Use este identificador para citar ou linkar para este item:
http://hdl.handle.net/11422/13071
Tipo: | Dissertação |
Título: | Aprendizado profundo para classificação de microorganismos |
Autor(es)/Inventor(es): | Faria, Renan Carlos Prata de |
Orientador: | Farias, Ricardo Cordeiro de |
Resumo: | Neste trabalho apresentamos uma comparação entre três métodos de aprendizado de máquina (ML) aplicados para identificar Chatonella localizadas imagens microscópicas. Analisamos o algoritmo de vizinhos de k mais próximos (KNN), o algoritmo de rede neural sem peso (WNN) e o algoritmo de rede neural convolucional (CNN). Este último sendo o estado da arte para classificação de imagens. O objetivo deste trabalho é identificar o melhor método para contabilizar diferentes tipos de microrganismos de amostras de água oceânica, com a finalidade de detectar poluição. Essa comparação leva em consideração a precisão da taxa de acertos. O algoritmo que teve o melhor desempeho foi a rede neural convolucional, como será detalhado neste trabalho. |
Resumo: | In this work we present a comparison among three machine learning (ML) methods applied to identify Chattonella based on microscopic images. We analyze KNearest Neighbors algorithm (KNN), Weightless Neural Network algorithm (WNN) and Convolutional Neural Network algorithm (CNN). The latter being the state of art to image classification. The goal of this work is to identify the best method to count different types of microorganisms in oceanic water samples, with the goal for detecting pollution. This comparison takes into account accuracy of the hit rate. The best result was reached by Convolutional Neural Network algorithm, as will be described in this work. |
Palavras-chave: | Machine Learning Deep Learning Microrganismos Redes Neurais |
Assunto CNPq: | CNPQ::ENGENHARIAS |
Programa: | Programa de Pós-Graduação em Engenharia de Sistemas e Computação |
Unidade produtora: | Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia |
Editora: | Universidade Federal do Rio de Janeiro |
Data de publicação: | Set-2018 |
País de publicação: | Brasil |
Idioma da publicação: | por |
Tipo de acesso: | Acesso Aberto |
Aparece nas coleções: | Engenharia de Sistemas e Computação |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
RenanCarlosPrataDeFaria.pdf | 2.83 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.