Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11422/21240
Especie: | Trabalho de conclusão de graduação |
Título : | Caracterização, evolução e identificação de padrões em notícias falsas: uma abordagem voltada à modelagem de tópicos |
Autor(es)/Inventor(es): | Alves, Leonardo Emerson André |
Tutor: | Sampaio, Jonice de Oliveira |
Tutor : | Silva, Sirius Thadeu Ferreira da |
Resumen: | As notícias falsas constituem um problema central na sociedade atual. O avanço das tecnologias e mídias digitais tem alavancado esse problema, visto que se caracterizam como meios extremamente rápidos para disseminação de informação. Dessa forma, a disseminação de desinformações pode implicar em diversos problemas para a sociedade, tais como: influenciar processos democráticos, dificultar o contingenciamento de pandemias, ocasionar crises sociais, que podem trazer graves consequências para a população, entre outros. Este estudo tem como intuito a criação de um processo voltado para a caraterização, descrição da evolução e identificação de padrões em notícias com foco no estudo de notícias falsas escritas em português. Nesse sentido, o foco deste trabalho consiste na caracterização das notícias falsas estudadas por meio da análise textual das mesmas a partir da utilização de uma base de dados de notícias coletadas entre 2013 e 2021, com o uso de técnicas de processamento de linguagem natural e modelagem de tópicos. Portanto, este estudo realizou o tratamento e aperfeiçoamento de um corpus com uso de técnicas tanto de limpeza de dados, quanto de Web Scraping, e posteriormente uma análise das notícias falsas desse corpus, com o uso da linguagem de programação Python, e também com o uso de bibliotecas conhecidas para processamento de linguagem natural e modelagem de tópicos, como NLTK, gensim e spaCy; e fazendo uso de algoritmos tradicionais para modelagem de tópicos como Latent Dirichlet Allocation (LDA) e Latent Semantic Analysis (LSA); em conjunto com as bibliotecas para indexação, visualização e análise de dados Pandas, Matplotlib, Seaborn, Numpy; foi possível dessa forma compreender o avanço dos assuntos e padrões de escrita de notícias falsas, criando um dicionário que caracteriza tais notícias. |
Materia: | Fake news Análise de texto Processamento de linguagem natural Modelagem de dados |
Materia CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
Unidade de producción: | Instituto de Computação |
Editor: | Universidade Federal do Rio de Janeiro |
Fecha de publicación: | 28-jun-2023 |
País de edición : | Brasil |
Idioma de publicación: | por |
Tipo de acceso : | Acesso Aberto |
Aparece en las colecciones: | Ciência da Computação |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
LEAAlves.pdf | 3.72 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.