Please use this identifier to cite or link to this item: http://hdl.handle.net/11422/23207
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorGomes, José Gabriel Rodriguez Carneiro-
dc.contributor.authorMartins, Pedro Bandeira de Mello-
dc.date.accessioned2024-07-17T19:53:05Z-
dc.date.available2024-07-19T03:00:21Z-
dc.date.issued2020-10-
dc.identifier.urihttp://hdl.handle.net/11422/23207-
dc.description.abstractThis thesis addresses the comparison of two techniques of Non-Intrusive Load Monitoring applied to electrical data collected from a factory in Brazil. NILM proposes to separate single-appliance power consumption from consumers total demand without the need for installation of intrusive sensors or more than one meter per building. As the main focus of this thesis is to study NILM on industrial settings and, until the date of writing, no public data were found, IMDELD data set was collected for this research on a poultry feed factory using smart meters. IMDELD has a total of eleven classes of electrical signatures, including eight classes of heavyindustry machines, two different sub-circuits, and a main circuit. The data was collected at a 1 Hz rate for up to a hundred eleven days. To achieve the comparison goal, two methods are implemented: Factorial Hidden Markov Models and Deep Learning (WaveNILM). In comparison to the FHMM models, the Deep Learning-based models have smaller Signal Aggregated Error and Normalized Disaggregation Error. They also identified single-appliances as turned ON or OFF on a larger percentage of the time tested based on F1-Score. Among all appliances, on average WaveNILM F1-scored 0.93±0.07 while FHMM scored 0.79 ± 0.12. WaveNILM predicted machines with average SAE 0.1 ± 0.2 and NDE 0.1 ± 0.2, while FHMM predicted machines with average SAE 0.3 ± 0.2 and NDE 0.3 ± 0.2.pt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal do Rio de Janeiropt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectMonitoramento de carga não intrusivopt_BR
dc.subjectEficiência energéticapt_BR
dc.subjectConjunto de dadospt_BR
dc.titleNon-intrusive industrial load monitoring on a factory in Brazilpt_BR
dc.typeDissertaçãopt_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/1635954394681468pt_BR
dc.contributor.referee1Petraglia, Mariane Rembold-
dc.contributor.referee2Prado, Charles Bezerra do-
dc.description.resumoEsta dissertação aborda uma aplicação e comparação de um conjunto de técnicas de Non-Intrusive Load Monitoring (Monitoramento Não-Intrusivo de Cargas, NILM) em dados elétricos coletados de uma fábrica no Brasil. NILM propõe determinar o consumo de energia de um único aparelho a partir da demanda total dos consumidores sem a necessidade de instalação de sensores intrusivos ou mais de um medidor por quadro de energia. Como o foco principal desta tese é estudar NILM em ambientes industriais e até a data da escrita nenhum dado público disponível foi encontrado, um conjunto de dados (IMDELD) foi criado para esta pesquisa em uma fábrica de ração avícola usando medidores inteligentes. IMDELD possui um total de onze diferentes classes de assinaturas elétricas, incluindo oito classes de máquinas industriais, dois diferentes subcircuitos e um circuito principal. Os dados foram coletados em uma frequência de 1 Hz por até cento e onze dias. Para atingir este objetivo da comparação de métodos, dois métodos são implementados: Factorial Hidden Markov Models (Modelos Ocultos Fatoriais de Markov, FHMM) e Deep Learning (WaveNILM). Em paralelo com os modelos FHMM, os modelos baseados no Deep Learning têm menor Signal Aggregated Error (Erro Agregado de Sinal, SAE) e Normalized Disaggregation Error (Erro de Desagregação Normalizado, NDE). De acordo com a F1-Score (Medida F1, F1), eles também identificaram aparelhos individuais ligados ou desligados em uma porcentagem maior do tempo testado. Dentre todas as máquinas, WaveNILM atingiu F1 0.93 ± 0.07, enquanto FHMM pontuou F1 0.79 ± 0.12. WaveNILM predice máquinas com SAE médio 0.1 ± 0.2 e NDE médio 0.1 ± 0.2, enquanto FHMM predice máquinas com SAE médio 0.3 ± 0.2 e NDE médio 0.3 ± 0.2.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenhariapt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia Elétricapt_BR
dc.publisher.initialsUFRJpt_BR
dc.subject.cnpqEngenharia Elétricapt_BR
dc.embargo.termsabertopt_BR
Appears in Collections:Engenharia Elétrica

Files in This Item:
File Description SizeFormat 
942455.pdf3.01 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.