Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11422/8548
Especie: Artigo
Título : A consistent and stabilized continuous/discontinuous Galerkin method for fourth-order incompressible flow problems
Autor(es)/Inventor(es): Cruz, Antonio Guilherme Barbosa da
Carmo, Eduardo Gomes Dutra do
Duda, Fernando Pereira
Resumen: Indisponível.
Resumen: This paper presents a new consistent and stabilized finite-element formulation for fourth-order incompressible flow problems. The formulation is based on the C0-interior penalty method, the Galerkin least-square (GLS) scheme, which assures that the formulation is weakly coercive for spaces that fail to satisfy the inf-sup condition, and considers discontinuous pressure interpolations. A stability analysis through a lemma establishes that the proposed formulation satisfies the inf-sup condition, thus confirming the robustness of the method. This lemma indicates that, at the element level, there exists an optimal or quasi-optimal GLS stability parameter that depends on the polynomial degree used to interpolate the velocity and pressure fields, the geometry of the finite element, and the fluid viscosity term. Numerical experiments are carried out to illustrate the ability of the formulation to deal with arbitrary interpolations for velocity and pressure, and to stabilize large pressure gradients.
Materia: Discontinuous Galerkin methods
Fourth-order problems
GLS stability
Second gradient
Materia CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
Unidade de producción: Núcleo Interdisciplinar de Dinâmica dos Fluidos
Editor: Elsevier
Es parte de: Journal of Computational Physics
Volumen: 231
Número: 16
Fecha de publicación: 15-may-2012
DOI: 10.1016/j.jcp.2012.05.002
País de edición : Brasil
Idioma de publicación: eng
Tipo de acceso : Acesso Aberto
ISSN: 0021-9991
Aparece en las colecciones: Engenharias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2012_CRUZ_v231_p5469-5488-min.pdf587.42 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.