Please use this identifier to cite or link to this item: http://hdl.handle.net/11422/13168
Type: Tese
Title: Applications and algorithms for two-stage robust linear optimization
Other Titles: Aplicações e algoritmos para otimização linear robusta em dois estágios
Author(s)/Inventor(s): Silva, Marco Aurélio Costa da
Advisor: Maculan Filho, Nelson
Co-advisor: Poss, Michaël Jérémie
Abstract: O âmbito de pesquisa desta tese é otimização linear robusta em dois estágios. Estamos interessados em investigar algoritmos que exploram a sua estrutura e também em alternativas que se somem para mitigar o conservadorismo inerente da otimização robusta. Nós desenvolvemos algoritmos que incorporam estas alternativas e que são orientados para instâncias de problemas de média e larga escala. Fazendo isto experimentamos uma abordagem holística para analisar o conservadorismo em otimização linear robusta e integramos os mais recentes avanços em áreas como a otimização robusta baseada em dados históricos ( data-driven robust optimization), otimização robusta distribucional (distributionally robust optimization) e otimização robusta ajustável (adaptive robust optimization). Nós exercitamos estes algoritmos em aplicações definidas de problemas de projeto de redes (network design/loading), escalonamento (scheduling), min-max-min combinatoriais particulares e atribuição de frotas na aviação (airline fleet assignment); e mostramos como os algoritmos desenvolvidos melhoram performance quando comparados com implementações anteriores.
Abstract: The research scope of this thesis is two-stage robust linear optimization. We are interested in investigating algorithms that can explore its structure and also on adding alternatives to mitigate conservatism inherent to a robust solution. We develop algorithms that incorporate these alternatives and are customized to work with rather medium or large scale instances of problems. By doing this we experiment a holistic approach to conservatism in robust linear optimization and bring together the most recent advances in areas such as datadriven robust optimization, distributionally robust optimization and adaptive robust optimization. We apply these algorithms in defined applications of the network design/loading problem, the scheduling problem, a min-max-min combinatorial problem and the airline fleet assignment problem. We show how the algorithms developed improve performance when compared to previous implementations
Keywords: Robust linear optimization
Conservatism
min-max-min robust optimization
Uncertainty sets
Data-driven optimization
Distributionally robust optimization
Network design
Scheduling
Fleet management
Subject CNPq: CNPQ::ENGENHARIAS
Program: Programa de Pós-Graduação em Engenharia de Sistemas e Computação
Production unit: Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Publisher: Universidade Federal do Rio de Janeiro
Issue Date: Nov-2018
Publisher country: Brasil
Language: eng
Right access: Acesso Aberto
Appears in Collections:Engenharia de Sistemas e Computação

Files in This Item:
File Description SizeFormat 
MarcoAurelioCostaDaSilva.pdf770.18 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.