Use este identificador para citar ou linkar para este item: http://hdl.handle.net/11422/23169
Tipo: Tese
Título: Modelagem numérica de problemas elastoplásticos e viscoplásticos através de métodos sem malha
Autor(es)/Inventor(es): Riobom Neto, Carlos Gouveia
Orientador: Santiago, José Antonio Fontes
Coorientador: Telles, José Claudio de Faria
Resumo: Este trabalho estuda a solução numérica de problemas elastoplásticos e viscoplásticos bidimensionais através da formulação fraca para métodos sem malha locais. Para a formulação do fenômeno da plasticidade, foram adotados modelos de endurecimento isotrópico e cinemático e regras de fluxo associativas. Para a modelagem de problemas viscoplásticos, foram adotados os modelos de fluência de Perzyna e de Bailey-Norton. A correção plástica é realizada através dos Algoritmos do Plano Secante e da Projeção do Ponto Mais Próximo. Para as formulações de Métodos Sem Malha, uma análise comparativa de duas variantes da família de Métodos de Petrov-Galerkin é apresentada, com a aplicação do Método dos Mínimos Quadrados Móveis Estabilizado, derivadas difusas e diferentes técnicas de integração numérica. Devido à ausência de soluções analíticas para a maioria dos problemas estudados, as soluções numéricas obtidas são comparadas com os resultados via métodos numéricos clássicos para atestar seu desempenho e estabilidade.
Resumo: This work deals with the numerical solution of two-dimensional elastoplastic and viscoplastic problems by means of the weak formulation for local meshless methods. The Plasticity phenomenon is formulated by associative flow laws with isotropic and kinematic hardening whereas viscoplastic materials are modelled by the Perzyna and Bailey-Norton creep laws. The plastic correction is performed by means of the Cutting Plane and Closest Point Projection Algorithms. For the study of meshless methods, a comparative analysis of two variants of the Petrov-Galerkin Method is presented with the application of the Stabilized Moving Least Squares, diffuse derivatives and different numerical integration techniques. The most of studied problems is compared with classical numerical methods, due to absence of the analytical solutions, in order to assess the performance and stability.
Palavras-chave: Plasticidade
Viscoplasticidade
Métodos Locais de Petrov-Galerkin
Assunto CNPq: Engenharia Civil
Programa: Programa de Pós-Graduação em Engenharia Civil
Unidade produtora: Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Editora: Universidade Federal do Rio de Janeiro
Data de publicação: Jun-2020
País de publicação: Brasil
Idioma da publicação: por
Tipo de acesso: Acesso Aberto
Aparece nas coleções:Engenharia Civil

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
939665.pdf2.24 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.