Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11422/19797
Especie: Trabalho de conclusão de graduação
Título : Um estudo comparativo sobre redes adversárias generativas
Autor(es)/Inventor(es): Leão, Eduardo Tavares
Figueiredo, Rodrigo Carvalho de
Tutor: Silva, João Carlos Pereira da
Resumen: Redes Adversárias Generativas (Generative Adversarial Networks - GANs) são uma classe de arquiteturas de redes neurais artificiais cujo objetivo é a descoberta e aprendizado de padrões em conjuntos de dados, a fim de gerar novos exemplos únicos que sejam indistinguíveis de amostras obtidas desse conjunto. Este trabalho tem como objetivo apresentar esses tipos de redes e, particularmente, três diferentes arquiteturas: GAN, CGAN e DCGAN. É feita uma análise comparativa dos seus desempenhos a partir de um experimento base de geração de imagens com o conjunto de dados MNIST, utilizando tanto métricas quantitativas quanto qualitativas. São então propostas algumas mudanças de arquitetura e hiperparâmetros com o próposito de melhorar o desempenho dessas redes na tarefa em questão, que correspondem a: variações no tamanho do vetor latente, uso de camadas de dropout e adição de ruído no modelo discriminador. Por fim, são apresentados os resultados obtidos em experimentos após a adoção de cada modificação, mostrando que, em alguns casos, foram eficazes em aprimorar a qualidade das amostras geradas pelas redes, de acordo com as métricas estabelecidas.
Materia: inteligência artificial
aprendizado de máquina
redes neurais
modelos generativos
Materia CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Unidade de producción: Instituto de Computação
Editor: Universidade Federal do Rio de Janeiro
Fecha de publicación: 29-ago-2022
País de edición : Brasil
Idioma de publicación: por
Tipo de acceso : Acesso Aberto
Aparece en las colecciones: Ciência da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
ETLeao.pdf1.83 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.