Please use this identifier to cite or link to this item: http://hdl.handle.net/11422/8644
Type: Tese
Title: Theoretical results on a weightless neural classifier and application to computational linguistics
Author(s)/Inventor(s): Carneiro, Hugo Cesar de Castro
Advisor: França, Felipe Maia Galvão
Co-advisor: Lima, Priscila Machado Vieira
Co-advisor: Pedreira, Carlos Eduardo
Abstract: WiSARD é um classificador n-upla, historicamente usado em tarefas de reconhecimento de padrões em imagens em preto e branco. Infelizmente, não era comum que este fosse usado em outras tarefas, devido á sua incapacidade de arcar com grandes volumes de dados por ser sensível ao conteúdo aprendido. Recentemente, a técnica de bleaching foi concebida como uma melhoria à arquitetura do classificador n-upla, como um meio de coibir a sensibilidade da WiSARD. Desde então, houve um aumento na gama de aplicações construídas com este sistema de aprendizado. Pelo uso frequente de corpora bastante grandes, a etiquetação gramatical multilíngue encaixa-se neste grupo de aplicações. Esta tese aprimora o mWANN-Tagger, um etiquetador gramatical sem peso proposto em 2012. Este texto mostra que a pesquisa em etiquetação multilíngue com WiSARD foi intensificada através do uso de linguística quantitativa e que uma configuração de parâmetros universal foi encontrada para o mWANN-Tagger. Análises e experimentos com as bases da Universal Dependencies (UD) mostram que o mWANN-Tagger tem potencial para superar os etiquetadores do estado da arte dada uma melhor representação de palavra. Esta tese também almeja avaliar as vantagens do bleaching em relação ao modelo tradicional através do arcabouço teórico da teoria VC. As dimensões VC destes foram calculadas, atestando-se que um classificador n-upla, seja WiSARD ou com bleaching, que possua N memórias endereçadas por n-uplas binárias tem uma dimensão VC de exatamente N (2n − 1) + 1. Um paralelo foi então estabelecido entre ambos os modelos, onde deduziu-se que a técnica de bleaching é uma melhoria ao método n-upla que não causa prejuízos à sua capacidade de aprendizado.
Abstract: WiSARD é um classificador n-upla, historicamente usado em tarefas de reconhecimento de padrões em imagens em preto e branco. Infelizmente, não era comum que este fosse usado em outras tarefas, devido á sua incapacidade de arcar com grandes volumes de dados por ser sensível ao conteúdo aprendido. Recentemente, a técnica de bleaching foi concebida como uma melhoria à arquitetura do classificador n-upla, como um meio de coibir a sensibilidade da WiSARD. Desde então, houve um aumento na gama de aplicações construídas com este sistema de aprendizado. Pelo uso frequente de corpora bastante grandes, a etiquetação gramatical multilíngue encaixa-se neste grupo de aplicações. Esta tese aprimora o mWANN-Tagger, um etiquetador gramatical sem peso proposto em 2012. Este texto mostra que a pesquisa em etiquetação multilíngue com WiSARD foi intensificada através do uso de linguística quantitativa e que uma configuração de parâmetros universal foi encontrada para o mWANN-Tagger. Análises e experimentos com as bases da Universal Dependencies (UD) mostram que o mWANN-Tagger tem potencial para superar os etiquetadores do estado da arte dada uma melhor representação de palavra. Esta tese também almeja avaliar as vantagens do bleaching em relação ao modelo tradicional através do arcabouço teórico da teoria VC. As dimensões VC destes foram calculadas, atestando-se que um classificador n-upla, seja WiSARD ou com bleaching, que possua N memórias endereçadas por n-uplas binárias tem uma dimensão VC de exatamente N (2n − 1) + 1. Um paralelo foi então estabelecido entre ambos os modelos, onde deduziu-se que a técnica de bleaching é uma melhoria ao método n-upla que não causa prejuízos à sua capacidade de aprendizado.
Keywords: Engenharia de Sistemas e Computação
Técnica de clareamento
Teoria do aprendizado estatístico
Subject CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Program: Programa de Pós-Graduação em Engenharia de Sistemas e Computação
Department : Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Publisher: Universidade Federal do Rio de Janeiro
Issue Date: Jan-2017
Publisher country: Brasil
Language: eng
Right access: Acesso Aberto
URI: http://hdl.handle.net/11422/8644
Appears in Collections:Engenharia de Sistemas e Computação

Files in This Item:
File Description SizeFormat 
879660.pdf1,26 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.