Use este identificador para citar ou linkar para este item: http://hdl.handle.net/11422/6081
Tipo: Tese
Título: Contributions to radio frequency indoorpositioning and through-the-wall mapping
Título(s) alternativo(s): Contribuições à localização indoor e ao mapeamento através de paredes utilizando radiofrequência
Autor(es)/Inventor(es): Campos, Rafael Saraiva
Orientador: Campos, Marcello Luiz Rodrigues de
Coorientador: Lovisolo, Lisandro
Resumo: A primeira parte deste trabalho introduz um novo sistema de localização baseado em aprendizado de máquina para aumentar a acurácia da identificação do andar na localização em prédios baseada em radiofrequêcia (RF), enquanto preserva-se baixo o erro de localização bidiminensional. O método também reduz a complexidade computacional do cálculo da estimativa de posição. Um banco de dados de amostras de RF foi coletado em um prédio com 13 andares para avaliar a proposta. A segunda parte deste trabalho analisa o imageamento tomográfico não-invasivo utilizando RF, ou mapeamento através de paredes (TWM - Through-the-Wall Mapping). Quatro algoritmos de reconstrução – dois projetivos e dois algébricos – são comparados utilizando um modelo de perda de propagação corrompido por ruído Rayleigh em uma geometria de aquisição com feixes de raios paralelos. Em seguida, a tese propõe a aplicação do método dos elementos finitos (FEM - Finite Element Method) para simular diversas configurações de TWM, proporcionando um modelo de simulação mais acurado. Os parâmetros da discretização (meshing) do modelo FEM foram otimizados, reduzindo significativamente o custo computacional, sem comprometer a acurácia. A reconstrução de duas plantas-baixas é realizada empregando diferentes taxas de amostragem, frequências de operação e modelos de antena. Por fim, uma geometria de aquisição circular com múltiplos sensores (MCG - Multi-Sensor Circular Acquisition Geometry) é definida para reduzir o tempo de obtenção de amostras de RF em comparação com a geometria de raios paralelos. O esquema MCG é avaliado utilizando o modelo FEM proposto.
Resumo: The first part of this work introduces a novel machine-learning based location engine aiming at improving floor identification accuracy in radio frequency (RF) multi-floor indoor positioning while preserving a low two-dimensional positioning error. The location engine also reduces the position fix computational complexity. A large database of RF samples was collected in a 13-storey building to evaluate the proposal. The second part of this work studies in detail radio tomographic imaging, also referred to as RF-based through-the-wall mapping (TWM). Four different reconstruction algorithms – two projective and two algebraic – are compared using a path-loss model corrupted by Rayleigh noise in a parallel-beam acquisition geometry. After that, the thesis proposes applying the Finite Element Method (FEM) to simulate several parallel-beam geometry RF TWM setups, providing a more accurate simulation model. The meshing parameters of the FEM model geometry have been optimized, enabling a significant computational cost reduction while preserving accuracy. Reconstruction of two floor maps is carried out using the FEM model with different sampling rates, operational frequencies, and antenna models. Finally, a multi-sensor circular acquisition geometry (MCG) is defined to reduce the time required to acquire the RF samples in comparison to the parallel-beam geometry. The MCG scheme is evaluated using the proposed FEM framework.
Palavras-chave: Mapas especiais
Ambientes fechados
Algoritmos
Método dos elementos finitos
Assunto CNPq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Programa: Programa de Pós-Graduação em Engenharia Elétrica
Unidade produtora: Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Editora: Universidade Federal do Rio de Janeiro
Data de publicação: Jun-2017
País de publicação: Brasil
Idioma da publicação: eng
Tipo de acesso: Acesso Aberto
Aparece nas coleções:Engenharia Elétrica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
865832.pdf2.65 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.