Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11422/21023
Especie: Trabalho de conclusão de graduação
Título : Técnicas de machine learning aplicadas ao monitoramento de partículas em caldeira de recuperação Kraft
Autor(es)/Inventor(es): Carmo, Elisa Carneiro Werneck do
Tutor: Souza Júnior, Maurício Bezerra de
Tutor : Parente, Andréa Pereira
Resumen: A caldeira de recuperação é um equipamento chave nas plantas de produção de papel e celulose pelo processo Kraft. A deposição de material particulado formado na caldeira representa um dos maiores problemas operacionais, devendo ser monitorada e controlada para prevenção de paradas operacionais não programadas. O processo de formação de partículas neste equipamento é complexo e modelos fenomenológicos são de difícil desenvolvimento. Uma alternativa promissora, que se insere no contexto da Indústria 4.0, é a aplicação de técnicas de aprendizado de máquinas, ou “Machine Learning”, para modelagem de tal fenômeno. O objetivo do presente trabalho foi, então, propor uma metodologia para o emprego de redes neuronais artificiais na modelagem da formação de material particulado em uma caldeira de recuperação Kraft. Foram utilizadas redes neuronais dos tipos Multicamadas Perceptron (MLP), Base Radial (RBF) e de mapeamento auto-organizável para o desenvolvimento de modelos preditivos e classificatórios a partir de dados históricos de um ano de operação em uma planta industrial. Foi possível obter uma modelagem satisfatória do número de partículas formadas na caldeira de recuperação Kraft a partir de um modelo “híbrido” de predição e classificação, que realiza a classificação dos valores preditos por uma rede preditiva em duas classes. A classe 1 engloba dados de operação normal, caracterizada por um número de partículas inferior a 200 partículas por minuto, enquanto a classe 2 agrupa os dados de operação anormal e potencialmente insegura, com emissão acima de 200 partículas por minuto. O melhor modelo encontrado se baseia em uma rede MLP de 3 camadas, com 11 neurônios na camada oculta, utilizando conjuntos adicionais de dados obtidos por adição de ruído gaussiano aos dados originais correspondentes à operação anormal. Esta adição foi realizada para equilibrar a distribuição dos dados operacionais disponíveis. O desempenho da rede de predição, dado pelo coeficiente de correlação entre os valores calculados pela rede e os valores reais, foi superior a 0,87 e o desempenho total de classificação foi de cerca de 87%. Este método é capaz de classificar corretamente aproximadamente 94% dos dados de classe 1 e 77% dos dados de classe 2. Foi obtido, também, um mapa auto-organizável a partir uma rede de mapeamento auto-organizável de topologia 20x5 que permite a identificação de regiões de operação normal, regiões de transição e regiões de maior probabilidade de operação anormal. Este método pode ser usado na geração de recomendações referentes à segurança operacional, sinalizando condições operacionais com maior potencial de risco de elevada formação de partículas.
Materia: Processo Kraft
Machine learning
Aprendizado de máquina
Redes neuronais artificiais
Materia CNPq: CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO::GERENCIA DE PRODUCAO::PLANEJAMENTO, PROJETO E CONTROLE DE SISTEMAS DE PRODUCAO
Unidade de producción: Escola de Química
Editor: Universidade Federal do Rio de Janeiro
Fecha de publicación: ago-2017
País de edición : Brasil
Idioma de publicación: por
Tipo de acceso : Acesso Aberto
Citación : CARMO, Elisa Carneiro Werneck do. Técnicas de machine learning aplicadas ao monitoramento de partículas em caldeira de recuperação Kraft. 2017. 124 f. TCC (Graduação) - Curso de Engenharia Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2017.
Aparece en las colecciones: Engenharia Química

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
ECWCarmo.pdf4.19 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.