Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11422/13071
Especie: Dissertação
Título : Aprendizado profundo para classificação de microorganismos
Autor(es)/Inventor(es): Faria, Renan Carlos Prata de
Tutor: Farias, Ricardo Cordeiro de
Resumen: Neste trabalho apresentamos uma comparação entre três métodos de aprendizado de máquina (ML) aplicados para identificar Chatonella localizadas imagens microscópicas. Analisamos o algoritmo de vizinhos de k mais próximos (KNN), o algoritmo de rede neural sem peso (WNN) e o algoritmo de rede neural convolucional (CNN). Este último sendo o estado da arte para classificação de imagens. O objetivo deste trabalho é identificar o melhor método para contabilizar diferentes tipos de microrganismos de amostras de água oceânica, com a finalidade de detectar poluição. Essa comparação leva em consideração a precisão da taxa de acertos. O algoritmo que teve o melhor desempeho foi a rede neural convolucional, como será detalhado neste trabalho.
Resumen: In this work we present a comparison among three machine learning (ML) methods applied to identify Chattonella based on microscopic images. We analyze KNearest Neighbors algorithm (KNN), Weightless Neural Network algorithm (WNN) and Convolutional Neural Network algorithm (CNN). The latter being the state of art to image classification. The goal of this work is to identify the best method to count different types of microorganisms in oceanic water samples, with the goal for detecting pollution. This comparison takes into account accuracy of the hit rate. The best result was reached by Convolutional Neural Network algorithm, as will be described in this work.
Materia: Machine Learning
Deep Learning
Microrganismos
Redes Neurais
Materia CNPq: CNPQ::ENGENHARIAS
Programa: Programa de Pós-Graduação em Engenharia de Sistemas e Computação
Unidade de producción: Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Editor: Universidade Federal do Rio de Janeiro
Fecha de publicación: sep-2018
País de edición : Brasil
Idioma de publicación: por
Tipo de acceso : Acesso Aberto
Aparece en las colecciones: Engenharia de Sistemas e Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RenanCarlosPrataDeFaria.pdf2.83 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.