Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11422/8644
Especie: Tese
Título : Theoretical results on a weightless neural classifier and application to computational linguistics
Autor(es)/Inventor(es): Carneiro, Hugo Cesar de Castro
Tutor: França, Felipe Maia Galvão
Tutor : Lima, Priscila Machado Vieira
Tutor: Pedreira, Carlos Eduardo
Resumen: WiSARD é um classificador n-upla, historicamente usado em tarefas de reconhecimento de padrões em imagens em preto e branco. Infelizmente, não era comum que este fosse usado em outras tarefas, devido á sua incapacidade de arcar com grandes volumes de dados por ser sensível ao conteúdo aprendido. Recentemente, a técnica de bleaching foi concebida como uma melhoria à arquitetura do classificador n-upla, como um meio de coibir a sensibilidade da WiSARD. Desde então, houve um aumento na gama de aplicações construídas com este sistema de aprendizado. Pelo uso frequente de corpora bastante grandes, a etiquetação gramatical multilíngue encaixa-se neste grupo de aplicações. Esta tese aprimora o mWANN-Tagger, um etiquetador gramatical sem peso proposto em 2012. Este texto mostra que a pesquisa em etiquetação multilíngue com WiSARD foi intensificada através do uso de linguística quantitativa e que uma configuração de parâmetros universal foi encontrada para o mWANN-Tagger. Análises e experimentos com as bases da Universal Dependencies (UD) mostram que o mWANN-Tagger tem potencial para superar os etiquetadores do estado da arte dada uma melhor representação de palavra. Esta tese também almeja avaliar as vantagens do bleaching em relação ao modelo tradicional através do arcabouço teórico da teoria VC. As dimensões VC destes foram calculadas, atestando-se que um classificador n-upla, seja WiSARD ou com bleaching, que possua N memórias endereçadas por n-uplas binárias tem uma dimensão VC de exatamente N (2n − 1) + 1. Um paralelo foi então estabelecido entre ambos os modelos, onde deduziu-se que a técnica de bleaching é uma melhoria ao método n-upla que não causa prejuízos à sua capacidade de aprendizado.
Resumen: WiSARD é um classificador n-upla, historicamente usado em tarefas de reconhecimento de padrões em imagens em preto e branco. Infelizmente, não era comum que este fosse usado em outras tarefas, devido á sua incapacidade de arcar com grandes volumes de dados por ser sensível ao conteúdo aprendido. Recentemente, a técnica de bleaching foi concebida como uma melhoria à arquitetura do classificador n-upla, como um meio de coibir a sensibilidade da WiSARD. Desde então, houve um aumento na gama de aplicações construídas com este sistema de aprendizado. Pelo uso frequente de corpora bastante grandes, a etiquetação gramatical multilíngue encaixa-se neste grupo de aplicações. Esta tese aprimora o mWANN-Tagger, um etiquetador gramatical sem peso proposto em 2012. Este texto mostra que a pesquisa em etiquetação multilíngue com WiSARD foi intensificada através do uso de linguística quantitativa e que uma configuração de parâmetros universal foi encontrada para o mWANN-Tagger. Análises e experimentos com as bases da Universal Dependencies (UD) mostram que o mWANN-Tagger tem potencial para superar os etiquetadores do estado da arte dada uma melhor representação de palavra. Esta tese também almeja avaliar as vantagens do bleaching em relação ao modelo tradicional através do arcabouço teórico da teoria VC. As dimensões VC destes foram calculadas, atestando-se que um classificador n-upla, seja WiSARD ou com bleaching, que possua N memórias endereçadas por n-uplas binárias tem uma dimensão VC de exatamente N (2n − 1) + 1. Um paralelo foi então estabelecido entre ambos os modelos, onde deduziu-se que a técnica de bleaching é uma melhoria ao método n-upla que não causa prejuízos à sua capacidade de aprendizado.
Materia: Engenharia de Sistemas e Computação
Técnica de clareamento
Teoria do aprendizado estatístico
Materia CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Programa: Programa de Pós-Graduação em Engenharia de Sistemas e Computação
Unidade de producción: Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Editor: Universidade Federal do Rio de Janeiro
Fecha de publicación: ene-2017
País de edición : Brasil
Idioma de publicación: eng
Tipo de acceso : Acesso Aberto
Aparece en las colecciones: Engenharia de Sistemas e Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
879660.pdf1.26 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.