Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11422/8714
Especie: Artigo
Título : Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations
Autor(es)/Inventor(es): Foias, Ciprian
Rosa, Ricardo Martins da Silva
Temam, Roger
Resumen: Indisponível.
Resumen: The three-dimensional incompressible Navier-Stokes equations are considered along with its weak global attractor, which is the smallest weakly compact set which attracts all bounded sets in the weak topology of the phase space of the system (the space of square-integrable vector fields with divergence zero and appropriate periodic or no-slip boundary conditions). A number of topological properties are obtained for certain regular parts of the weak global attractor. Essentially two regular parts are considered, namely one made of points such that all weak solutions passing through it at a given initial time are strong solutions on a neighborhood of that initial time, and one made of points such that at least one weak solution passing through it at a given initial time is a strong solution on a neighborhood of that initial time. Similar topological results are obtained for the family of all trajectories in the weak global attractor.
Materia: Navier-Stokes equation
Vector Fields
Weak global attractor
Materia CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
Unidade de producción: Núcleo Interdisciplinar de Dinâmica dos Fluidos
Editor: American Institute of Mathematical Sciences
Es parte de: Discrete and Continuous Dynamical Systems - Series A
Volumen: 27
Número: 4
Fecha de publicación: 30-mar-2010
DOI: 10.3934/dcds.2010.27.1611
País de edición : Brasil
Idioma de publicación: eng
Tipo de acceso : Acesso Aberto
ISSN: 1078-0947
Aparece en las colecciones: Engenharias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2010_FOIAS_DCDS_v27_p1611-1631-min.pdf298.02 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.