Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11422/13080
Especie: Dissertação
Título : Online probabilistic theory revision from examples : a proPPR approach
Otros títulos: Revisão incremental de teoria probabilística a partir de exemplos: uma abordagem com proPPR
Autor(es)/Inventor(es): Guimarães, Victor Augusto Lopes
Tutor: Zaverucha, Gerson
Tutor : Carvalho, Aline Marins Paes
Resumen: A manipulação de fluxos de dados relacionais estruturados se tornou uma tarefa crucial, dada a disponibilidade de conteúdo produzido por sensores e pela Internet, como redes sociais e grafos de conhecimento. Esta tarefa é ainda mais desafiadora em um ambiente relacional do que em ambientes que lidam com exemplos i.i.d., dado que não podemos garantir que os exemplos são independentes. Além disso, a maioria dos métodos de aprendizado relacional ainda são projetados para aprender apenas a partir de conjuntos fechados de dados, não considerando modelos aprendidos em iterações anteriores de exemplos. Neste trabalho, nós propomos OSLR, um algoritmo de aprendizado relacional incremental que é capaz de lidar com fluxos de dados contínuos de exemplos, a medida em que eles chegam. Nós aplicamos técnica de revisão de teoria para aproveitar o conhecimento preliminar como ponto de partida, buscando onde o mesmo deve ser modificado para considerar novos exemplos e aplicando automaticamente essas modificações. Nós nos baseamos na teoria estatística do limitante de Hoeding para decidir se o modelo, de fato, deve ser atualizado, de acordo com novos exemplos. Nosso sistema foi construído sobre a linguagem estatística relacional ProPPR, para descrever os modelos induzidos, visando considerar a incerteza inerente de dados reais. Resultados experimentais em bases de co-autoria e redes sociais mostram o potencial da abordagem proposta comparada com outros métodos de aprendizado relacional.
Resumen: Handling relational data streams has become a crucial task, given the availability of pervasive sensors and Internet-produced content, such as social networks and knowledge graphs. In a relational environment, this is a particularly challenging task, since one cannot assure that the streams of examples are independent along the iterations. Thus, most relational machine learning methods are still designed to learn only from closed batches of data, not considering the models acquired in previous iterations of incoming examples. In this work, we propose OSLR, an online relational learning algorithm that can handle continuous, open-ended streams of relational examples as they arrive. We employ techniques from theory revision to take advantage of the already acquired knowledge as a starting point, find where it should be modified to cope with the new examples, and automatically update it. We rely on the Hoeding’s bound statistical theory to decide if the model must in fact be updated accordingly to the new examples. Our system is built upon ProPPR statistical relational language to describe the induced models, aiming at contemplating the uncertainty inherent to real data. Experimental results in entity co-reference and social networks datasets show the potential of the proposed approach compared to other relational learners
Materia: online learning
statistical relational learning
theory revision from examples
inductive logic programming
mining data streams
Materia CNPq: CNPQ::ENGENHARIAS
Programa: Programa de Pós-Graduação em Engenharia de Sistemas e Computação
Unidade de producción: Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Editor: Universidade Federal do Rio de Janeiro
Fecha de publicación: mar-2018
País de edición : Brasil
Idioma de publicación: eng
Tipo de acceso : Acesso Aberto
Aparece en las colecciones: Engenharia de Sistemas e Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
VictorAugustoLopesGuimaraes.pdf4.76 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.