Please use this identifier to cite or link to this item: http://hdl.handle.net/11422/8644
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFrança, Felipe Maia Galvão-
dc.contributor.authorCarneiro, Hugo Cesar de Castro-
dc.date.accessioned2019-07-03T17:14:16Z-
dc.date.available2023-12-21T03:01:02Z-
dc.date.issued2017-01-
dc.identifier.urihttp://hdl.handle.net/11422/8644-
dc.description.abstractWiSARD é um classificador n-upla, historicamente usado em tarefas de reconhecimento de padrões em imagens em preto e branco. Infelizmente, não era comum que este fosse usado em outras tarefas, devido á sua incapacidade de arcar com grandes volumes de dados por ser sensível ao conteúdo aprendido. Recentemente, a técnica de bleaching foi concebida como uma melhoria à arquitetura do classificador n-upla, como um meio de coibir a sensibilidade da WiSARD. Desde então, houve um aumento na gama de aplicações construídas com este sistema de aprendizado. Pelo uso frequente de corpora bastante grandes, a etiquetação gramatical multilíngue encaixa-se neste grupo de aplicações. Esta tese aprimora o mWANN-Tagger, um etiquetador gramatical sem peso proposto em 2012. Este texto mostra que a pesquisa em etiquetação multilíngue com WiSARD foi intensificada através do uso de linguística quantitativa e que uma configuração de parâmetros universal foi encontrada para o mWANN-Tagger. Análises e experimentos com as bases da Universal Dependencies (UD) mostram que o mWANN-Tagger tem potencial para superar os etiquetadores do estado da arte dada uma melhor representação de palavra. Esta tese também almeja avaliar as vantagens do bleaching em relação ao modelo tradicional através do arcabouço teórico da teoria VC. As dimensões VC destes foram calculadas, atestando-se que um classificador n-upla, seja WiSARD ou com bleaching, que possua N memórias endereçadas por n-uplas binárias tem uma dimensão VC de exatamente N (2n − 1) + 1. Um paralelo foi então estabelecido entre ambos os modelos, onde deduziu-se que a técnica de bleaching é uma melhoria ao método n-upla que não causa prejuízos à sua capacidade de aprendizado.pt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal do Rio de Janeiropt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectEngenharia de Sistemas e Computaçãopt_BR
dc.subjectTécnica de clareamentopt_BR
dc.subjectTeoria do aprendizado estatísticopt_BR
dc.titleTheoretical results on a weightless neural classifier and application to computational linguisticspt_BR
dc.typeTesept_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/0864349354804989pt_BR
dc.contributor.advisorCo1Lima, Priscila Machado Vieira-
dc.contributor.advisorCo2Pedreira, Carlos Eduardo-
dc.contributor.referee1Barbosa, Valmir Carneiro-
dc.contributor.referee2Menasché, Daniel Sadoc-
dc.contributor.referee3Araújo, Aluizio Fausto Ribeiro-
dc.description.resumoWiSARD é um classificador n-upla, historicamente usado em tarefas de reconhecimento de padrões em imagens em preto e branco. Infelizmente, não era comum que este fosse usado em outras tarefas, devido á sua incapacidade de arcar com grandes volumes de dados por ser sensível ao conteúdo aprendido. Recentemente, a técnica de bleaching foi concebida como uma melhoria à arquitetura do classificador n-upla, como um meio de coibir a sensibilidade da WiSARD. Desde então, houve um aumento na gama de aplicações construídas com este sistema de aprendizado. Pelo uso frequente de corpora bastante grandes, a etiquetação gramatical multilíngue encaixa-se neste grupo de aplicações. Esta tese aprimora o mWANN-Tagger, um etiquetador gramatical sem peso proposto em 2012. Este texto mostra que a pesquisa em etiquetação multilíngue com WiSARD foi intensificada através do uso de linguística quantitativa e que uma configuração de parâmetros universal foi encontrada para o mWANN-Tagger. Análises e experimentos com as bases da Universal Dependencies (UD) mostram que o mWANN-Tagger tem potencial para superar os etiquetadores do estado da arte dada uma melhor representação de palavra. Esta tese também almeja avaliar as vantagens do bleaching em relação ao modelo tradicional através do arcabouço teórico da teoria VC. As dimensões VC destes foram calculadas, atestando-se que um classificador n-upla, seja WiSARD ou com bleaching, que possua N memórias endereçadas por n-uplas binárias tem uma dimensão VC de exatamente N (2n − 1) + 1. Um paralelo foi então estabelecido entre ambos os modelos, onde deduziu-se que a técnica de bleaching é uma melhoria ao método n-upla que não causa prejuízos à sua capacidade de aprendizado.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenhariapt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia de Sistemas e Computaçãopt_BR
dc.publisher.initialsUFRJpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOpt_BR
dc.embargo.termsabertopt_BR
Appears in Collections:Engenharia de Sistemas e Computação

Files in This Item:
File Description SizeFormat 
879660.pdf1.26 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.