Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11422/13684
Especie: | Tese |
Título : | Uma formulação Petrov-Galerkin descontínuo para solução da equação de Helmholtz com minimização do erro de fase |
Otros títulos: | A discontinuous Petrov-Galerkin formulation for Helmholtz equation solution with phase error minimization |
Autor(es)/Inventor(es): | Dias, Rodrigo |
Tutor: | Mansur, Webe João Mansur |
Tutor : | Carmo, Eduardo Gomes Dutra do |
Resumen: | A poluição do erro é uma fonte conhecida de imprecisões nas abordagens contínuas ou descontínuas de FE para resolver a equação de Helmholtz. Este tópico é exaustivamente estudado em um grande número de artigos, além de IHLENBURG e BABUSKA [1], IHLENBURG [2] e outras referências ali citadas. Metodologias robustas para malhas quadradas estruturadas foram desenvolvidas nos últimos anos. Este trabalho busca desenvolver uma metodologia baseada na formulação descontínua Petrov-Galerkin (PGD), a fim de minimizar o erro de fase para malhas estruturadas ou n˜ao estruturadas, aplicadas à equação de Helmholtz em meios homogêneos. Uma formulação Petrov-Galerkin FE é introduzida para o problema de Helmholtz em duas dimensões usando funções de ponderação polinomial. Em cada nó da malha triangular, uma função de base global para o espaço das funções de ponderação é obtida, acrescentando às combinações bi lineares C 0 da função linear Laringiana de ponderação. As funções de ponderação ótima, com o mesmo suporte das funções de teste globais correspondentes, são obtidas após o cálculo dos coeficientes α n m dessas combinações lineares, atendendo aos critérios ideais. Isso é feito numericamente através de uma técnica de pré-processamento que é naturalmente aplicada a malhas uniformes e não estruturadas. Em particular, para malha uniforme, é obtido um estêncil interior quase ótimo da mesma ordem do método do elemento finito quase estabilizado, obtido por BABUSKA et al. [3]. Resultados numéricos são apresentados ilustrando a grande estabilidade e precisão desta formulação com malhas não uniformes e não estruturadas. |
Resumen: | Pollution error is a well known source of inaccuracies in continuous or discontinuous FE approaches to solve the Helmholtz equation. This topic is exaustivelly studied in a large number of papers as well as IHLENBURG e BABUSKA [1], IH- ˇ LENBURG [2] and others references inside there in and others references. Robust methodologies for structured square meshes have been developed in recent years. This work seeks to develop a methodology based on Discontinuous PetrovGalerkin formulation (DPG), in order to minimize phase error for structured or unstructured meshes applied for Helmholtz equation in homogeneous media. A Petrov–Galerkin FE formulation is introduced for Helmholtz problem in two dimensions using polynomial weighting functions. At each node of the triangular mesh, a global basis function for the weighting space is obtained, adding to the bilinear C 0 Lagrangian weighting function linear combinations. The optimal weighting functions, with the same support of the corresponding global test functions, are obtained after computing the coefficients α n m of these linear combinations attending to optimal criteria. This is done numerically through a preprocessing technique that is naturally applied to nonuniform and unstructured meshes. In particular, for uniform mesh a quasi optimal interior stencil of the same order of the quasi-stabilized finite element method stencil derived by BABUSKA ˇ et al. [3] is obtained. Numerical results are presented illustrating the great stability and accuracy of this formulation with nonuniform and unstructured meshes. |
Materia: | Galerkin finite element methods Discontinuous Galerkin Petrov-Galerkin Discontinuous (PGD) Helmholtz equation |
Materia CNPq: | CNPQ::ENGENHARIAS::ENGENHARIA CIVIL |
Programa: | Programa de Pós-Graduação em Engenharia Civil |
Unidade de producción: | Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia |
Editor: | Universidade Federal do Rio de Janeiro |
Fecha de publicación: | oct-2019 |
País de edición : | Brasil |
Idioma de publicación: | por |
Tipo de acceso : | Acesso Aberto |
Aparece en las colecciones: | Engenharia Civil |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
RodrigoDias.pdf | 5.87 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.