Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11422/13165
Especie: Dissertação
Título : Programação genética aplicada à identificação de acidentes de uma usina nuclear PWR
Autor(es)/Inventor(es): Pinheiro, Victor Henrique Cabral
Tutor: Schirru, Roberto
Resumen: Neste trabalho são apresentados os resultados do estudo que avaliou a performance do algoritmo de computação evolucionária programação genética como ferramenta de otimização e geração de atributos em um sistema de reconhecimento de padrões para identificação e diagnóstico de acidentes de uma usina nuclear com reator de água pressurizada. São apresentados ainda as bases de um sistema de reconhecimento de padrões, o estado da arte da programação genética e de sistemas similares de diagnóstico de acidentes e transientes de usinas nucleares. Dentro do conjunto da evolução temporal de 17 variáveis operacionais dos três acidentes/transientes considerado, além da condição normal, a função da programação genética foi evoluir regressores não lineares de combinações dessas variáveis que fornecessem o máximo de informação discriminatória para cada um dos eventos. Após testes exaustivos com diversas associações de variáveis, a programação genética se mostrou uma metodologia capaz de fornecer taxas de acerto de, ou muito próximas de, 100%, com parametrizações do algoritmo relativamente simples e em tempo de treinamento bastante razoável, mostrando ser capaz de fornecer resultados compatíveis e até superiores a outros sistemas disponíveis na literatura, com a vantagem adicional de requerer pouco (e muitas vezes nenhum) pré-tratamento nos dados.
Resumen: This work presentes the results of the study that evaluated the efficiency of the evolutionary computation algorithm genetic programming as a technique for the optimization and feature generation at a pattern recognition system for the diagnostic of accidents in a pressurized water reactor nuclear power plant. The foundations of a typical pattern recognition system, the state of the art of genetic programming and of similar accident/transient diagnosis systems at nuclear power plants are also presented. Considering the set of the time evolution of seventeen operational variables for the three accident scenarios approached, plus normal condition, the task of genetic programming was to evolve non-linear regressors with combination of those variables that would provide the most discriminatory information for each of the events. After exhaustive tests with plenty of variable associations, genetic programming was proven to be a methodology capable of attaining success rates of, or very close to, 100%, with quite simple parametrization of the algorithm and at very reasonable time, putting itself in levels of performance similar or even superior as other similar systems available in the scientific literature, while also having the additional advantage of requiring very little pretreatment (sometimes none at all) of the data
Materia: Sistemas de diagnóstico
Programação genética
Reconhecimento de padrões
Materia CNPq: CNPQ::CIENCIAS BIOLOGICAS
Programa: Programa de Pós-Graduação em Engenharia Nuclear
Unidade de producción: Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Editor: Universidade Federal do Rio de Janeiro
Fecha de publicación: feb-2018
País de edición : Brasil
Idioma de publicación: por
Tipo de acceso : Acesso Aberto
Aparece en las colecciones: Engenharia Nuclear

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
VictorHenriqueCabralPinheiro.pdf2.9 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.