Please use this identifier to cite or link to this item: http://hdl.handle.net/11422/9062
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFreire, Atila Pantaleão Silva-
dc.contributor.authorHirata, Miguel Hiroo-
dc.date.accessioned2019-08-05T13:02:34Z-
dc.date.available2023-12-21T03:01:29Z-
dc.date.issued2004-06-30-
dc.identifier.issn0022-247Xpt_BR
dc.identifier.urihttp://hdl.handle.net/11422/9062-
dc.description.abstractThe intermediate variable technique, developed by S. Kaplun, “Fluid Mechanics and Singular Perturbations,” Academic Press, San Diego, 1967, and by P. A. Lagerstrom and R. G. Casten, Basic concepts underlying singular perturbation techniques, SIAM Rev. 14 (1972), 63–120, for the solution of singular perturbation problems, is applied to several problems which are normally solved by other perturbative methods. The objective of the present analysis is to obtain approximate solutions which are characterized by their domains of validity, so that the matching of adjacent solutions is promptly determined. The analysis also shows how the intermediate equations can be derived and how they play an important role in the determination of approximate Solutions.en
dc.languageengpt_BR
dc.publisherElsevieren
dc.relation.ispartofJournal of Mathematical Analysis and Applicationsen
dc.rightsAcesso Abertopt_BR
dc.subjectIntermediate variable techniqueen
dc.subjectPertubationen
dc.titleApproximate solutions to singular perturbation problems: The intermediate variable techniqueen
dc.typeArtigopt_BR
dc.identifier.doi10.1016/0022-247X(90)90444-Kpt_BR
dc.description.resumoIndisponível.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentNúcleo Interdisciplinar de Dinâmica dos Fluidospt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOSpt_BR
dc.citation.volume145pt_BR
dc.citation.issue1pt_BR
dc.citation.spage241pt_BR
dc.citation.epage253pt_BR
dc.embargo.terms365 diaspt_BR
Appears in Collections:Engenharias

Files in This Item:
File Description SizeFormat 
1990_FREIRE_JMAA145-min.pdf377.74 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.