Use este identificador para citar ou linkar para este item: http://hdl.handle.net/11422/12854
Tipo: Tese
Título: Análise da influência dos erros de modelagem no desempenho de sistemas de controle
Autor(es)/Inventor(es): Costa, Lívia Pereira Lemos
Orientador: Pinto, José Carlos Costa da Silva
Resumo: O uso de sistemas de controle e otimização baseados em modelo apresenta grande potencial para aumentar a eficiência e a lucratividade de processos industriais. Por isso, é crescente o emprego e o interesse por estas técnicas. O desempenho de sistemas baseados em modelo, como no caso de controladores preditivos, depende de vários fatores que determinam a qualidade do modelo identificado e a sintonia utilizada. É importante ressaltar que, ao tratar de processos industriais complexos, a modelagem proposta para essas aplicações quase sempre envolve uma série de simplificações. Uma análise da literatura mostra que ainda há muitas questões teóricas e práticas relacionadas ao uso de controladores preditivos que precisam ser estudadas. Em especial, as relações entre a modelagem proposta e a sintonia e o desempenho de controladores não estão completamente elucidadas e exploradas. Por isso, nesta tese são analisados aspectos que relacionam a modelagem e a sintonia desses sistemas de controle, com foco no desempenho dos controladores para modelos do tipo resposta ao degrau. A partir dos estudos teóricos realizados, foram propostas novas metodologias para projeto e sintonia de controladores, bem como para a determinação da relevância de modelos. Ao longo do trabalho, os aspectos teóricos e as metodologias foram aplicados a exemplos para validação. As metodologias propostas foram aplicadas em exemplos de validação que mostraram que é possível relacionar os parâmetros de sintonia com medidas quantitativas de desempenho dos modelos, como os erros paramétricos resultantes da fase de identificação.
Resumo: The use of model-based control and optimization systems presents high potential to increase the efficiency and profitability of industrial processes. Therefore, the use and interest in these techniques have grown up steadily. Particularly, the performance of model based systems, as predictive controllers, depends on several factors that affect the quality of the estimated model and the selected tuning procedures. It is important to notice that, when dealing with complex industrial processes, the model building process often involves a large number of simplifications. The analysis of the open literature shows that many theoretical and practical issues related to the use of predictive controllers still need to be studied. In particular, the relationship among modelling, tuning and control performance is not completely explained and explored. Thus, in this thesis the relationship between modelling and tuning issues is analyzed, focusing at the controller performance when step response models are used. Based on the theoretical studies, new methods have been proposed for controller design and tuning and for the determination of the model relevance. The proposed methods were then applied in validation examples which showed that it is possible to relate the tuning parameters with quantitative measures of model performances, such as the parameter variances estimated during the model identification phase.
Palavras-chave: Controle preditivo
MPC
Assunto CNPq: CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
Programa: Programa de Pós-Graduação em Engenharia Química
Unidade produtora: Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Editora: Universidade Federal do Rio de Janeiro
Data de publicação: Ago-2018
País de publicação: Brasil
Idioma da publicação: por
Tipo de acesso: Acesso Aberto
Aparece nas coleções:Engenharia Química

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
LiviaPereiraLemosCosta-min.pdf7.13 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.