Use este identificador para citar ou linkar para este item:
http://hdl.handle.net/11422/19100
Tipo: | Trabalho de conclusão de graduação |
Título: | Uso de machine learning para classificação espectral estelar |
Título(s) alternativo(s): | Use of machine learning for stellar spectral classification |
Autor(es)/Inventor(es): | Alves, Júlia Camões |
Orientador: | Marcolino, Wagner Luiz Ferreira |
Resumo: | O presente projeto tem como objetivo analisar a performance de diferentes algoritmos de Machine Learning (ML ou Aprendizado de Máquina), aplicando-os à classificação espectral, um problema clássico em astrofísica estelar. Em particular, o objeto de estudo é a classificação espectral de estrelas de alta massa (> 10M⊙). Estrelas de alta massa são muito raras se comparadas às estrelas do tipo solar e suas trajetórias evolutivas, especialmente pós-Sequência Principal, ainda não são bem compreendidas até hoje (Martins & Palacios, 2013). São objetos de extrema importância, uma vez que são progenitores de supernovas, estrelas de nêutrons, buracos negros e gamma-ray bursts, sendo possivelmente fontes de ondas gravitacionais, quando em sistemas binários. A classificação correta desses objetos é, portanto, uma questão fundamental. Exploramos os algoritmos de ML denominados: K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree Classifier (DTC) e Random Forest Classifier (RFC). Eles foram testados quanto à significância nos resultados finais em quantidades probabilísticas e também na forma como realizam o processo classificatório — caso haja a necessidade de saber como a separação de dados foi feita, por exemplo. Utilizamos espectros óticos de alta resolução de 113 estrelas, de Martins (2018), e também de baixa resolução de 495 estrelas, do Catálogo GOS (Galactic O-Star Catalog) (Apellániz et al., 2016). Para o processo classificatório de tipos espectrais, foram utilizadas as linhas de absorção He I 4471 e He II 4542, e, especialmente, a linha de absorção He II 4686 para a classificação de luminosidade. Encontramos que, de modo geral, os modelos performaram de forma parecida, por mais que possuam mecanismos diferentes para realizar a tarefa de classificação. Quando utilizamos a amostra com espectros de alta e de baixa resolução, vemos claramente uma melhora na capacidade de classificação de tipo espectral, na qual atingimos mais de 85% de classificações corretas para os modelos SVM (86%), DTC (87%) e RFC (87%), e, para o KNN, obtivemos 82%. No entanto, para a classificação de tipo espectral em conjunto a de luminosidade, a capacidade de classificação manteve-se baixa, para os quais o SVM teve o melhor resultado com 66%. Algumas dificuldades encontradas foram a pequena quantidade de dados de alta resolução disponíveis, o que resultou em um número insuficiente de estrelas por classe prejudicando o aprendizado de máquina. A qualidade inferior dos dados de baixa resolução também foi um problema por influenciar diretamente a precisão dos parâmetros utilizados para classificação, aumentando a chance de erro. Com isso, concluímos que por mais que a performance dos modelos não tenha sido ruim no processo de classificação de tipo espectral, a classificação manual ainda é mais segura e precisa e retorna resultados mais acurados devido a análise ser feita em cada espectro. No entanto, acreditamos que caso tivéssemos disponíveis milhares de espectros de alta resolução, os resultados dos modelos seriam ainda melhores. |
Palavras-chave: | Astrofísica estelar Estrelas de alta massa Espectroscopia astronômica Classificação espectral de estrelas Aprendizado de máquina Stellar astrophysics Massive stars Astronomical spectroscopy Stellar spectral classification Machine learning |
Assunto CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA::ASTRONOMIA |
Unidade produtora: | Observatório do Valongo |
Editora: | Universidade Federal do Rio de Janeiro |
Data de publicação: | 19-Ago-2022 |
País de publicação: | Brasil |
Idioma da publicação: | por |
Tipo de acesso: | Acesso Aberto |
Citação: | ALVES, Júlia Camões. Uso de machine learning para classificação espectral estelar. 2022. 152 f. Trabalho de conclusão de curso (Bacharelado em Astronomia) - Observatório do Valongo, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2022. |
Aparece nas coleções: | Astronomia |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
JCAlves.pdf | 3.82 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.