma sequencia de funções de rede virtual. |
Abstract: | The late detection of security threats causes a significant increase in the risk of irreparable damages, disabling any defense attempt. As a consequence, fast realtime threat detection is mandatory for security guarantees. In addition, Network Function Virtualization (NFV) provides new opportunities for efficient and low-cost security solutions. We propose a fast and efficient threat detection system based on stream processing and machine learning algorithms. The main contributions of this work are i) a novel monitoring threat detection system based on stream processing; ii) two datasets, first a dataset of synthetic security data containing both legitimate and malicious traffic, and the second, a week of real traffic of a telecommunications operator in Rio de Janeiro, Brazil; iii) a data pre-processing algorithm, a normalizing algorithm and an algorithm for fast feature selection based on the correlation between variables; iv) a virtualized network function in an open-source platform for providing a real-time threat detection service; v) near-optimal placement of sensors through a proposed heuristic for strategically positioning sensors in the network infrastructure, with a minimum number of sensors; and, finally, vi) a greedy algorithm that allocates on demand a sequence of virtual network functions. |
Keywords: | Engenharia elétrica Detecção de ameaças Virtualização de funções de rede Processamento de fluxo |
Subject CNPq: | CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::TELECOMUNICACOES |
Program: | Programa de Pós-Graduação em Engenharia Elétrica |
Production unit: | Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia |
Publisher: | Universidade Federal do Rio de Janeiro |
Issue Date: | Jun-2018 |
Publisher country: | Brasil |
Language: | eng |
Right access: | Acesso Aberto |
Appears in Collections: | Engenharia Elétrica |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
887778.pdf | 1.58 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.