Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11422/17214
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Wrobel, Luiz Carlos | - |
dc.contributor.author | Büge, Tania Regina | - |
dc.date.accessioned | 2022-06-14T18:26:59Z | - |
dc.date.available | 2023-12-21T03:08:56Z | - |
dc.date.issued | 1990-03 | - |
dc.identifier.uri | http://hdl.handle.net/11422/17214 | - |
dc.description.abstract | This thesis consists in a finite difference Formulation for solution of the one-dimensional Advection-diffusion equation, with an upstream approximation of the advective term using the QUICKEST (Quadratic Upstream Interpolation for Convective Kinematics with Estimated Streaming Terms ) scheme. For problems in which adjective transport is significant, finite difference solutions employing traditional schemes present numerical problems of oscillation and smoothing of the wave front. The present study shows the better behavior of the QUICKEST algorithm for computing the transport and dillution of pollutants, compared with results obtained with other formulations. Several types of" effluents with different chemical reaction terms are analyzed, and their accidental discharge simulated based on field data obtained from studies carried out in the Paraíba do Sul river. The model developed has shown to be efficient and can be easily implemented in microcomputers. | en |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal do Rio de Janeiro | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.subject | Modelos matemáticos | pt_BR |
dc.subject | Transporte de sedimentos | pt_BR |
dc.subject | Poluição de rios | pt_BR |
dc.title | Modelo matemático para simulação de transporte e dispersão de poluentes em rios: aplicação ao estudo de lançamento acidental no Rio Paraíba do Sul | pt_BR |
dc.title.alternative | Mathematical model for simulation of transport and dispersion of pollutants in rivers: application to the study of accidental discharge in the Paraíba do Sul river | en |
dc.type | Dissertação | pt_BR |
dc.contributor.advisorLattes | http://lattes.cnpq.br/6338514580120246 | pt_BR |
dc.contributor.authorLattes | http://lattes.cnpq.br/2465980847494262 | pt_BR |
dc.contributor.referee1 | Rosman, Paulo Cesar Colonna | - |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/6875102654106164 | pt_BR |
dc.contributor.referee2 | Branski, Joel Meyer | - |
dc.description.resumo | Esta tese consiste em uma formulação de diferenças finitas para solução da equação de difusão-advecção unidimensional, com aproximação regressiva do termo advectivo utilizando o esquema QUICKEST (Quadratic Upstream Interpolation for Convective Kinematics with Estimated Streaming Terms). Para problemas onde o transporte advectivo é significativo, a solução via diferenças finitas com esquemas tradicionais apresenta problemas numéricos de oscilação e amortecimento da frente de onda. O presente estudo comprova o melhor desempenho do algoritmo QUICKEST na previsão do transporte e diluição de poluentes comparado com resultados de outras formulações. Diversos tipos de efluentes com diferentes termos de reação química são analisados, e seu lançamento acidental simulado com base em dados de campo obtidos em ensaios no rio Paraíba do Sul. O modelo desenvolvido mostrou-se eficiente, podendo ser facilmente implantado em microcomputadores. | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia | pt_BR |
dc.publisher.program | Programa de Pós-Graduação em Engenharia Civil | pt_BR |
dc.publisher.initials | UFRJ | pt_BR |
dc.subject.cnpq | CNPQ::ENGENHARIAS::ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA::HIDRAULICA | pt_BR |
dc.embargo.terms | aberto | pt_BR |
Aparece en las colecciones: | Engenharia Civil |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
170968.pdf | 1.22 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.