Please use this identifier to cite or link to this item:
http://hdl.handle.net/11422/13234
Type: | Dissertação |
Title: | Avaliação do ritmo cardíaco em eletrocardiogramas de curta duração utilizando análise dos intervalos RR e aprendizado supervisionado |
Author(s)/Inventor(s): | Limeira, Gabriel de Azevedo |
Advisor: | Nadal, Jurandir |
Co-advisor: | Benchimol Barbosa, Paulo Roberto |
Abstract: | Fibrilação atrial é uma condição que frequentemente não exibe sintomas e está fortemente relacionada com infarto e morte súbita cardíaca. O objetivo deste trabalho foi desenvolver um algoritmo que diferencia fibrilação atrial de ritmo normal e outros ritmos presentes em sinais de curta duração e de derivação única, coletados por um dispositivo móvel. Um total de 36 características foram coletadas, principalmente da sequência de intervalos batimento-a-batimento. Seleção de características por análise de componentes vizinhos (ACV) foi aplicada e quatro algoritmos de aprendizado supervisionado foram comparados e otimizados, utilizando-se treinamento com validação cruzada. A comparação dos desempenhos foi realizada por meio de um índice F1 que leva em conta sensibilidade e especificidade. A ACV permitiu selecionar 11 variáveis do conjunto inicial. O classificador que utilizou máquina de vetores de suporte forneceu o melhor índice geral (F1 = 72,9), onde o melhor desempenho ocorreu na detecção de fibrilação atrial (F1 = 82,5). |
Abstract: | Atrial fibrillation is a condition that often does not show itself through symptoms and is strongly related to infarction and sudden cardiac death. This work aims at developing an algorithm that differentiates atrial fibrillation rhythm from noise, normal and other rhythms in single short ECG leads collected by a mobile device. A total of 36 features were collected mostly from the sequence of beat-to-beat intervals. Neighborhood component analysis (NCA) feature selection technique was applied, and several supervised learning algorithms were compared and optimized using cross validation approach. Performances were compared with an index F1 that considers both sensitivity and specificity. NCA allowed selecting 11 features. The classifier based on support vector machines gave the best overall result (F1 = 72,9%), were the best performance occurred for the atrial fibrillation class (F1 = 82,5) |
Keywords: | Ritmo cardíaco Fibrilação atrial Classificação supervisionada |
Subject CNPq: | CNPQ::ENGENHARIAS |
Program: | Programa de Pós-Graduação em Engenharia Biomédica |
Production unit: | Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia |
Publisher: | Universidade Federal do Rio de Janeiro |
Issue Date: | Mar-2019 |
Publisher country: | Brasil |
Language: | por |
Right access: | Acesso Aberto |
Appears in Collections: | Engenharia Biomédica |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
GabrielDeAzevedoLimeira.pdf | 3.64 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.