Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11422/8418
Especie: Artigo
Título : Enhanced convergence of eigenfunction expansions in convection-diffusion with multiscale space variable coefficients
Autor(es)/Inventor(es): Cotta, Renato Machado
Naveira-Cotta, Carolina Palma
Knupp, Diego Campos
Resumen: Indisponível.
Resumen: A convergence enhancement technique known as the integral balance approach is employed in combination with the Generalized Integral Transform Technique (GITT) for solving diffusion or convection-diffusion problems in physical domains with subregions of markedly different materials properties and/or spatial scales. GITT is employed in the solution of the differential eigenvalue problem with space variable coefficients, by adopting simpler auxiliary eigenproblems for the eigenfunction representation. The examples provided deal with heat conduction in heterogeneous media and forced convection in a microchannel embedded in a substrate. The convergence characteristics of the proposed novel solution are critically compared against the conventional approach through integral transforms without the integral balance enhancement, with the aid of fully converged results from the available exact solutions.
Materia: Heat flow
Fluid flow
Generalized Integral Transform Technique
Mathematical Method
Materia CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
Unidade de producción: Núcleo Interdisciplinar de Dinâmica dos Fluidos
Editor: Taylor & Francis
Es parte de: Numerical Heat Transfer, Part A Applications
Volumen: 70
Número: 5
Fecha de publicación: 13-jul-2016
DOI: 10.1080/10407782.2016.1177342
País de edición : Brasil
Idioma de publicación: eng
Tipo de acceso : Acesso Aberto
ISSN: 1040-7782
Aparece en las colecciones: Engenharias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2-2016_Enhanced-convergence-of-eigenfunction-min.pdf733.73 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.