Please use this identifier to cite or link to this item: http://hdl.handle.net/11422/8588
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCruz, Antonio Guilherme Barbosa da-
dc.contributor.authorCarmo, Eduardo Gomes Dutra do-
dc.contributor.authorDuda, Fernando Pereira-
dc.date.accessioned2019-07-01T14:49:53Z-
dc.date.available2023-12-21T03:06:04Z-
dc.date.issued2012-05-15-
dc.identifier.issn0021-9991pt_BR
dc.identifier.urihttp://hdl.handle.net/11422/8588-
dc.description.abstractThis paper presents a new consistent and stabilized finite-element formulation for fourth-order incompressible flow problems. The formulation is based on the C0-interior penalty method, the Galerkin least-square (GLS) scheme, which assures that the formulation is weakly coercive for spaces that fail to satisfy the inf-sup condition, and considers discontinuous pressure interpolations. A stability analysis through a lemma establishes that the proposed formulation satisfies the inf-sup condition, thus confirming the robustness of the method. This lemma indicates that, at the element level, there exists an optimal or quasi-optimal GLS stability parameter that depends on the polynomial degree used to interpolate the velocity and pressure fields, the geometry of the finite element, and the fluid viscosity term. Numerical experiments are carried out to illustrate the ability of the formulation to deal with arbitrary interpolations for velocity and pressure, and to stabilize large pressure gradients.en
dc.languageengpt_BR
dc.publisherElsevieren
dc.relation.ispartofJournal of Computational Physicsen
dc.rightsAcesso Abertopt_BR
dc.subjectDiscontinuous Galerkin methodsen
dc.subjectFourth-order problemsen
dc.subjectGLS stabilityen
dc.subjectSecond gradienten
dc.titleA consistent and stabilized continuous/discontinuous Galerkin method for fourth-order incompressible flow problemsen
dc.typeArtigopt_BR
dc.identifier.doi10.1016/j.jcp.2012.05.002pt_BR
dc.description.resumoIndisponível.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentNúcleo Interdisciplinar de Dinâmica dos Fluidospt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOSpt_BR
dc.citation.volume231pt_BR
dc.citation.issue16pt_BR
dc.citation.spage5469pt_BR
dc.citation.epage5488pt_BR
dc.embargo.terms365 diaspt_BR
Appears in Collections:Engenharias

Files in This Item:
File Description SizeFormat 
2012_DUDA_JCP_v231_p5469-5488-min.pdf587.42 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.