Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11422/20933
Especie: Trabalho de conclusão de graduação
Título : Técnicas de computação evolutiva para problemas multi-objetivo aplicadas à geração de energia elétrica de fonte renovável
Autor(es)/Inventor(es): Araújo Júnior, Ronald Albert de
Tutor: Delgado, Carla Amor Divino Moreira
Tutor : Marcelino, Carolina Gil
Resumen: A maior parte da energia elétrica brasileira é proveniente de fonte renovável via usinas hidrelétricas. O funcionamento de tais usinas pode ser modelado como um problema de otimização multiobjetivo, tal que sejam maximizados a geração de energia, o nível de água nos reservatórios e de forma que o fluxo de água seja minimamente alterado após o processo de otimização. Neste contexto, o trabalho se propõe a estudar o desempenho de diferentes meta-heurísticas evolutivas aplicadas ao problema de despacho elétrico em usinas em modo cascata (ao menos duas plantas no leito de um rio). Meta-heurísticas evolutivas tem como base para a busca de soluções otimizadas operadores inspirados em mecanismos da natureza, como: seleção natural, recombinação e mutação. O trabalho tem foco especial no algoritmo Multi-objective Evolutionary Swarm Hybridization-MESH, proposto em (OLIVEIRA, 2019) no qual foi aplicado a problemas com dois objetivos conflitantes. Experimentos preliminares no decorrer deste trabalho indicam que o MESH se mostra competitivo quando comparado à meta-heurísticas evolutivas standard: o Multiobjective Evolutionary Algorithm Based on Decomposition - MOEA/D (ZHANG; LI, 2007) e versões de Non-dominated Sorting Genetic Algorithm - NSGA (DEB et al., 2002a) e (DEB; JAIN, 2014). As simulações utilizaram um conjunto de problemas de benchmark conhecido, levando em conta três objetivos conflitantes. Além disso, o algoritmo estudado apresenta resultados relevantes na solução do problema do despacho elétrico em um cenário generalista de usinas hidrelétricas em cascata.
Materia: Inteligência Artificial
Otimização Multiobjetivo
Usina hidrelétrica
Eficiência Energética
Materia CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Unidade de producción: Instituto de Computação
Editor: Universidade Federal do Rio de Janeiro
Fecha de publicación: 24-abr-2023
País de edición : Brasil
Idioma de publicación: por
Tipo de acceso : Acesso Aberto
Aparece en las colecciones: Ciência da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RAAraujoJunior.pdf1.42 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.