Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11422/12291
Especie: Dissertação
Título : Detectores de novidades e classificadores especializados em sistemas de sonar passivo
Autor(es)/Inventor(es): Muniz, Victor Hugo da Silva.
Tutor: Souza Filho, João Baptista de Oliveira e
Resumen: Em submarinos, cabe aos operadores de sonar a tarefa de identificar e classificar contatos de sonar passivo, de forma que possíveis ameaças sejam detectadas. A automatização deste processo é extremamente relevante, visto que facilita o trabalho do profissional desta área, ao exigir um menor esforço físico e mental durante a vigilância. A proposta deste estudo é investigar a eficiência de modelos especializados na constituição de tal sistema, visando a derivar um mecanismo que detecte de forma eficaz navios desconhecidos, bem como identifique corretamente os rótulos daqueles conhecidos. Três níveis de especialização foram considerados: não-especializado, especializado por classes, e especializado por navios, assumindo as seguintes técnicas para a construção do sistema: Análise de Componentes Principais (PCA), Análise de Componentes Principais por Kernel (KPCA), Máquinas de Vetor-Suporte de Uma Classe (OCSVM), Modelos de Mistura de Gaussianas (GMM), k-vizinhos mais próximos (kNN), k-vizinhos mais próximos esparso (s-kNN) e Local Outlier Factor (LOF). Experimentos conduzidos com dados reais adquiridos em uma raia acústica mostraram um melhor desempenho dos modelos especializados em navios, que atingiram uma taxa de detecção de novidades de 83,4%, conjugada com uma taxa média de reconhecimento de classes conhecidas de 90,5%. Em relação especificamente à tarefa de classificação das classes conhecidas, 98,7% são corretamente rotuladas.
Resumen: In submarines, sonar operators have the task of identifying and classifying passive sonar contacts, so that possible threats are detected. The automation of this process is extremely relevant, since it facilitates the work of the professional of this area, requiring less physical and mental efforts during the surveillance. The proposal of this study is to investigate the efficiency of specialized models in the constitution of such a system, aiming to derive a mechanism that effectively detects unknown ships, as well as correctly identifies the labels of those already known. Three levels of specialization were considered: non-specialized, specialized in classes, and specialized in ships, assuming the following techniques for the construction of the system: Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA), One-Class Support-Vector Machines (OCSVM), Gaussian Mixture Models (GMM), k-Nearest Neighbors (kNN), sparse k-Nearest Neighbors (s-kNN) and Local Outlier Factor (LOF). Experiments conducted with real data acquired on an acoustic lane showed a better performance of the models specialized in ships, which reached a novelty detection rate of 83.4%, conjugated with an average recognition rate of known classes of 90.5%. Regarding specifically the task of classifying the known classes, 98.7% are correctly labeled.
Materia: Sonar
Navegação autônoma
Sistema de apoio à decisão
Aprendizado computacional
Materia CNPq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS
Programa: Programa de Pós-Graduação em Engenharia Elétrica
Unidade de producción: Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Editor: Universidade Federal do Rio de Janeiro
Fecha de publicación: ago-2019
País de edición : Brasil
Idioma de publicación: por
Tipo de acceso : Acesso Aberto
Aparece en las colecciones: Engenharia Elétrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
891678.pdf847.67 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.