Please use this identifier to cite or link to this item:
http://hdl.handle.net/11422/23190
Type: | Tese |
Title: | Análise não linear otimizada de sistemas de proteção catódica com métodos sem malha |
Author(s)/Inventor(s): | Velten, Samuel Berger |
Advisor: | Santiago, José Antonio Fontes |
Co-advisor: | Santos, Wilian Jeronimo dos |
Co-advisor: | Loeffler Neto, Carlos Friedrich |
Abstract: | Este trabalho tem como objetivo implementar e aplicar métodos sem malha a estruturas que necessitam da proteção catódica para poderem operar. Entre os métodos sem malha, o Método das Soluções Fundamentais (MSF) e o método local Petrov Galerkin, vertentes 1 (MLPG1) e 2 (MLPG2), que empregam como função de ponderação a função peso e “função” delta de Dirac, respectivamente, foram implementados e aplicados ao problema da proteção catódica (PC). Para otimização dos processos, visando melhorar os resultados foram usados algoritmos genéticos. O problema de potencial eletroquímico é governado pela equação de Laplace com condições de contorno dadas por uma dependência funcional não linear entre densidade de corrente e potencial, definidas através da curva de polarização. Os diversos resultados de aplicações são discutidos neste trabalho, considerando simulações numéricas em regiões finitas. Para validar a formulação dos métodos sem malha, aplicados na simulação de sistemas de proteção catódica, foram comparados os resultados através do MSF, MLPG1 e MLPG2 com um procedimento de solução do método dos elementos de contorno (MEC), um dos métodos numéricos mais comumente usados para modelagem de sistemas de proteção catódica. |
Abstract: | This work aims to implement and apply meshless methods to structures that need cathodic protection in order to operate. Among the non-meshed methods, the Fundamental Solutions Method (MSF) and the local Petrov Galerkin method, strands 1 (MLPG1) and 2 (MLPG2), which employ the weight function and the Dirac delta “weight” function, respectively, were implemented and applied to the problem of cathodic protection (PC). To optimize the processes, aiming to improve the results, genetic algorithms were used. The electrochemical potential problem is governed by the Laplace equation with boundary conditions given by a non-linear functional dependence between current and potential density, defined through the polarization curve. The various results of applications are discussed in this work, considering numerical simulations in finite regions. To validate the formulation of the meshless methods applied in the simulation of cathodic protection systems, the results were compared using the MSF, MLPG1 and MLPG2 with a solution procedure of the contour element method (MEC), one of the most common numerical methods used for modeling cathodic |
Keywords: | Meshless Proteção catódica Meshless local Petrov-Galerkin Algorítimo genético |
Subject CNPq: | Engenharia Civil |
Program: | Programa de Pós-Graduação em Engenharia Civil |
Production unit: | Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia |
Publisher: | Universidade Federal do Rio de Janeiro |
Issue Date: | Feb-2020 |
Publisher country: | Brasil |
Language: | por |
Right access: | Acesso Aberto |
Appears in Collections: | Engenharia Civil |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
942866.pdf | 1.91 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.